A NEW NOT-AND-EXCLUSIVE OR GATE

By
L. Csanky
Department of Process Control, Technical Lniversity, Budapest
(Received November, 1, 1968)
Presented by Prof. Dr. A. Frigyes

Introduction

The technique of expressing Boolean functions in terms of EXCLUSIVE OR and AND operations has been examined by Reed [1] and Muleer [2, 3]. Both have shown that a function of n logical variables may be expressed in the following canonical form:

$$
\begin{gather*}
F(x)=h_{0} \oplus h_{1} x_{1} \oplus \ldots \oint h_{r} x_{n} \ominus h_{n-1} x_{1} x_{2} \ni \ldots \\
 \tag{1}\\
\ldots \oplus h_{2 n-1} x_{1} x_{2} \ldots x_{n}
\end{gather*}
$$

For example the canonical form for a three-rariable logical function is:

$$
\begin{gather*}
F(x)=h_{0} \oplus h_{1} x_{1} \oplus h_{2} x_{2} \oplus h_{i z} x_{3} \oplus h_{4} x_{1} x_{2} \oplus \\
\oplus h_{5} x_{2} x_{3} \oplus h_{j} x_{1} x_{3} \oplus h_{i} x_{1} x_{2} x_{3} \tag{2}
\end{gather*}
$$

Cons [4] has shown that the replacement, consistently throughout such a form, of any variable by its complement should yield an equally valid canonical form. The coefficients $h_{\text {i }}$ for a given function may be altered.

If all the variables are replaced by their complements, the canonical form will be:

$$
\begin{equation*}
F(\bar{x})=h_{3} \in h_{1} \overline{x_{1}} \oplus \ldots h_{n} \bar{x}_{n} \oplus h_{n+1} \overline{x_{1}} \overline{x_{2}} \oplus \ldots \oplus h_{2 n-1} \overline{x_{1}} \overline{x_{2}} \ldots \overline{x_{n}} \tag{3}
\end{equation*}
$$

Consequently, any logical function can be realized by the NOT-ANDEXCLUSIVE OR gate.

The logical realization of the NOT-AND-EXCLUSIVE OR gate

The logical diagram of the gate is shown in Fig. 1.
The output logical function F :

$$
\begin{equation*}
F=\overline{x_{1} \in\left(x_{21}+x_{22}+\ldots+x_{2 n}\right)} \tag{4}
\end{equation*}
$$

As

$$
\begin{equation*}
\overline{a \oplus b}=\bar{a} \oplus b=a \oplus \bar{b} \tag{5}
\end{equation*}
$$

Fig. 1
Thus

$$
\begin{equation*}
F=x_{1} \oplus\left(\overline{x_{21}+} \overline{x_{22}+\ldots+x_{2 n}}\right) \tag{6}
\end{equation*}
$$

Applying the De Morgan theorems

$$
\begin{equation*}
F=x_{1} \oplus \overline{x_{21}} \overline{x_{22}} \ldots \overline{x_{2}} \tag{i}
\end{equation*}
$$

Thus the gate in Fig. 1 operates as a NOT-AND-EXCLUSIVE OR gate. Let the symbol in Fig. 2 stand for the NOT-AND-EXCLUSIVE OR gate.

Fig. 2
If such gates are connected in cascade by the input x_{1} and the output F, as shown in Fig. 3, then the output function will be:

$$
\begin{equation*}
F=x_{1}=\overline{x_{21}} \overline{x_{22}} \ldots \overline{x_{2 n}} \odot \overline{x_{31} x_{32}} \ldots \overline{x_{3 n}} \odot \overline{x_{41}} \overline{x_{42}} \ldots \overline{x_{4 n}} \odot \ldots \overline{x_{11}} \overline{x_{k 2}} \ldots \overline{x_{k n}} \tag{8}
\end{equation*}
$$

Toticeably the algebraic form for the output $F(8)$ is conformable to the canonical form (3), hence any logical function of not more than n rariables can be realized by the gates in Fig. 3.

Fig. 3

The realization of the NOT-AND-EXCLUSTVE OR gate

The circuit realizing the NOT-AND-EXCLUSIVE OR gate is shown in Fig. 4.

Fig. 4
The operation of the circuit:
Transistor T_{3} operates as an output inverter and in addition performs the signal standardization.

Transistors T_{1} and T_{2} form an EXCLUSIVE OR circuit, in which transistor T_{2} is so arranged that it can operate as an OR-NOT gate too. The EXCLUSITE OR circuit is shown in Fig. 5.

Fig. 5
The operation of the EXCLUSIVE OR circuit:
Let "not" level (OV) be at the input x_{2}. In that case transistor T_{2} is cut off, hence transistor T_{1} goes into saturation independently of the x_{1} value, and the value of x_{1} appears at its collector. Thus transistor T_{1} operates as a follower.

Let "yes" level (-3 V) be at the input x_{2}. In that case transistor T_{2} goes
into saturation and switches the emitter of transistor T_{1} to zero volts. Thus transistor T_{1} operates as an inverter.

The operation of the OR-NOT gate formed from the transistor T_{2} and the operation of the output inverter is of common knowledge.

The design of the NOT-AND-EXCLUSIVE OR gate

The following transistors are chosen:

$$
\begin{aligned}
& T_{1}=O C 44 \mathrm{~K} \\
& T_{2}=\text { OC } 44 \mathrm{~K} \\
& T_{3}=\text { OC } 1072
\end{aligned}
$$

Be:
$U_{\log }=-3 \Gamma^{-}$
$U_{T_{1}}=-7.5 \mathrm{~V}$
$U_{T_{2}}=+7.5 \mathrm{~V}$
The design method of the OR-NOT gate formed from transistor T_{2} is well known.

The design of the EXCLUSIVE OR circuit

If transistor T_{1} operates as an inverter and is cut off, then the current through resistor R_{2} should be sufficient for the saturation of transistor T_{3}.

According to the characteristics of the transistor $T_{3},-I_{B}=0.2 \mathrm{~mA}$ is sufficient for the saturation, if $R_{4}>1 \mathrm{k} \Omega$.

Thus

$$
R_{2}=\frac{U_{T 1}}{I_{B}}=\frac{-7.5 \mathrm{~V}}{-0.2 \mathrm{~mA}}=37.5 \mathrm{k} \Omega
$$

The restriction on the value of resistor R_{4} is realized if the value
$R_{2}=33 \mathrm{k} \Omega$
is chosen.
If transistor T_{1} operates as an inverter, and there is "yes" level at the input x_{1}, then the value of resistor R_{1} is restricted by the maximum base current of transistor T_{1}.

$$
R_{1} \geq \frac{U_{\mathrm{tog}}}{I_{B M}}=\frac{-3 \mathrm{~V}}{-0.3 \mathrm{~mA}}=10 \mathrm{k} \Omega
$$

Let the value
$R_{1}=10 \mathrm{k} \Omega$
be chosen.
If transistor T_{1} operates as a follower, and there is "not" level at the input x_{1}, then the restriction on the collector voltage of transistor T_{1} :
$U_{C} \geq 0$
Transistor T_{1} operating as a follower may be regarded as a short circuit in first approximation, as shown in Fig. 6.

Fig. 6
If the value

$$
R_{3}=27 \mathrm{k} \Omega
$$

is chosen, the restriction (9) is realized.
If transistor T_{1} operates as a follower and there is "yes" level at the input x_{1}, then U_{C} be sufficient for the saturation of transistor T_{3}.

In that case:

$$
\begin{aligned}
U_{c} & =U_{\mathrm{ing}} \frac{R_{2} \times R_{3}}{R_{1}+R_{2} \times R_{3}}-U_{T 1} \frac{R_{1} \times R_{3}}{R_{2}+R_{1} \times R_{3}}+ \\
& +U_{T 2} \frac{R_{1} \times R_{2}}{R_{3}+R_{1} \times R_{2}}=-1.5 \mathrm{~V}
\end{aligned}
$$

The internal resistance:

$$
R_{b}=R_{1} \times R_{2} \times R_{3}=6 \mathrm{k} \Omega
$$

Thus the base current of transistor T_{3} :

$$
I_{B}=\frac{-1.5 \mathrm{~V}-U_{B E}}{6 k \Omega}=\frac{-1.5 \mathrm{~V}+0.2 \mathrm{~V}}{6 k \Omega}=-0.217 \mathrm{~mA}
$$

And this is sufficient to saturate transistor T_{3}, if $R_{4}>1 \mathrm{k} \Omega$.
The design of the output inverter:

The value of resistor $R_{ \pm}$is chosen under the condition that the NOT-ANDEXCLUSIVE OR gates can be connected into cascade.

If transistor T_{1} operates as an inverter and is in saturation:

$$
R_{4}+R_{1}=\frac{U_{T 1}}{I_{B M}}=\frac{-7.5 \mathrm{~V}}{-0.3 \mathrm{~mA}}=25 \mathrm{k} \Omega
$$

Thus
$R_{4}=15 \mathrm{k} \Omega$.
If transistor T_{1} operates as a follower and transistor T_{3} of the previous stage is cut off:

$$
\begin{aligned}
U_{C} & =\frac{U_{T_{1}} R_{3}+U_{T_{2}} R_{2} \times\left(R_{1}+R_{4}\right)}{R_{3}+R_{2} \times\left(R_{1}+R_{4}\right)}=-2.33 \mathrm{~V} \\
R_{5} & =\left(R_{1}+R_{4}\right) \times R_{2} \times R_{3}=9.35 \mathrm{k} \Omega
\end{aligned}
$$

Thus the base current of transistor T_{3} is:

$$
I_{B}=\frac{-2.33 \mathrm{~V}-U_{B E}}{9.35 \mathrm{k} \Omega}=\frac{-2.33 \mathrm{~V}+0.2 \mathrm{~V}}{9.35 \mathrm{k} \Omega}=-0.277 \mathrm{~mA}
$$

And this is sufficient to saturate transistor T_{3}, because $R_{4}>1$ k Ω. So the value of resistor R_{4} may be:

$$
R_{1}=15 \mathrm{k} \Omega
$$

Summary

This paper reports on a new circuit realizing the NOT-AND-EXCLUSIVE OR gate. The relatively economical solution was obtained by the multiple exploitation of the transistors.

References

1. Reed, I. S.: A class of multiple-error-correcting codes and the decoding scheme. Trane. Inst. Radio Engrs IT-4 38-49 (1954).
2. Muller, D. E.: Metric properties of Boolean algebra and their application to switching circuits. Univ. of III., Digital Computer Lab., Internal Report No. 43, 1953.
3. Muller, D. E.: Applications of Boolean algebra to switching circuits design and error detection. Trans. Inst. Radio Engrs EC-3 6-12 (1954).
4. Conn, M.: Inconsistent canonical forms of switching functions. Trans. on Electronic Computers $284-285$ (1962).

László Csanky, Budapest XI., Múegyetem rkp. 9. Hungary.

