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Introduction

A fundamental problem of electrical apparatus development is the reduc-
tion or elimination of contact bouncing. Several papers were published recently
[27 [3] [4] [6] [7] I8] on the study of bouncing between spherical and plate
contacts. The total number and duration of bounces was determined in case of
varying parameters.

Nevertheless, the question arises: what are the conditions for complete
bounce suppression ? An equation, given by KessgrLrinc [9] determines, on the
basis of energies concerned. the necessary contact biasing force,

By formulating the equation of mechanical oscillation, it was attempted
to find an approximate solution, with material constants to be easv determined.
To this end the usual velocitv conditions and contact materials of the contac-
tors were taken into consideration.

1. The equation of oscillation for the linear mechanical model

Fig. 1 shows the kinetic model of the contacts. The stationary contact is

an infinite plate, while the moving one is a sphere of mass m. The matcrial of
the two contacts is identical.

Symbols:

M concentrated mass in motion of the operating system

m  mass of the spherical contact

C, spring constant biasing the spherical contact:

C  common spring constant of sphere and plate;

K; damping coefficient of the contact material. proportional to the
velocity:

x  co-ordinate of the sphere:

co-ordinate of the operating system.

Lt

The moving contact, at the instant ¢ = 0 collides with the stationary
contact at a velocity vy
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In the following the movement of the contacts during the impact will be
studied.

G

Fig. 1. The kinetic model of the contact

The model in Fig. 1 can be described by the following system of differen-
tial equations:

d*x . dx | ‘ , .
m-;;;:—Cx—Ixs—d;—ﬁ—— c+mg+ C(y —x) (1.1)
d?y . .
JI?: —Cy —x)— F,+ Mg (1.2)
tu

In these equations F. is the biasing force of the spring, and g is the accele-
ration due to gravity.

Initial and boundary conditions are:

dx dy
at t=0: x=0, y=0, E:E?:vo
and
at t= o0 : t:jj+nlg
C
y=x+ Mg—Fe

provided, that C, C; and K; are constant.
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The solution of the system of equations (1.1) and (1.2) gives the displace-
ment as a function of time. In order to ease the solution, a simplification was

w

= .
T a t 5

Fig. 2. The movement of the operating mechanism vs. time from the instant of contact, on the
basis of: a) approximation; b) measurement

The y = y(1) function describing the movement of the operating system
is assumed to be known. Fig. 2 shows its form as assumed and determined on
the model. In mathematical form:

y=1(t) - vyt) —1(t — 7) - v,(t — 7) (1.3)

where y; = v,7 is the distance taken by the spring after the first contact.
Substituting Eq. (1.3) into Eq. (1.1), and keeping in mind that C > C,,
we have:

mEE A% +Cx =10 F@) + Cl) vst — Lt — ) vyt — 1) (1.4)
t

70

N

In practical cases C> is alwaystrue for the contact materials, result-

4m
ing in a periodical solution for the differential equation. The result, namely the
function x (z) describes the movement of the sphere during the impact.

The solution of Eq. (1.4) is:

if t <7, then

x(t) = Aje ' sin ot + Aye ™ coswt + Azt + A, (1.3)
and if t >> 7, then

x(t) = Bie *'sinwt -+ B,e*coswt + B, (1.6)

In these equations o is the angular frequency of the mechanical oscillation
and « is the damping coefficient.

1*
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o = _

Cc . K
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Eqgs. (1.5) and (1.6) give identical results for ¢t
equations, we have:

= 7. After rearranging these
x2(t <1

7) = Ae *sin (ot — ¢) - At - 4,
and

(1.7

x(t > 7v) = Be™*sin (0t — ¢) =~ B, (1.8)
The motion described by the above equations is a damped oscillation,
superimposed on the deformation caused by externalforces (Fig. 3). Eqs. (1.7)
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Fig. 3. The function, describing contact movement

and (1.8) are valid. up to x > 0, that is the sphere contacts the plate. When the

sphere leaves the plate, or ““bounces’

laws of physic.

then its movement will follow other

Determination of the condition of bouncing

If the function x(f), describing the motion during the contact is always
positive, no bouncing occurs. For usual contact materials and velocity condi-

tions in contactors, it can be said, that

9
=TT
T =

<Z T

[0}

which means, that the period T of the periodic term is much less than the time

due to the distance taken by the spring after the first contact. It is reasonable
therefore to study only Eq. (1.7), which after rearrangement becomes:
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~xf ¥ / P
—Ae* sin (ot — ¢) < At + A, (1.9)
Conditions of the elimination of bouncing can be determined by investi-
gating the first extreme value at the left side of Eq. (1.9).
Though it describes an exponentially damped sinusoidal oscillation, the
error will be negligible. when only the extreme value of the sine function is
taken into account. From the condition

sin{wft —¢) = — 1

the argument of the extreme value is:

-~ 15
T (1.10)
@
Substituting it in (1.9) we have:
Ae m < _/:lslm -~ .44 (111)
Substituting the constants:
l/ i 2 - 'El" Cety < voCI 1, ___EAJE (112)
o) C : C C

The spring force increase due to the distance taken after the first con-
tact during t,; is usually small in comparison to the bhias and its neglection adds
to the safety. On the other hand according to common practice, the frequency
of vibration is so high that no significant growth of foree takes place until the
first maximum.

Afterrearranging Eq. (1.12), the criterion of the elimination of bouncing is:

r, T S—

o ey — 1 1.13
7T (1.13)
where
arctg Fo + 1.5
f o= %G (1.14)
D) )

From Eqs. (1.13) and (1.14) the conclusion can be drawn that the elimina-

. . . . . Uy
tion of bouncing is determined by the ratio -—F~ . It must benoted, however. that

g .. . . . .
theterm N included in the formula (1.14) too, but this being an unequality,

it cannot be given in explicit form.
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The approximate solution is easy to compute. There remain three prob-
lems:

a) to measure the material constants of various contact materials,

b) to compute the necessary biasing force from Eq. (1.13) for the above
material constants. This was done by an analogue computer.

¢) to check the validity of the approximate equation in order to justify
the neglections.

2. The determination of the constants by measurements

In numerical computations it is necessary to know not only the biasing
force F, the spring constant C;, mass m and impact velocity 1,, but also the
common spring constant C of the contact material and the damping coefficient
K, proportional to velocity.

The common spring constant C and the damping coefficient K, can be
determined in the knowledge of the natural angular frequency w and damping
coefficient 2 using the following equations:

C
= /~———12
m

K,

o A—
2m

Several measurements were made to determine the angular frequency o and

Fig. 4. Test device
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damping coefficitent «. The measuring apparatus, Fig. 4. was designed in
accordance with the model in Fig. 1.

To determine « and w, very light and weakly biased spring was used. Due
to the soft spring characteristic of the spring (low spring constant C,) and the
low hiasing foree, static deformation, on which the oscillation is superimposed,

_ 717, // \\
\
N S— ! \ ‘
_.‘\,___,_’7____._\.._._7 ________
\ ! \ // 5320
\ ! \_/
A =

X

Fig. 5. Contact movement, when loaded by a low spring force

will be negligible (Fig. 5). Hence, in Eq. (1.5) the values 4,, 4, and 4, are
negligible, The equation of motion during the contact period is

x(t) ~= A e7 sin of (2

{8
jo-—)
S~

After differentiation we have the veloecity

d;\' PR s .
= —gd e sinot + wdle* cos mt (2.2
dt

dr

Replacing into Eqs (2.1) and (2.2) t = 0, =17y,x = 0 pertaining to

the instant of contact, and t = 1,,

dx . - : :
T =L = 0. pertaming to the instant of bouncmg, we have
at
1 v, .
7= —ln—- (2.3)
9] vy
and
. 2m Ty o
K,="—In—- (2.4)
5% v

On the other hand, the angular frequency of the oscillation can be determined
from the duration of the contact, t,, because according to the above conditions
being about the half of the period T. Thus
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) == — (2.5)

In the knowledge of & and o the common spring constant of the contact mate-

rial can he determined:
C = m(e? 4 2?) 7~ mo* (2.6)

In order to determine the constants several oscillograms of the duration
of contact and separation were taken. One of them is shown in Fig. 6. Impact
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Fig. 6. Times of contact (1, t;, t;) and separation (1., t,,* ;) upon switching on

velocity was controlled by the weights attached to the arms of the test device
in Fig. 4.

Impact velocity was measured by

1. high speed photography;

2. potentiometric displacement transducer:

3. inductive displacement transducer.

The bouncing velocity ¢; was determined from the separation time t, after
contact by the equation

=1 (2.7)

i mC, 2 m

vy ==

F + mg ts / C,

Eq. (2.7) is derived from the equation of motion of the separated
moving contact.

The equation of motion and its solution are essentially identical to those
published by Erx, and Fixke [2].

The validity of the method of computation was checked by means of an
inductive displacement transducer. In these measurements iron was the mate-
rial of the contacts. The principle of measurement is shown in Fig. 7.a. From
the oscillogram (Fig. 7.b) both the impact and separation velocities and separa-
tion time t, can be determined, on the basis of whichthe equation (2.7) can he

checked.
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Fig. 7. a) The measurement of contact movement by inductive displacement transducer:
b) Contact movement vs. time

From the measurements on bouncing the following constants can he de-
termined:

damping coefficient 7[ ! ]
| sec j

Ag 1000 Ag CdO 90/10
3300 3300

r = 5>mm

sphere to plate contact
ry=r, =25 mm 1900 2400
sphere to sphere contact

i
angular frequency

sec
Ag 1000 Ag CdO 90/10
r=>5 mm
sphere to plate contact 12 - 103 13 - 108
ry=ry = 25 mm 6.4 - 10° 7.4 - 108

sphere to sphere contact
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The values of the constants show some dispersion as a function of velocity.
The values indicated above are the means of the measured data.

3. Computation and measurement of the elimination of bouncing

' kr

If constants « and o are known, the ratio , pertainingtothe elimina-
Ty

tion bouncing can be computed from Eqs (1.13) and (1.14).

The values of &— [M}

Ty m

Ag 1000 Ag CdO 90/10
r=>5 mm
sphere to plate contact 9.9 11.6
r,=r, =25 mm
sphere to sphere contact 4.63 4.63

For the impact veloeity v, = 0.55 m/sec the following spring biasing for-
ces were computed to completely suppressed of bouncing

F!:r[kl)]
Ag 1000 Ag CdO 90/10
r=>5 mm
sphere to plate contact 5.5 6.4
ry==r, =25 mm
sphere to sphere contact 2.6 2.6

In order to check the computation, it was run on an analogue computet
The computer model of Eqs(1.7) and (1.8) describing the motion of the contacts iz
shown in Fig. 8. Solutions for various biasing forces are shown in Fig. 9.

It is to be noted. that by increasing the hiasing force, a value (Fy.) is
reached, for which no gative deformation (x) of the stationary contact takes
place any more, henceno bouncing occurs.

Consequently, the biasing force, necesarry to eliminate contact bouncing.
can be directly determined by means of an analog computer. Computer results
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N N A B
(2

Fig. 8. Analogue model simulating contact movement during switching on

841%p

Fig. 9. Solutions given by the analogue computer

for the previous case are:

Fi[kp]
=25 mm Ag 1000 Ag CdO 90/10
sphere to plate contact 5.26 6.1
Ty =T, =25 mm
sphere to sphere contact 2.7 2.61
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Results have been checked by measurements on the test device in Fig. 4,
aimed at determining the limiting case of bouneing.

Bouncing times were oscillographed for gradually increasing biasing for-
ces. In this way the biasing forces for which bouncing phenomena just appeared
and disappeared could be determined.

- - e closed

(Y
T

~
T

a5 ? . 2 B (ko]

Fig. 10. The most probable bouncing time values (tp) vs. biasing force

The measurement data are as follows:

F. (kp)
Ag 1000 Ag €CdO 90/10
r=>5mm
sphere to plate contact 5.7—6.1 5.7
rp=r, =25 mm

J1—3.1 2.6—3

sphere o SPIlCI’{’ contact

These data show a fair agreement with the computed ones.

The measured bouncing time values for identical velocities and biasing
forces are rather widely scattered. This fact made the check of the computation
method unreliable, therefore further measurements and development of the
measuring technique were required.

Instead of oscillography. a high precision electronic digital equipment
was used to measure the sum of bouncing times, which enabled us to take a
great number of measurements rapidly.

The sum of bouncing times (¢,) was measured by gradually increasing bias-
ing force (Fig. 10). The most probable values among 20 measurements each are
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shown in Fig. 10 as a function of the biasing force. With gradually increasing
biasing forces the number of zero bouncing times increased. It is evident, that
by further increasing the biasing force, zero bouncing time can be reached in
1009, of the measurements. Zero bouncing times were taken for measurements
509, of the data were zero. Consequently that given force was regarded as the
critical biasing force, with which contact bouncing could be eliminated at a
high probability, The measurements were taken with a velocity v, = 0.406

% 100 - : - -y
90 v ’
80 /

70 |- 2" ’

60 |-
50
40
30 £

2 S

wt

% [#o]

A 2

;=206 k2

[l

Fig. 11. Relative frequency of zero bouncing times (¢, = 0) vs. biasing spring force: Fyymp =
=2.08 kp is the computed value

m/sec, while the mass of the moving contact was m = 0.918 - 10 % [kp sec*/m].
The spring constant of the biasing spring was:

C = 1275 [p/mm]

The method. described in chapter 2, produces the constants, which in this
case were found to be 2 = 12.43 - 10° [1/sec] and o = 33.9 [kHz]. Substituting
these data in Eqs (1.13) and (1.14) the biasing force for which bouncing is
suppressed is found to be F_ = 2.08 [kp]. Comparing this value with the oue,
determined from the measurement on the basis of 509, probability of zero boune-
ing time (F, = 1.87 kp). 109 error is observed, but the computed value is in
error on the safe side. Plotting the relative frequency of the oceurrence of zero
bouncing times (i, = 0) as a function of the biasing force (Fig. 11}, it is found,
that the value of about 989, of the relative frequency belongs to the computed
value.

On the basis of the above results, the method of computation described
in this paper can be effectively used to determine the conditions of the elimina-
tion of bouncing.
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In Fig. 10, where bouncing time vs. biasing force is shown, may be noted,
that at small forces bouncing time rapidly decreases, but at higher forces its
change is much smaller.

Apart from the fact that bouncing can be theoretically and practically
completely eliminated, a question of technical-economical nature arises,
namely: how long is it worth trying to decrease bouncing time? When increasing
the spring force, an operating mechanism of ever more robust design is needed,
which consequently increases the weight and the price of the contactor. Without
attempting here a detailed analysis of the problem, it may be said. that from a
technical-economical aspect a bouncing time of about 1 msec is the lower
limit, which is worth trying to attain.

The effect of current on bouncing

In the analysis given above cases were studied where the contacts switch-
ed on practically without current. The problem is now what is the effect of cur-
rent up to about 1200 A, switched on by the contactors, on bouncing?

Two factors must be taken into account here. The electrodynamiecal re-
pulsion forces, described in great detail in the relevant literature, increase
bouncing tendency. The thermal effect of the current results in a decreased ten-
dency for bouncing, due to the heating and softening of the contacts. Our
measurements on contactor contacts in the range of 100 to 1200 A showed a de-
finite decrease of bouncing time. From all of this it follows, and this statement
can be justified by computations, that in this current range the thermal effect
of the current, which decreases bouncing, is predominant over the small repul-
sive force. The effect of the repulsive force is further decreased by peaks on the
contact surfaces, deformation of which causes dissipation of kinetic energy,
when switched on.

Summary

Sphere to plate contact bounce phenomenon has been studied in velocity and force
conditions typical for low-voltage contactors. On the basis of literature data, an equation of
mechanical oscillation is constructed and solved approximately. An equation is derived to
determine the spring force necessary for complete bounce suppression. The constants for this
equation were determined by measurements on a test model. An analogue computes was used
for the computations.

In order to prove the theory. a great number of measurements on bouncing were taken
with various velocities and spring forces. Bouncing time was recorded by a digital instrument.
With increasing spring forces bouncing time gradually diminished until its complete elimi-
nation. Measured and computed data showed a fair agreement. As a last step, the degree of
technically and economically justifiable reduction of bouncing time is investigated.
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