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Introduction

As is well-known. the Kirchhoff equations of an electric network can be
formulated in well arranged matrix equations by using the graph theory. For
writing these equations we have to know the topological arrangement of the
network, i.e. the arrangement in which the two poles forming the branches of
the network are connected to each other. On this basis the graph of the network
can he determined. the branches of which correspond to the branches of the
electric network.

In the present paper the application of the graph theory for calculating
networks consisting of transmission lines or of symmetrical quadripoles (twoter-
minal-pair) is shown in such a way. that a branch in the graph of thenetwork cor-
responds to a section of the transmission lite or to a quadripole. Accordingly the
graph of the transmission line system shown in Fig. 1 a can be seen in Fig. 1/b.

The connection point between transmission line sections will be denomi-
nated as vertex. Branches and vertices will be designated by Arabic figures, and
for the sake of discrimination at designating vertices the figures will be placed
into brackets. Voltage at the ends of transmission lines connected in a vertex
is identical. Bevond the transmission lines, also impedances and generators
can be connected to the vertices. In the following that case is examined when
a Thevenin generator, i.e. an ideal voltage generator and an impedance connect-
ed in series with it, is connected to the vertices (Fig. 2).

In the course of the calculation the source voltage of the generators con-
nected to the vertices and the impedances is assumed to be known. If only a
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passive impedance is connected to the vertex, the source voltage of the corre-
sponding voltage generatoris accordingly zero. If in turn solely the ideal voltage
generator is at the vertex, then the impedance is zero. The characteristic impe-
dance, the propagation coefficient, and the length of the individual transmission
line sections, and the conductance parameters of the quadripoles in the case of a
network consisting of quadripoles are also assumed to be known. In the follow-
ing the voltages and currents arising at the ends of the transmission line sec-

tions, and at the terminal pairs of the guadripoles, respectively, are determined
in the knowledge of the above data. From these, voltage and current at any
place of whichever transmission line section can be calculated on the basis of
the known methods,.

Characterization of the topology of the network

As mentioned before, the graph of a network is constructed in such a way
that a branch corresponds to a transmission line section or to a quadripole, and
a vertex of the graph corresponds to the connection point. In the graph con-
structed in this way there may also be terminal elements, i.e, branches conneect-
ed to other branches only at one end. For characterizing such a graph, which
contains terminal elements as well, the incidence matrix is hest suited. In this
a vertex corresponds in the order of numbering of the vertices to the individual
rows, and a branch corresponds in the order of numbering of the branches to the
individual columns. Element a;; of the incidence matrix is equal to 1, if the
i-th vertex is in incidence with the j-th branch, and 0, if it is not in incidence.
Thus e.g. the incidence matrix of the graph shown in Fig. 1'b is found to be

Branch
1 2 3 4 35 6 7 8
] (1) [ 0 1 1 1 0 0 0 0 7
Vertex l (2) 1 1 0 0 1 0 0 0
(3) 0 0 0 1 1 1 1 1
P P ) 1
1 4) 1 0 1 0 0 1 0 0 ()
(5) 0 0 0 0 0 0 0 1
(6) 0 0 0 0 0 0 1 0 |
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In the individual columns two elements are equal to 1, while the others are
0.in accordance with the fact that each branch is in incidence with two vertices.

For writing the equations of the network a direction should be given to
cach branch (a reference direction should be adopted). This can be chosen
arbitrarily, thus e.g. a possible case of the direction of the branches of the graph
shown in Fig. 1/b can be seen in Fig. 3. For the directed graph obtained in this
way the directed incidence matrix is defined. The elements of the directed

incidence matrix may be 1, —1, or 0. Namely a;; = 0, if the i-th vertex and the
j-th branch are not in incidence; a;; = 1, if the i-th vertex and the Jj-th branch
are in incidence and the direction of the j-th branch is away from the i-th ver-
tex; a;; = —1, if the i-th vertex and the j-th branch are in incidence and the
direction of the j-th branch is towards the i-th vertex. Accordingly the directed
incidence matrix of the directed graph shown in Fig. 3 is found to be

1 2 3 4+ 5 6 1 8
(1) 0—-1 —1 1 0 0 0 0
@ (-1 1 0 0o 1 0 0 0
- ® o 0 0 —1 -1 1 1 1 @)
N ES 1 0 1 o0 0 —1 0 0
(5) o 0 0 0o 0 0 0 —1
1| o o o 0o 0o 0o —1 0]

In the individual columns one element is equal to 1, one to —1. while the

others are 0.
1 1
In the followings matrices -~ (4 - 4) and ‘;(;’1 — A;) will also be ne-

1 - . . C . .
cessary. In matrix > (4 + A4;) a;;= 1, if the j-th branch is in incidence with

4

the i-th vertex and the direction of the j-th branch is away from the i-th ver-
tex, otherwise a;; = 0. In our example:
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1 2 3 4 5 6 7 8
(1 70 0 0 1 0 0 0 0 7
(2) 0 1 0 0 1 0 0 0
1
L as )= (3) 0 0 0 0 1 1 1 (3)
9 (4) 1 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0
(6) 0 0 0 0 0 0 0 0 ]
In matrix *:)-(:1 — ;) element a;; = 1. ifthe i-th vertex is in incidence

with the j-th branch and the j-th branch is oriented towards the i-th vertex,
otherwise a;; = 0. In our example

1 2 3 4 5 6 7 8

() o 1 1 0 06 0 0 0

(2) 1 0 0 o0 o0 0 0 0
1 3 0 0 0 : _
g 4= ® 1 1 0 0 o0 @
2 (4) 0 0 0 0 1 0 0

(5) o 0 o0 o o0 0 0 1

@]l o o o o 0 0 1 0 |

In each column of this last matrix one element is equal to 1, while the
others are 0.

Characterization of one branch of the network

In usual networks the branches are formed by one two-pole each. A pas-
sive linear branch can be characterized by a single impedance funection. This
establishes the correlation between branch current and branch veltage. In our
problem, however, the branches of the graph are symmetrical quadripoles
(Fig. 4). For characterizing a quadripole the correlation between two voltages

Ii < 4
Ul Y 1w
|JPS— )
it) 4
Fig. 4

(U:, Uj) and two currents (I, I;) should be given. In the case of a linear quadri-
pole this can be given. among others, in terms of the conductance parameters:
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1. _TUN -
=Y (5)
A U;.

Among the four elements of the conductance matrix three are independent

of each other in the case of a reciprocal network, and only two in the case of a

symmetrical reciprocal quadripole. In the following only networks built up of

symmetrical reciprocal quadripoles will be examined. In this case the conduc-
tance matrix is of the form

Y = ; f: (6)

Transmission lines are characterized by the characteristic impedance Z,,
the propagation coefficient y. and the length I (Fig. 5). It is sufficient to know

i

rl . -
.In anetwork consisting
of scveral connected transmission lines neither of the ends of the transmission

the characteristicimpedance Z; and the value g == e~

I 1
| © +> ;) |
Ui} —-Ll—> Z,  g=e7 <Ly
o < 1
(il . o ‘/ o Ui
Fig. 5

line are in general preferred. It is practical to write the equations for the trans-
mission line sections accordingly. The reference directions at the two ends of the
transmission line section are taken in accordance with Fig. 5. At the ends
connected to the same vertex the reference direction of voltages is identieal.

As is well known. in general two waves are propagating in the line in
opposite direction to each other. Let us designate the wave propagating in the
direction coinciding withthe reference direction by the sign -~ and the one prop-
agating in the opposite direction by —. Wave equations are written in such
a wav that the starting point of the waves is taken as the origin. Thus in the
case of the transmission line shown in ¥ig. 5 the zero coordinate of the — wave
is the vertex with index ¢, while that of the —swave the j index vertex. Accord-

ingly
L— =U~" - e~ = U+ __g(:.. (_;)

the value of the voltage at the i-th vertex, The voltage at the j-th vertex can
be written similarlv:

U,=gU~ + U™ (8)

1

Equations (7) and (8) can be written also in the form of a matrix equation:
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- 4]l

S

where

With the denominations used above, the following relationships can be
written for the currents:
I,=Y,[U" — gU~]
(11)
;=Y [—gUr + U]
where Y, = Z;* the reciprocal of the characteristic impedance. Taking into

consideration that

P — 1 l__l —g] (12)

equation (11) in matrix form is

I, N 1 —e iU~ . U~
=Y ° =Y,(1 — g)T!? 13
{_I,-J ’ [—g 1”U-J =) [U—] 19
The correlation between currents and voltages can be expressed from

Equations (9) and (13).

Ii o o —9
l: I,} = 3’0(1 *g—)T -

U’} =Y l Ui l (14)

U; ey

what means that the matrix of the conductance parameters of the transmission

line section is

Y =Yl — )T (15)

Upon considering (12), using the relationship g = e ="', the elements of

matrix Y can be determined.

coth yI — ! rop
sinh I
Y=Y, = (16)
|\~— ! coth 3! J
sinh yl

what is naturally identical formally with (6).
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Let us form diagonal matrices of the values r; and p;, respectively, which
characterize the branches.

R= <r ro... 1,>
(17)

= <Pi P2+ Pr >

In the following the matrices R and P will be used for characterizing the
transmission line sections of the network.

The solvability of the problem

In the following we write the Kirchhoff equations of the network.

A transmission line section or a quadripole are characterized by two vol-
tages, and two current data. Between these, two independent relationships can
be written. Upon considering this, each branch means two unknown values.
If the network consists of k branches, then the number of unknown values is 2F.

Let us examine the number of equations that can be written for the
network. Voltages at the ends of transmission lines (quadripoles) connected to
the same vertex are equal and identical with the voltage at the vertex. Accord-
ingly & — 1l independent voltage equations can bhe written for a vertex to which
h branches are connected. Let ¢ designate the number of vertices in the network.
Then X(h — 1) = 2k — ¢ voltage equations can be written in all for all the
vertices. Summation should be performed for ¢ vertices. thus Zh = 2k.

Two nodes belong to each vertex. For the individual nodes one node
equation can be written. Node equations written for the two nodes belonging
to the same vertex are identical. Thus the number of independent node equa-
tions ig identical with the number of vertices c.

Accordingly, a total of 2k— ¢ 4+ ¢ = 2k, voltage and node equations can
be written and the number of unknown values is the same, what means that
the problem can be solved unambiguously.

Circuit equations

Circuit equations will be written in the following in such a way that
voltage equations should be satisfied automatically and thus only ¢ pieces of
independent node equations should be written. In the equations the voltages
arising at the vertices are unknown. The number of these is also ¢. hence the
voltages at the vertices can be determined from the node equations.

From vertex voltages we can determine the currents flowing at the ends
of the transmission line sections, further the currents in the generators and im-
pedances at the vertices,
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Currents flowing out or into one of the nodes of some of the vertices can
be written as the sum of three groups. To the first group those currents belong
the direction of which is identical with the direction of the corresponding branch.
To the second those the direction of which is contrary to the direction of the
corresponding branch. Finally the currents flowing through the generator or
impedance being between the two nodes of the vertex figure the third group.

Our method is illustrated by the example discussed above. Branches 4.
5, 6,7, 8 are in incidence with node (3) (Fig. 6). The nodal equation is written

for that node. from which the voltage of the vertex is directed away. The direc-
tion of branches 6, 7. and 8 deviates from the vertex (Fig. Ta). According to the
foregoing the sum of these is written in the first group. The direction of bran-
ches 4 and 5 points towards vertex (3) (Fig. Tb). The current of these branches is
written in the second group. Finally the current of the generator arranged be-
tween the nodes of the vertex represents the third group (Fig. Te).

We write the nodal equation for one of the nodes of each vertex of the
network.

If the branch lisin incidence with vertices (i) and (j). and its direction is
from (i) towards (j). then the current of the branch in the first group is

I:[- o I'[[.’;_i - P,L-/ (18)

Similar equations can be written for each branch. The system of equations
obtained can be summarized in the following matrix equation:
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.1 . U R
I'= —R(A*+ 4P U + — P(4* — ANU (19)

The asterisk designates the transposed value of the matrix.

The column vector formed of the vertex voltages in our example is found
to be
U,
Lrﬂ
U,
U,
U

8

U

I

(=13

Thus on the basis of (19) the column vector formed of the currents of the

£io .
11rst group.

I, U+ p Uy
I, ry Uy + p Uy
Iy, rs Uy + p3 Uy
s T | Ui+ Uy 9
r= I, | | s Us+ps Us 1)
Tg re Us = ps Uy
I r; Uy + pr Uy
| T _rsUs+ps U5

The elements of I" evidently correspond to that what has been written in
{18). The subscripts of r and p are serial numbers of the branch, while those of
U are the serial numbers of the vertex. The currents forming 1" are shown in

Fig. 8a.

For the [-th branch, the current belonging to the second group is found
to be

IZ" :P[L’TI' ; T;LTJ' (22)
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Similar equations can be written for each branch.
This system of equations is the following:

v:%ruhamu+%nmhﬁmu (23)
In our example
~P1 Uy + 1y Uz-—
p U, +r, U
ps U+ 13Uy
. p Uy +1, Uy oy
e _ , 24
: s Uy + 15 Us &
peUs + 1, Uy
p; Uz + 1, U
| psUs =15 U |

Currents belonging to the second group are indicated in Fig. 8b.

We have still to determine the eurrents in the generators and impedances
arranged at the vertices. As mentioned before, we are examining the case when
between the nodes of the vertex a voltage generator and an impedance are
connected in series (Fig. 2). We may write for the i-th vertex that

Li=Y(Ugyu — Uy (25)

where Y,; is the admittance of the branch between the nodes of the vertex,
Uyg; is the source voltage in the branch.

Such equations can be written for each vertex and these can be summar-
ized in the form

I = Y,(U, — U) (26)

where I, is the column vector formed of the current of the generators and impe-
dances at the vertices, Uy the column vector of the source voltage of the voltage
generators, and Y, is a diagonal matrix in the principal diagonal of which the
values of the admittances at the vertices are figuring.

The currents should satisfy the nodal equations. From one of the nodes
the currents written in I” are flowing away. Let us form from these the sum of
current belonging to one node each vertices and designate the column matrix
formed of these by I:

= — (4L A4)r (27)

o |

In our example we obtain, upon substituting (3) and (21), that
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U + piUs
r.Us + p.Uy + U, + piU
= | By TR T T e bRl
nUy + pUs + Uy + psUy
0
N 0 -

The branch currents forming I” are flowing away from one of the nodes of
the vertices. Let us form the I} column matrix from currents flowing away
from one of the nodes of the vertices.

I, = % (A — 4 (29)

Let us write also this for the discussed example. by substituting (4)
and (24):

| poUs + Uy + pUs — Uy
p Uy + 1, U,
" psU, + 1, Uy + p,U, = r,U,
I == R i i 30
¢ PGU:; +— Uy ( )
_pSLTg .1_ rsLTS
- p. Uy + ;U .

The currents represented in I, are flowing towards that node of the vertex,
from which the corresponding currents of I and 1’ are flowing oui. Thus the
matrix form of the node equation, upon using (26). (28). (29). further (19) and
(23), is found to be

[+ T — L= (A 4 [RAF 4 = P — 49T

- —i-(;i _4)[P(4F - A7) — R(A — 49T —

+Y,U-Y,U,=0 (31)

After ordering we obtain that

{% AR - P)d* ~ % AR — P47 ~1,|T =T,U, (32)

In equation (32) the multiplication factor of U can be termed the vertex
admittance matrix:
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. 1 , PR | . - .
Y.=— AR+ P)A" + — 4R —P)4; + 1, (33)

Let us write also the first two terms of this for our example.

%— A(R + P)4* + % 4(R — P)AF =

—12—’—r3——r4 P Py Pa 0 0

P ry = Ta—T; Ps P 0 0

— o Ps Ty T 7 Tg— Iy T Ty Ps Ps P

P P Pg rp g U 0

0 0 Ps 0 Ps 0

_ 0 0 P, 0 0 p.
(34)

This matrix is seen to be symmetrical. In the principal diagonal the r
values pertaining to branches in incidence with the vertex corresponding to
the row (column) are figuring. The other elements are the p values pertaining
to the branch connecting the vertices corresponding te the row and column. It
the two vertices are not connected then the corresponding matrix element is 0.

If one or several of the generators connected to the vertices are ideal, then
the corresponding elements of ¥ are infinitely high. In this case it is practical

o rewrite the previous equation in such a way that Z, = ¥ ! figures in it:

{—_1)- Z,[AR — P)4* -~ A(R — P) 4] - E}U =U, (35)

E

From these the required matrix U is found to be
. 1 . 1 R I .
U= {—2— AR - P)4* + —:;.*L(R ~ Py L X Z,} Y,U,. {(36)

and

U= {-_1)_ Z,[A(R — P)4* ~ 4,(R — P)A}] - E}—lUg, (37)

respectively.
In the knowledge of U the branch currents I’ and 1" can be determined
on the basis of (19) and (23), thus the problem can be regarded as solved.
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Powers, efficiency

On the basis of the results obtained so far the power of the generators and
consumers, and in the knowledge of these values also the efficiency of the sys-
tem can be determined.

The complex power of the generators can be calculated from the source
voltage matrix U, and from the current matrix L.

S ; = P‘n - ]Qg - Ugi(, = : L_gil'?j:‘ll’ (38)

where the dash above designates the conjugate. (The complex power is written
as the sealar product of Uy and L.)

I, can be determined relatively easily if the network does not contain an
ideal voltage generator. Then, by using (26) and (36)

_ r . — 1 — - 71 _
.%:UﬁgFAwéAﬂ%—miﬁ~%Aﬂ%~mdﬁém}lﬂUﬂ%)

J

If the network does contain also an ideal voltage generator, then I, should
be calculated on the basis of (31).

1

2

L=I L=

€

[AR — P)4* — 4(R — P)A?]U (40)

Considering expressions (37) and (40). the complex power of the genera-

turs can be written in the form of the follo ving expression:

g
&

szuygmﬁfﬁu*fué—pun{5+

1 — R s .
- Z,JAR — P)A* +— A(R — P).47] } U, (41)
2 j
The effective power of the generators is the real part of 8.
P,=Re S, (42)

In writing the power of the consumers, the elements of Z; should be sep-
arated from the internal impedance Zg, of the generators and the impedance
Z,,, of the consumers. Let Z, designate the diagonal matrix formed of the inter-
nal impedance Z;, of the generators. while the diagonal matrix Z; is built of

the elements Z;,. Then
Z,=Z,-+Z, (43)
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Current Iy is flowing in impedance Z;n,, thus the expression of the co-
lumn matrix U; consisting of the voltages arising at the consumers is found to be

-

=1, (44)

The complex power of the consumers is

S, = U, = (ZI1)* 1. =T*Z1, (43)
I, can be calculated from (40). If the network does not contain an ideal
voltage generator, then in place of (40) the somewhat more simple expression
used also in (39) can similarly be employed.
The effective power of the consumers is given by

P, = ReS, (46)
and the efficiency of the complete network by

'77:~I-)-f-:Re——Si

47
P 5 (47)

The complex power and efficiency of the generators and consumers is
hereby determined.

Summary

It is known that the Kirchhoff equations of an electric network can be formulated
in well arranged matrix equations by using the graph theory. In the paper this method is
applied for networks consisting of transmission lines or symmetrical quadripoles. As the final
result the correlation between the generator voltages and the voltages arising at the terminal
points of the transmission line can be expressed by the help of a single matrix equation. The
method is suitable also for determining powers.
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