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1. Introduction

In the solution of power control problems. thyristors and diodes are of
rather increasing importance. In conduction they are equivalent to short
circuit (condition s), otherwise to open circuit (condition b). A similar situation
exists in mercury are rectifier or relay schemes. In such systems, the steady
state condition is usually periodic, with a period of 7. If the system involves,
for example, only a single thyristor, then 7 may be cut up to 7 = 7, 4+ 753
in 7 the thyristor is on and in 75 it is off. It is assumed that the system may
be described Ly constant coefficient linear differential equations, both for
7, and 75, although the parameters are different in the two states.

Three-phase thyristor circuits are frequently used. The bridge circuit,
for example, involves six thyristors and each period consists, generally, of
12 different conduction conditions. In mest cases, however, it is quite sufficient
to study two conditions since. knowing the data of a single one-sixth period,
those of the other cne-sixth periods may be obtained through phase and sign
changes. In such cases 7 indicates one-sixth of the whole period (or sometimes
itz one-third and in case of single-phase bridge circuit its half),

Conditien s is over when the particular thyristor is off; thus 7 is usually
given by the solution of a transcendent equation. At the end of condition b, a
thyristor is switched on either in a predetermined instant or depending on the
control voltage u. and the value of the input or output signals of the system.
The latter case gives in general a transcendent equation.

First the paper deals with the determination of the periodical condition
(Chapter 2); the initial conditions and the 7., 7, must satisfy the periodicity
conditions. In such cases one or two transcendent equations must be solved.

Calculating curve-shares it is better to assume values for 7, and 7; in
advance, consequently two other corresponding variables (e.g. firing angle,
control voltage etc.) may be determined more simply. Chapter 3 investigates
the small variations compared to the periodic steady state condition; thus, as
first approximation, a linear difference equation system — well known from
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the theory of sampling systems — is obhtained. The coefficients of the equations
are given from the data of the periodic steady state condition by simple algeb-
raic species whereby the transient and frequency responses, etc., concerning
small variations can be readily determined.

Since the system is of multi-parameter character, it is preferable to use
matrices. These matrices are indicated by bold type upper case letters (e.g. 4),
but the special matrices consisting of a single column, the column vectors, are
represented by bold type lower case letters (e.g. x); transponation is marked
by an asterisk, thus e.g. ¥ is a row vector.

The functions of quadratic matrices, f{d) can be calculated by power
series, but if several functions of the same matrix 4 must be caleunlated. it is
best to convert 4 to a normal form. If each eigenvalue is distinguished, it may
be written:

A=TAT- T =15.8,.....84]. A=1|7 0...0
0 4, ... 0
0D o0 in
and
&) =THAY T 1. fA) = _f(}.l} o0 ... 0 7
0 ) ¢
] () fim
where J; is the eigenvalue of matrix 4. and s: is post eigenvector, 4s; = 4; s;.

In case of complex eigenvalues the column pairs of 7. A or f{A) can be modi-
fied into an other form, requiring only real algebraic operations.

In Chapter 4 the theoretical results obtained previously are applied for
three different practical cases: (1) thyristor inverter with an R, L, C load,
(2) D.C. motor fed by a three-phase bridge rectifier, taking into consideration
the speed fluctuation, and (3) three-phase induction motor, with back-to-back
thyristor pairs connected in series with the stator windings.

2. Periodical condition

The differential equations of the system are written in the following
form, with indices s and b referring to the on and off condition of the particular
thyristor:
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dxr |
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L, —1—— + Ryr = Dyu

& tg -1 <Lt <Lty 4+ 1

As an example, in case of the inverter studied in Paragraph 4.1 (Fig. 1), the
column vector elements of dependent variable x(t) have been selected as the
characteristic data of the energy storages, where x;, x, and x; represent the
cwrrents of the respective coils, while x; and x, are the voltages of the capa-

b4

__.____"..ﬁ___.__

X4

. Lél

citors. It is best to select such variables as, in this case, the matrix dimension
will not be unnecessarily large and. on the other hand, these variables cannot
vary suddenly, that is, they are continuous quantities even during the transi-

tion from one condition to the other. In condition s the fundamental equations

will be

L, 0
0L,
0 0
0 0
0 0

<O D

o D

00 | dr 0 R, 1 —1 0 )
0 0 0 —1 0 0 0 0
1
C 0 —1 1 0 —_— 1 0
R
0L | 6 0 0 —1 0 | 0
o= B Yy 7 — B i.l -
Xy [
Xq Uy (2.a)
Xy Uy
_ X5 ] - i5 _
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in condition b

L, 1L, 0 00 0 Jde [ R R, 1 0 0
O L,+~L, 0 0 0 d R, R, 1 0 o
0 0 C, 0 0 0—-1 0 0 0
1
0 0 0 C 0 -1 1 0 — 1
R
0 0 0 0 L | 0 0 0-—-1 o0 |
I‘*_l-
dJ = 1 .
0 (2/8)
0
._.0__.
:
|
!
i
i
| f

It will be noted that. by an auxiliary voltage source replacing the thy-
ristor. the two conditions could be described with a single differential equation
svstem, but in practice it is much simpler to apply two equation systems,

In the given example matrices D, and D; became column vectors, u
is scalar, but there might be more input signals. Multiplyving Equ. (1) from the
Teft with the inverse matrix of L, and/or L.

lr lx
ol 4 Ao =Gu, “r L Ar = Gou (3)

dat dit

will be obtained, where
4. =L7'R,, G,=L;'D,, A,=L;'R,, G,= L,'D, .
The symbols applied for times and initial values are presented in Fig. 2. The
solutiens of Equ. (3) are,
‘rs(t) = e_'4:(t—t0)[:l‘,u - zs(t())] -+ Zs(t) = e_“ls(t_lo')'r(! -+ ys(t)’ ] (4
Zy(t) = e NITINE, — 2y(¢')] + 2,(1) = e~ g, L g (1), |

S
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where 2(t) represents any (e.g. simplest) particular solution of the inhomo-
geneous equation, Y(z) is that of a zero initial condition at the beginning of
the respective section.

In simple cases the condition of the periodicity is
X, = xy(t;) = ®&,. and in general

x, = Px, (5)

where P is, in simple cases, a unit matrix and. for example in three-phase
connections, a matrix expressing phase and sign changes. Taking into conside-
ration that ®s(t") = a(t") = &,, the initial value of the periodical condition
is obtained from (4) and (5):

'rO - <P - Xf?‘YS)_l (bes - y”) i } (6)
& = X, + y.. X, = Pur,. J
where

Xy=e %, X, = e7bn, Y, = yt'), Yr = Yu(ty)

To calculate Equ. (6), the approximative value of 7, and 7, must be
assumed in advance, then the condition of thyristor extinction and firing must

be checked upon:

g =0, BPx, + Hult) = () (7)

In Fig. 1, for example, the thyristor current is i; = x; — x,, thus k¥ =
= (1,-0, 0, 0). Thyristor firing is controlled bv voltage u; which is compared
with a certain linear combination of the variables and input signals. If, for
example in Fig. 1, u. is compared with voltage x, of the load, then

Ir=e*=(0,0,0,1,0), I,=0.

The accurate values may be determined from Equs (6) and (7) by iteration.
then Equ. (4) determines the values of x(z) in both states.

In practice usually the mean values and the harmonies of the variables
are of greatest interest. Thus, for example, the following relations apply to the
y-th harmonie:

x, = @, cosvot -+ b, sinrot = Re{(a. — jb.) e/},

2

PSS

_ (8)
a, — ]b.y = —T-

ot N
J x(t)eTtdt = = (I, + L),
T
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where I and I, designate the integral value for periods r; and 75, respectively.
Substituting the time functions (4) vields:

2 , .
@, _jbr = 7 'LIIS'.‘['TU - 35(1‘0)] - I{br['l’)l - zb(tl)]}' - Cy — ]dv E (9)

where ¢, — jd, is the amplitude of the particular solution z(¢):

Ty

3

efetto [ = | e~ (lamlrenE) el Hy :J e~ (el Qg (10)

0 =,

In Equ. (9), when v = 0, 2/7 is to be replaced by 1/7z. Integrations can be per-
formed by using the normal forms referred to in the Introduction, but if the
matrices in the exponents are not singulars. the following formula, much more
suitable for calculation purposes, can be derived:

e Ho[x, — 24(1,)] = [4. -+ jro, Bl [(zs(f?) - gl) el — 2 (1) + '1'1.\] ; ]
el Hy [a, — 2(t)] = [Ap — jro B]™ [(gl — () e — (1) — 'T’l] : j
(11)
For the periodical condition, the derivatives of the variables in the cut-
off points mav also be calculated which facilitates curve plotting and, on the

other hand, are necessary for transitions to small variations. Thus, for example.
on the basis of (3).

C
' dar y = v, = Galt) — Az, (12

| di s
3. Small variations from the periodic steady state condition

3.1. Basic equattons

Interpretation of the symbel

e
—
e

shown in Fig. 3. Variations may be

dty ar Aty !

ey
N:J
Ie

e
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caused by input signals Au(t), variations of the Au. control voltage, or the
deviation Ax,, dt, from the periodic steady state values, that is from the
initial conditions. Variations Aa(t) are generally not periodic. If Ar,. A, At
are positive, then

() = dxglt) . dli-rs 4 AAx, = GAu: ty = At <t <8, ]
dt }
Ax(t) = Axy(t) , dﬁmb — A Ax, = G,Au; R [ = P l
t
(13)

In intervals i, A, Jdi; the above equations are mnot satisfied by Ax(s),
instead of them on the basis of Fig. 3, the following relations may be written
{the second b and e index. respectively, refers to the beginning and end of the
section):
Ax,=vydt, — Axr,, A =v 0t — Ax,,, l
Af = vy, At - Axyy . Axy = vy, — A, [

(14)

The relation between Axg and Axg is given by differential equation (13).
Since these are small quantities of first order, the small variation of first order
of the time will cause only a small error of second order and, therefore, the
solution of (13) might be applied to range t, <1 < ¢ instead of 1, — Jd¢, <
<t <t 4+ A¢. Making use of the quantities calculated for the periodic
solution, it may be written that

Ax,, =X Ax, +~ Ay (). Axy, = XoAux, + Ayt (15)
where Ay and Ay, represent the particular solutions for voltage variation
Ay, with initial conditions A y(t,)) = 0 and A y,(t') = 0, respectively.

Intervals 4t and 4¢; are determined by the extinction and firing con-
ditions of the thvristors:

0 = A\Agl ES k*('l'bb;“, - Ambb) .

Audty) + ( ) Aty = 1A, + T {Au(fl) L 1%‘-; le} | (16)

du,

dt

Equs (14)—(16) vield the following final result:

S ) e

== -
21722 2

The coefficients can be calculated from the periodic condition data:
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k*e,,
1 du du, )
— =1} — [Ty, £ | s Cy== Cotg,
c t dt |,y
., 1la
= Cyey, 7= — cliC,, = — o¥C,, (t7a)

Auw) = C,AY, + Ay, fi(Bu) = C,fy(Au) + cvy iBu(t)
Au) = — [T, Bu) + TiBu(t,)],

U= —cy, Uy=c, C,=E-+ cvyl}.

These calculations can be readily carried out on computers, by using matrix
sub-routines. In a number of practical cases, the formulae are much simpler.
If, for example, dt; = At;, = 0, then Z,; = C; and 2,,, &3, 5., are not needed;
F(Au) = f(Aw).

In Equ. (17), for Ax and 4t, indices 1 and 0 may be replaced by k and
k—1, thus a difference equation is obtained for the further periods. If the P
periodicity matrix is not a unit matrix, i.e. P == E, then it is best to apply the
reduced differences Axy = P ~'Ax, instead of Ax,.

3.2 Transient response, time constants

If, for example, Au,is varied by a step change, or the input signals are
changed to develop a new periodic steady state condition, then it is preferable
to consider the new steady state condition as an operating point, and to cal-
culate with the differences therefrom. In this case, difference equation (17)
will be homogeneous, since Au and Ju. are equal to zero.

TP+ A, PZ, Pz, P-%YAx, . .
= ] - - (18)
At Z5 T2 i Aty
or, with a shorter expression,
D, = ZAw,_, (18a)

The initial value is obtained by the difference between the previous and new
steady state condition, respectively. If At; = 0, then

Ali‘u — {Amol — l:wo,pr - mo,ncw (19)
Ay | 0
and the solution of (18a):

My, = ZFAw,.
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This way, the variation of quantities in the instance of thyristor firing is ob-
tained. In the periodic condition, the instance of firing is t, =1t, + k7. If
in (19) k is expressed by t;, and the formula thus obtained is considered as
valid not only for the discrete 1, values, some formal time constants may be
introduced. Designating the eigenvalues of Z by 7;, the equivalent time con-
stants and oscillation frequencies can be calculated from the following for-
mula:

A;
dot, 1 -+ jo, . (20)
I
T Tf
Obviously, the eigenvalue (or eigenvalues) 2 = 0 must be neglected here.
Another approximative continuous substituting scheme is obtained, if
Equ. (17) is written as follows:

B = R 17 By, - f(A) - e, (1)
T T

and the left-hand side quantity is considered as an approximate derivative.
. 1 . .
hus the eige nvalues of matrix —(Z — E) give the time constants. From Equ.
T

(20), Equ. (21) makes possible to plot a block diagram for the difference equa-
tion, by using a digital integrator (summator) or derivative element.

3.3 Harmenic analysis

In practice the mean values, fundamental harmonies, ete. are more
nteresting than the values at switch-over points. Although small variations
do not represent periodical signals, harmonics can be interpreted approximately
for any individual peried, although their amplitude and phase will vary from
one period to the other. Since in the integrals taken for intervals 7; and 7
the parts taken for dt;, A", and _lt; are small values of second order, the
ntegration range can be set in a simple way:

T, iy
-? ~

Ax et dt + 22 | Ay e/t de, (21a)

T . T .
ip TL—Ts

A(lr — ]Al)1 =

If Au= 0, then Ax, and Ax, contain only the solution of the homogencous
equation, and a simple formula is obtained:

| to

Aa, — jAb, = = [HAx, +~ H,Ax,] . (22)

T
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Substituting the values of Axg and Axp, from (14), it can be seen that the
harmonics depend only on Ax,, and the result can be readily generalized to the
k-th period.

3.4 Frequency response

With the du, control signal (or any input signal) sinusoidally oscillated,
and the steady state solution of (17) found. the frequency response will be
obtained.

In case of

Au, = dcosowt = Re {6 ej”!} (224a)

the steady state solution of equation

Aw, = ZAw,_; + vdut) (22b)
will be

Ay, = Re{[E — Ze— i7" 1pd o/} = (22¢)
= Re{E — 2Z cos ot + Z*]" 1 [E — Z cos wt — jZ sinwr] vdel*™}, (22d)

thus the frequency response is

Yy(jo) = [E — 2Z cos ot + Z*]7* [E — Z cos o7 — jZ sin ot] . (23)

The first factor in (22¢) to be inverted has the determinant
det[E—Z)e ™" |= 11 (1—/T ), (23q)

This can be similarly applied as the denominator of the transfer function in the
calculation of Bode diagrams and from this factorized form the cutoff fre-
quencies can be easily determined. Here the values /; represent the eigenvalues
of the Z matrix.

Above Ax represents the output signals. On ground of the Fourier
analysis, the harmonics are the functions of Ax and thus the corresponding
frequency responses can also be determined.

4. Applications

Some applications are shown in this chapter. Only the basic equations
are presented. On that basis the computer analyses can be readily carried out.
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4.1 Inverter

The differential equations obtained from the circuit diagram (Fig. 1)
have been presented at the beginning of Chapter 2 (Equs 2a. b). It will be
noted here that in condition b x, = x,, thus the second equation could have
been omitted but, because of the uniform interpretation of vector x in both
ranges, this would not have been reasonable. Owing to the general form (3),
L, must be invertable. For this reason (L, - L.) dx,/dt had to be used.

The vector of the condition of extinction is: k™ = (1, —1, 0. 0, 0), that
of the firing condition: I7 = (0, 0, 0, 1, 0), I = 0% while the control voltage
u, is constant in steady state. The periodicity matrix is: P = E. Steady state
condition can be determined for two u, values, with the first one analyzed in
detail.

In this case the a, mean values of the variables x(¢), the a; — jb, ampli-
tude of their » = 1 fundamental harmoniecs, and the x4 effective values of
the latter are essential.

4.2 D.C. motor fed by thyristor rectifier

The example assumes a symmetrically controlled three-phase SCR bridge
rectifier (Fig. 4), where ug, us, and u. are the open circuit phase voltages of the

T
| — \
-~ Tos Tes
N
U I5
b [}
~ &= Az =(n

¢__(“5 _(>"C 4 n = X2
~s 1
Tt
° L
Fig. 4

three-phase transformer, R, and L, are the short circuit data of the transformer
(as reduced to the secondary side), Ks and Ly are the direct current circuit
data including those of the motor armature, e is the e.m.f. induced by rotation
of the motor, e = k @ w, where @ is the flux of the motor (constant), and w is
the angular velocity. The equation of motion is:
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dw
— = m — my (24)
dt

which can be written, by substituting e=k P w, m =k ®Piy and m; =
=k @i as follows:

J de
B dr

de 9=

m dt . ("‘O)
Here J is the rotor inertia moment, igis the direct current of the armature, and
i; is the m; loading torque in current scale. On the basis of (25) the mechanical
relations can be taken into account with a capacity Cp, in the equivalent circuit.
Before ¢, the thyristors T., and T, are on and at ¢, the thyristor Tp.

is turned on, thus the condition s represents the commutation from T, to Tq..
The direct current x;, = iy, loop current x, = 7, and the emf. x; = e

are used as variables. The phase currents are i,
!

= ih -'— ld/z. ib = id, and

ip = — 1, -+ 1q/2. The differential equation for state s is
{Ld-;——iLt O 0 Ef_“{“ {RG‘I'ER; 0 1 €T = —iub
. 2 de | 2 2
0 L0 0 R, 0 E___a‘_”_
| 0 0 C,] =1 0 0 | -

e

At the end of the 7, T,. is extinguished: the precondition of extinction is
ii=0= — x, = x; /2. that is ¥* = (1. —2. 0). The differential equation of
condition b is:

(L, -+ 2L) 0 07 dr  [(R;+2R) 0 U o fue—uw
0 L o d 0 0 0 0
0 0 C, —1 0 0 —1,

i

At tic (v = 1/6 period). the thyristor T isfired; the matrix of periodicity is:
P=11 00

0 -1 0

0 01

Calculating two steady-state conditions, the changes during the transition
from one state to another can be determined from Equ. (18).
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4.3 Induction motor fed through back-to-back thyristor pairs

Connection is shown by Fig. 5. Before ¢, the thyristors T, and T.. are
on. at ¢t = t, the T,_ thyristor is turned on. thus in section 7, all three primary

terminals of the motor are connected to the network. At the end of condition s,
when i, hecomes zero. T will be off. thus in condition b only two terminals are
connected to the svstem. In ¢, the T, thyristor is turned on and 7 amounts to
1/6 of the period of the supply. The condition of periodicity, as expressed with
phase currents, is:

ial = 0 -1 0 20
oy 0 0—1||ip
il =1 0 o] Liy

Since i, -+ 1y -+ 1. = 0. two free variables will be left. Applying the x, v, 0 trans-
formation used in the theory of alternating current machines (see, for example
Reference No 1). iq = iy, 1, = — 12 — iyV§;2, lo= — 142 — z[§2 and the

condition of periodicity is:
. — I 1751+ -
i 1= 172 —F3/2] {iy,

iy ['312 1721 iy,
With the rotor currents expressed also in the x, v coordinate svstem fixed to
the stator then by using ¥ = (i.. i\, 1,4, ir). the periodicity condition will
assume the form

= Pr,  P=r 12 |32 o 0 -
13/2 12 0 0
0 0 12 —132

0 0 1'3/2 12

It will be noted here that, when thyristor-diode pairs are applied or three
thyristors in delta are in the disconnected neutral point of the motor. the value

7 Puertodica Polytechnica EL 1373
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!
7 equals to one-third of the period, and the matrix of periodicity is P2 The
condition of extinction is: iy = 0, that is, k¥ = (1, 0, 0, 0).
The motor equations in the s condition of three-phase conduction are:

L—é%‘— ~ Rx -+ WLr=u, (26)
dt
where

L= 11 0 L, 0 1- B=JR 0 0 07-
0 L 0 L, 0 R OO
L, 0 L, 0 0 OR, O
o L, o0 L 0 0 0 R,

W=T70 0 0 0] u=[u]:- *=T]i ]
0 0 0 0 u, iy
00 oW 0 i)
0 0 - 0 0 1y

In condition b (when i = 0), the first row and column of matrices R and WL
must be made equal to zero and, in the matrix L of the dx/dt coefficient, the Lm
in the first row and column must be replaced also by zero. furthermore u, = 0.
The svmbols are those of Fig. 6 and I is the angular velocity of the rotor in
electrical angle.

Fig. 6

It must be noted here that, since the torque equations of A, C. motors are
non-linear. Equ. (26) can be simply analyzed in case of constant W. Since,
however, pulsating torque is produced in periodic condition as well, T will
pulsate. In case of small variations, the inertia moment can be taken into ac-
count with good approximation by assuming an additional pulsating torque
opposite to that of the periodic condition. Then the equations for small varia-
tions will be linear.

Summary

In this paper a general theory. developed for the analysis of deviations from periodie
steady-state condition of quasi-periodic, multi-parameter systems, linearized for small varia-
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tions by means of matrix calculation, is discussed. The theoretical results are well applicable
for the digital computer analysis of, for instance, thyristor and diode circuits.

First the paper considers the determination of the periodical condition (Chapter 2,
then investigates the small variation from the periodic steady-state condition, that the tran-
sient and frequency responses, etc., can be readily determined from Chapter 3.

This general theory was used to carry out digital computer analyses on the following
non-linear, practical systems: SCR-inverter involving five energy-storage element., D. C.
motor drive, supplied by three-phase bridge rectifier., and finally a three-phase voltage-
controlled induction motor drive (Chapter 4).
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