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Introduction 

A fundamental prohlem of electrical apparatus development is the reduc­
tion or elimination of contact houncing. Several papers were published recently 

[2] [3] [4] [6] [7] [8] on the study of houncing hetween spherical and plate 
contacts. The total number and duration of bounces was determined in case of 

yarying parameters. 

N eyertheless, the question arises: what are the conditions for complete 

bounce suppression? An equation, giyen by KESSELRI);G [9] determines, on the 
basis of energies concerned, the necessary contact biasing force. 

By formulating the equation of mechanical oscillation, it was attempted 
to find an approximate solution, with material constants to he easy determined. 
To this end the usual yclocity conditions and contact materials of the contac­

tors were taken into consideration. 

1. The equation of oscillation for the linear mechanical model 

Fig. 1 shows the kinetic model of the contacts. The stationary contact is 
an infinite plate, while the moying one j" a spht'l'(> of ma;:s m. The material of 

the t,\-O contacts i5 identical. 

Snllboh: 

J1 concentrated mass in motion of the operating system 

m mass of the spherical contact 

Cl spring constant hiasing the spherical contact: 
C common spring constant of sphere and plate; 
A, damping coefficient of the contact material, proportional to the 

yelocity: 

x co-ordinate of the sphere; 
y co-ordinate of the operating 5ystem. 

The moving contact, at the instant t = 0 collides with the 5tationary 

contact at a yelocity ['0' 

1 P~:riudi( a Polytec1l1l i t::l El. l~j:'; 
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In the following the movement of the contacts during the impact will be 

studied. 

M 

Fig. 1. The kinetic model of the contact 

The model in Fig. 1 can be described by the following system of differen­
tial equations: 

K~ 
s dt 

(1.1) 

(1.2) 

In these equations Fo is the biasing force of the spring, and g is the accele­
ration due to gravity. 

Initial and boundary conditions are: 

fit 0: x=O,y=O, 
dx dy 
-=-=vo 
dt dt 

and 

at t = 0:0 x- g 
C 

lvIg-Fe 
y = x + --=----

Cl 

provided, that C, Cl and Ks are constant. 
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The solution of the system of equations (1.1) and (1.2) giyes the displace­
ment as a function of time. In order to ease the solution, a simplification was 
used. 

1--/-.,-------- ·Va-£" ---t'-------+----,----~ 

1-1'---------- ----

a 

Fig. 2. The movement of the operating mechanism vs. time from the instant of contact, on the 
basis of: a) approximation; b) measurement 

The'y = y(t) function describing the movement of the operating system 
is assumed to be known. Fig. 2 shows its form as assumed and determined on 
the model. In mathematical form: 

y = l(t). vo(t) -l(t - T) . vo(t - T) (1.3) 

where:YJ = VOT is the distance taken by the spring after the first contact. 
Substituting Eq. (1.3) into Eq. (1.1), and keeping in mind that C?? Cl' 

we have: 

dt~ 
+ Ks :: + Cx = l(t) F(t) + C11(t) vot - l(t - T) Vo(t - T) (1.4) m 

KZ 
In practical cases C> __ 5 is aI-ways true for the contact materials, result-

4m 
ing in a periodical solution for the differential equation. The result, namely the 
function x (t) describes the moyement of the sphere during the impact. 

The solution of Eq. (1.4) is: 
if t < T, then 

and if t > T, then 

(1.5) 

(1.6 ) 

In these equations (0 is the angular frequency of the mechanical oscillation 
and ex: is the damping coefficient. 

1* 
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C,) = I ~ -- - :x-; 
m 

c 
:x= 

2m 

Eqs. (1.5) and (1.6) giye identical results for t = i. After rearranging these 
equations, we have: 

x(t < i) = Ae-~t sin (0Jt - cp) (1.7) 
and 

(1.8) 

The motion described by the above equations is a damped oscillation, 
superimposed on the deformation caused by externalforces (Fig. 3). Eqs. (1.7) 
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Fig. 3. The function. describing contact lUO\-elnent 

and (1.8) are yalid, up to x > O. that is the sphere contacts the plate. When the 
sphere leaves the plate, or "bounces". thC'1l its moyement' will follo'l- other 

laws of physic. 

Determination of the condition of bouncing 

If the function x(t), describing the motion during the contact is always 
positive, no bouncing occurs. For usual contact materials and yelocity condi­
tions in contactor". it can be said, that 

T 
CO) 

which means, that the period T of the periodic term is much less than the time 
due to the distance taken by the spring after the first contact. It is reasonable 
therefore to study only Eq. (1.7), which after rearrangement hecomes: 
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4 -:<1 _. ( ) ./.1 '4 - - e "In OJt - If " f:13 t T " .1 (1.9) 

Conditions of the elimination of bouncing can be determined hy inyesti­
gating the first extreme yalue at the left side of Eq. (1.9). 

Though it descrihes an exponentially damped sinusoidal oscillation, the 
error will he negligihle, when only the extreme value of the sine function is 
taken into account. From the condition 

sin (cut - If) = - 1 

the argument of the extreme yalue is: 

tm = --_._-

Suhstituting it in (1.9) we haye: 

Substituting the constants: 

V f ~.~r ~- (~r F 

C 

F 

C 

(1.10) 

(loll) 

(1.12) 

The spring force increase due to the distance taken after the first COll­

t act during tm is usually small in comparison to the bias and its neglection adds 
to the safety. On the other hand according to common practice, the frequency 
of vihration is so high that no significant growth of force takes place until the 
first maXImum. 

where 

After rearranging Eq. (1.12), the criterion ofthc elimination of bouncing is: 

t Ir ; 

F (J) 
arc tg_· 

C 

(1.13) 

1.5:< 

(1.14) 

From Eqs. (1.13) and (1.14) the conclusion can be drawn that the elimina-

tion of bouncing is determined hy the ratio . It must he noted, however, that 
~ • F 

l' 
the term ; is included in the formula (1.14-) too, but this bein g an unequality, 

it cannot be giyen in explicit form. 



126 S. DOJIOSKOS and GY. JIADAR.4SZ 

The approximate solution is easy to compute. There remain three prob-
lems: 

a) to measure the material constants of various contact materials, 
b) to compute the necessary biasing force from Eq. (1.13) for the above 

material constants. This was done by an analogue computer. 
c) to check the validity of the approximate equation in order to justify 

the neglections. 

2. The determination of the constants by measurements 

In numerical computations it is necessary to kno,,- not only the biasing 
force Fe, the spring constant Cl' mass m and impact velocity 1'0' but also the 
common spring constant C of the contact material and the damping coefficient 
K s, proportional to velocity. 

The common spring constant C and the damping coefficient Ks can be 
determined in the knowledge of the natural angular frequency wand damping 
coefficient (I. using the following equations: 

le 
7.=--

2m 

Several meaSluements were made to determine the angular frequency C') and 

Fig. 4. Test device 
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damping coefficitent x. The measuring apparatus, Fig. 4, 'was designed in 
accordance with the model in Fig. 1. 

To determine x and w, very light and weakly biased spring was used. Due 
to the soft spring characteristic of the spring (low spring constant Cl) and the 
low biasing force, static deformation, on which the oscillation is superimposed, 

/-" 
I \ 

I \ 

--- --7--- r -----------
\ \ I 
\ I \ I B3 "", 0 

\ J \ I 
\ I _I 
,j 

x 

Fig. 5. Contact moYemcnt, when loaded by a low spring force 

will he negligible (Fig. 5). Hence, in Eq. (1.5) the values A z' A3 and A4 are 
negligible. The equation of motion during the contact period is 

(2.1) 

_·Uter differentiation we have the velocitv 

dx 
Replacing into Eqs (2.1) and (2.:2) t = 0, Tt = L· ll • X = 0 pertaining to 

the instant of contact. and ( = (1' 

dx 
= 1"1' x dt . O. pertaining to the inst ant of houncing. 'we have 

1 To 
':1.= -In (:2.3) 

t1 r 1 

and 

Ks 
:2m 

In - (:2 .. 1) 
t 1 L" I 

On the other hand, the angular frequency of the oscillation can he determined 
from the duration of the contact, t 1• hecause according to the above conditions 
being about the half of the period T. Thus 
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(2.5) 

In the knowledge of rx and (J) the common spring constant of the contact mate­
rial can be determined: 

(2.6) 

In order to determine the constants several oscillograms of the duration 

of contact and separation 'were taken. One of them is shown in Fig. 6. Impact 

t; --I-
r""' 
i I r 

\ \ 

1 I L.......Jw 

II 
I 
I 

1 i 

open 

I' 
'
I 

i 
_1 __ , 

'2 

Fig. 6. Times of contact (I l , 13, td and separation (l~, t J,! r,) upon switching on 

velocity 'was cOlltrolled by the weights attached to the arlllS of the te~t device 
l!l Fig. 4. 

Impact velocity was measured by 
1. high speed photography; 
~. potentiometric displacement transducer; 
3. inductive displacement transducer. 
The bouncing velocity L'l was determined from the separation time t:!, after 

contact by tlw f'quation 

~. 
1 -~tg . 1i~~ 

.'2 m 
(2.7) 

Eq. (2.7) is derived from the equation of motion of the separatf'cl 
moving contact. 

The equation of motion and its solution are essentially identical to those 
published by ERK, and FI:"<KE [2]. 

The validity of the method of computation was checked by means of an 
inductive displacement transducer. In these measurcments iron was the mate­
rial of the contacts. The principle of measurement is shown in Fig. -; .a. From 
the oscillogram (Fig. 7.b) both the impact and separation velocities and separa­
tion time t2 can be determined, on the basis of which the equation (2.7) can be 
checked. 
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a) < 

Fig. i. a) The measurement of contact movement by inductive displacement transducer: 
b) Contact movement ..,-s. time 

From the measurements on bouncing the following constants can be de­

termined: 

r :) mm 

sphere to plate contact 

Tl I"! = 25 mm 
:"phere to sphere contact 

I" = :) InIn 
sphere to plate contact 

1"1 = 1"2 = 25 mm 
sphere to sphere contact 

damping coefficient 7. r-1
- 1

J l sec 

Ag 1000 
3300 

1900 

angular frequency ('J 1'_1_] 
lsec 

Ag CdO 90/10 
3300 

2400 

Ag 1000 Ag CclO 90/10 

12 ·10;l 
6.4 . 10:3 

13 . 103 

:-.4 . 10~ 
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The yalues of the constants show some dispersion as a function of velocity. 
The values indicated above are the means of the measured data. 

3. Computation aud measurement of the elimination of bouncing 

If constants x and 0) are known, the ratio , pertainingtothe elimina-
Vo 

tion bouncing can be computed from Eqs (1.13) and (1.14). 

T 1 f Flcr [kP sec] he ya ues 0 --

Vo m 

r= 5 mm 

sphere to plate contact 

1"1 = 1"2 = 25 mIn 

sphere to sphere contact 

Ag 1000 

9.9 

4.63 

Ag CdO 90/10 

11.6 

4.63 

For the impact yelocity Vo = 0.55 m/sec the following spring biasing for­
ces were computed to completely suppressed of bouncing 

:\.0' 1000 .. to Ag CdO 90/10 

r ;) Inll1 

:;phere to plate contact ;).;) 6.-1 
1'1 ,.~ = 25 mm 
sphere to sphere contact 2.6 2.6 

In order to check the computation, it 'was run on an analogue computct 
The computer model ofEqs (1.7) and (1.8) describing the motion of thc contacts i;;; 
"l1O"wn in Fig. 8. Solutions for yarious hiasing forces are shown in Fig. 9. 

It is to be noted, that hy increasing the hiasing force, a yalue (Fi:r) j,:; 

reached, for which no gatiYe deformation (x) of the stationary contact takc~ 
place any more, henceno houncing occurs. 

Consequently, the hiasing force, necesarry to eliminate contact houncing. 
can he directly determincd hy means of an analog computer. Computer results 
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Fig. 8. Analogne model simnlating contact moyement during switching on 

OJiH 
F;=lkp 8,41.kp 9,5kp 

0,05 --- - c-----------

0,025 IV J\r 
{\ 

0 V 1 2 0 1 2 0 I 2 t.10-3 [sec] 

IQ3kp 11,5kp 13,3kp 

9,05 

[;,025 ++-1+--------

o o o 

Fig. 9. Solutions giyen by the analogue computer 

for the preyious case are: 

r = 5 mnl 

sphere to plate contact 

1'1 = 1''2 =25 mm 
sphere to sphere contact 

Aa 1000 - '" 
5.26 

Ag CdO 90/10 
6.1 

2.61 

131 
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Results have been checked by measurements on the test device in Fig. 4, 
aimed at determining the limiting case of bouncing. 

Bouncing times were oscillographed for gradually increasing biasing for­
ces. In this way the biasing forces for which bouncing phenomena just appeared 
and disappeared could be determined. 

ID [ms} __ Ip 

- - - ----- closed 

open -

3 

2 

1,5 2 Fe [kpJ 

Fig. 10. The most probalJle bouncing time yalues (t p) "S. hiasing force 

The measurement data are as follows: 

r 5 mm 
sphere to plate contact 

r 1 r~ 25 mm 
sphere to sphere contact 

Fe [kp] 

Ag 1000 

5.7 6.1 

2.7-3.1 

Ag CdO 90/10 

:).1 

2.6-3 

These data show a fair agreement 'with the computed ones. 
The measured bouncing time values for identical velocities and hiasiug 

forces are rather widely scattered. This fact made the check of the computation 
method unreliable, therefore further measurements and development of the 
measuring technique were required. 

Instead of oscillography, a high precision electronic digital equipment 
'was used to measure the sum of bouncing times, which enahled us to take a 
great number of measurements rapidly. 

The sum of bouncing times (t p) was measured by gradually increasing bias­
ing force (Fig. 10). The most probable values among 20 measurements each aH~ 
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shown in Fig. 10 as a function: of the biasing force. With gradually increasing 
hiasing forces the number of zero bouncing times increased. It is cvident, that 
hy further increasing the biasing force, zero bouncing time can be reached in 
100% of the measurements. Zero bouncing times were taken for measurements 
50% of the data were zero. Consequently that given force was regarded as the 
critical biasing force, ·with which contact bouncing could he eliminated at a 
high probability, The measurements were taken with a velocity L'O = 0.406 

% 100 / 

90 / 
I 

I 
80 I 

ID =0 I 
I 

70 / 

60 - /' 50 

40 

30 

20 /~ 
10 .... '" 

Fe [kpJ 
~----.------------------

2 Fsz = 2,08 .~p 

Fig. 11. Relative frequency of zero bouncing times (Ip = 0) 'Cs. biasing spring force: Fcurnp 
=2.08 kp is the compnted 'Calne 

misec, while the mass of the moying contact was m = 0.918 . 10 -:1 [kp scc2im]. 

The spring constant of the biasing spring ·was: 

C 127.5 [p!mm] 

rhe method, described in chapter 2, produces the COllstants, which in this 
case were found to hex 12.-13.103 [ljsec] and (J) = 33.9 [kHz]. Substituting 
these data in Eqs (1.13) and (1.14) the biasing force for which bouncing is 
:ouppressed is found to be Y = 2.08 [kp]. Comparing this yalue with the one, 
·determined from the measurement OIl the hasis of 50~o probability of zero bounc­

ing time (Fe = 1.87 kp), 10% error is obseryed, but the computed yalue is in 
error 011 the safe side. Plotting the relative frequency of the occurrence of zero 
houncing times (t p 0) as a function of the biasing force (Fig. 11), it is found, 
that the value of about 98 % of the relatiye frequency belongs to thc computcd 
yalue. 

On the basis of the above results, the method of computation described 
in this paper can be effectiyely used to determine the conditions of the elimina­
tion of bouncing. 
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In Fig. 10, where bouncing time vs. biasing force is shown, may be noted, 
that at small forces bouncing time rapidly decreases, but at higher forces its 
change is much smaller. 

Apart from thc fact that bouncing can be theoretically and practically 
completely eliminated, a question of technical-economical nature arises, 
namely: how long is it worth trying to decrease bouncing time? When increasing 
the spring force, an operating mechanism of ever more robust design is needed, 
which consequently increases the weight and the price of the contactor. Without 

attempting here a detailed analysis of the problem, it may be said, that from a 
technical-economical aspect a bouncing time of about 1 msec is the lower 
limit, which is worth trying to attain. 

The effect of current on bouncing 

In the analysi;;: given above cases werc studied where the contacts switch­
ed on practically without current. The problem is now what is the effect of cur­

rent up to about 1200 A, s'witched on by the contactors, on bouncing? 
Two factors must be taken into account here. The electrodynamical re­

pulsion forces, described in great detail in the relevant literature, increase 
bouncing tendency. The thermal effect of the current results in a decreased ten­
dency for bouncing, due to the heating and softening of the contacts. Our 
measurements on contactor contacts in the range of 100 to 1200 A showed a de­
finite decrease of bouncing time. From all of this it follows, and this statement 
can be justified by computations, that in this current range the thermal effect 

of the current, which decreases bouncing, is predominant over the small repul­
sive force. The effect of the repulsive force is further decreased by peaks on the 
contact surfaces, deformation of which causes dissipation of kinetic energy, 
when switched on. 

Summary 

Sphere to plate contact bounce phenomenon has been studied in velocity and force 
conditions typical for low-voltage contactors. On the basis of literature data, an equation of 
mechanical oscillation is constructed and solved approximately. An equation is derived to 
determine the spring force necessary for complete bounce suppression. The constants for this 
equation were determined by measurements on a test model. An analogue computeJ: was used 
for the computations. 

In order to prove the theory, a great number of measurements on bouncing were taken 
with various velocities and spring forces. Bouncing time was recorded by a digital instrument. 
With increasing spring forces bouncing time gradually diminished until its complete elimi­
nation. :Measured and computed data showed a fair agreement. As a last step, the degree of 
technically and economically justifiable reduction of bouncing time is investigated. 
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