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1. Introduction 

In the solution of pO'wer control prohlems, thyristors and diodes are of 
rather increasing importance. In conduction they are equiyalent to short 
circuit (condition s), otherwise to open circuit (condition b). A similar situation 
exists in mercury arc rectifier or relay schemes. In such systems, the steady 
state condition is usually periodic, with a period of T. If the "ystem involves, 
for example, only a single thyristor, thf'n T may he cut up to T = T, --;- Tb; 

in 'Cs the thyristor is on and in Tb it is off. It is assumed that the system may 
he descrihed hy constant coefficient linear differential equations, hoth for 
Ts and Tb, although the parameters are different in the two states. 

Three-phase thyristor circuits are frequently used. The hridge circuit, 
for example, involves six thyristors and each period consists, generally: of 
12 different conduction conditions. In most cases, hO'weveL it is quitc sufficicnt 

to study t .. wo conditions since, knowing the data of a single one-sixth period, 
those of the other one-sixth periods may he ohtained through phase and sign 
changes. In such cases T indicates one-sixth of the whole period (OT sometimes 
its one-third and in case of single-phase hridge circuit its half). 

Condition s is oyer 'when the particular thyristor is off: thus is is usually 
giyen hy the 5Olution of a transcendent equation. At the end of condition b, a 
thyristor is switched on either in a predetermined instant or depending on the 
control yoltage Uc and the value of the input or output signals of the system. 
The latter case gives in general a transcendent equation. 

First the paper deals with the determination of the periodical condition 
(Chapter 2); the initial conditions and the T5 , ib must satisfy the periodicity 
conditions. In such cases one or t .. wo transcendent equations must he solved. 

Calculating curve-shares it is hetter to assume values for Ts and Tb in 
advance, consequently t·wo other corresponding variables (e.g. firing angle, 
control yoltage etc.) may he determined more simply. Chapter 3 illyestigates 
the small yariations compared to the periodic steady state condition; thus, as 
first approximation, a linear difference equation system - well known from 



206 I. R.·icZ et al. 

the theory of sampling systems is obtained. The coefficients of the equations 
are given from the data of the periodic steady state condition by simple algeb­
raic species wherehy the transient and frequency responses, etc., concerning 
small variations can be readily determined. 

Since the system is of multi-parameter character, it is preferable to use 
matrices. These matrices are indicated by bold type upper case letters (e.g. A.), 
hut the special matrices consisting of a single column, the column vectors, are 
represented by bold type lower case letters (e.g. x): transponation is marked 
hy an asterisk, thus e.g. ;1'* is a row vector. 

The functions of quadratic matrices, £(A.) can be calculated by power 
series, but if several functions of the same matrix A. must he calculated, it is 
hest to convert ~-1 to a normal form. If each eigenvalue is distinguished, it may 
be written: 

-A. = T AT-i, T A J.] 0 0 

0 0 

L 0 0 I·n -
and 

Cl -I 0 
f(A.) Tf(A) T -1. f(A) 

o o ... f! ;.,1 

where i.i is the eig'~ln'alue of matrix A, and Si i,; post eigeln'ectoL As, = i.i Si. 

In case of complex eigenyalues the colullln pairs ofT, A or J(A) can he modi­
fied into an other form, requiring only real algebTaic operations. 

In Chapter 4 the theoretical results obtained pre"iously are applied for 
three different practical cases: (1) thyristor inverter with an R, L, C load, 
(2) D.C. motor fed hy a three-phase hridge rectifier, taking into consideration 
the speed fluctuation, and (3) three-phase induction moto!' "'ith hack-to-hack 
thyristor pairs connected in series with the stator winding;:. 

2. Periodical condition 

The differential equations of the system are 'written in the following 
form, with indice!" sand b referring to the on and off condition of the particular 

thyristor: 
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Ls ~ + Rs'x- = Dsll , 

d . .r 
La -- + Ro'x- = Doll 

dt 

207 

(1 ) 

As an example, in case of the inYerter studied in Paragraph 4.1 (Fig. 1), the 
column Yector elements of dependent yariable x(t) have been selected as the 

characteristic data of the energy storages, where Xl' X z and x.5 represent the 
currents of the respective coils, while X3 and X 4 are the yoltage5 of the capa-

R 

Fig. 1 

citors. It is hest to select :"uch yariahlcs as. in this case, the matrix dimension 
will not he unnecessarily large and, on thc other hand, these yariables cannot 
vary suddenly, that is, they are continuous quantities even during the transi­
tion from one condition to the other. In condition S the fundamental equations 

will be 

L1 0 0 0 0 cl.l' Ri 0 0 1 0 1 l .l'= 
0 L2 0 0 0 elt 0 R" 1 -1 0 0 

0 0 C2 0 0 0 -1 0 0 0 0 
1 

0 0 0 C 0 1 1 0 - 1 0 
R 

0 0 0 0 L 0 0 0 -1 0 0 

;X' - Xl i 1 

x:! l:2 

X3 U 3 (:?a) 

X 4 U 4 

X5 i5 
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in condition b 

I Ll -;- L2 0 0 0 0 clx 
I RI R~ 

0 Ll -;- L2 0 0 0 
--I 

RI R2 dt 

1 0 I) 

1 0 0 
0 0 C2 0 0 0 -1 0 0 (I 

0 0 0 C 0 -1 
1 

1 0 -
R 

1 

0 0 0 0 L 0 0 o -1 (I 

1 
.r = 

1 
li. 

0 
(:2/b) 

0 

0 

5 Vse C§) '-.../ 

Fig. :l 

It 'will he noted that. hy an auxiliary yoltage source replacing the t hy­
l'i;;tOI', the two condition;; could he descrihed with a single differential equation 
;;ystem, hut in practice it is much simpler to apply two equation systems. 

In the giyen example matrices Ds and Db hecame column Yectors, U 

is scalaI', hut there might he more input signals. Multiplying Equ. (1) from the 
left with the inyerse matrix of Ls an(tor La, 

dt 
(:3) 

'will he ohtained, where 

G 5 

The symhols applied for times and initial yalues are presented in Fig. 2. The 
solutions of Equ. (:3) are, 

xs(t) = e-·-l,(t-to)[;X'o zs(to)] zs(t) = e-A,(t-to)xo -;- Ys(t) , 1 
Xb(t) = e-Ab(t-I')[Sl - Zb(t')] + Zb(t) = e-Ab(t-t')Sl + Yb(t) , J (4} 
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where z(t) represents any (e.g. simplest) particular solution of the inhomo­
geneous equation, y(t) is that of a zero initial condition at the beginning of 
the respective section. 

In simple cases the condition of the periodicity is 

Xl = X O(t1 ) = x o' and in general 

(5) 

where P is, in simple cases, a unit matrix and, for example in three-phase 
connections, a matrix expressing phase and sign changes. Taking into conside­

ration that xs(t') = Xb(t') = SI' the initial yalue of the periodical condition 
is obtained from (4) and (5): 

·1'0 = (P - Xtr-Ys)-l (XbYs ...:-. Yb) , 

SI XsX() -i- Ys , ·1'1 = P.l'(, , 
(6) 

where 

To calculate Equ. (6), the approximatiye yalue of is and it must be 
a:"snmed in adYance, then the condition of thyristor extinction and firing must 
he checked upon: 

In Fig. 1, for example, the thyristor current is if = Xl x~, thus k" = 
= (1,-0, 0, 0). Thyristor firing is controlled hy yoltage lie which is compared 
with a. certain linear comhination of thc yariahles and input signals. If, for 
('xample in Fig. 1, He is compared ,\-ith voltage X 4 of the load, then 

1* x e* ·1 (0,0,0,1,0),1,,=0. 

The accurate values may be determined from Equs (6) and (7) by iteration, 
then Equ. (4) determines the values of x(t) in hoth states. 

In practice usually the mean yalues and the harmonics of the variables 
are of greatest interest. Thus, for example, the following relations apply to the 
1·-th harmonic: 

? 
,1'(t)e-j ,w,ldt = -=-- (Is 

i 

1 

I (8) 
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where Is and 10 designate the integral yalue for periods Ts and Tt" respectiyely. 
Substituting the time functions (4) yields: 

? 
(l,. - ibl' = - {lI".[ Xu - zs(to)] ~ lIOI'[·r:1 

T 

where c,. id,. is the amplitude of the particular solution z(t): 

r, o 

ej"WI10 lI
Sl

' = J' e-CA,--jl'U'lE)1 dt : ej,'w1i1llb,. = Je-U ;7 j 'WIE)! elt. 

o 

(9) 

(10) 

In Equ. (9), when J = 0, 2f T is to he replaced by lit. Integrations can be per­
formed by using the normal forms referred to in the Introduction, hut if the 
matrices in the exponents are not singulars, the folIo-wing formula, much more 
suitahle for calculation purposes, can he deriyed: 

ej,w1io HSl'[ .x'o - zs(to)] [A. s -~ i l'WjE]-l [(zs(t') ~l) e-j,U'[T, - zAto) x'o] , 1 
ej""li1Hb,·[x] ,Zb(tl)] = [~-1b .7l'C')]E]-l [(~] - Zb(t')) ej,""T; Zb(t1) - Xl]' J 

(11) 

For the periodical condition, the deriyatives of the yariables in the cut­
off points may also he calculated which facilitates CUI'ye plotting and, on the 
other hand, arc nece5sary for transitions to small variations. Thus, for example. 
on tht· hasis of (3), 

3. Small yariatio1l5 from the periodic steady state condition 

3.1. Basic equations 

(12j 

Interpretation of t lw symbols IS shown 1Il Fig. 3. Yariatiolls may he 

T 
- .... - T 1Jxbe 

Xo "~---'-
o~~~ ______ ~ ______________ ~~ ____ ~ 

, ilIa 
-to--~ 

Fig . . ) 
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caused by input signals ilu(t), yariations of the illlc control yoltagc, or the 
deyiation ilxo' Llto from the periodic steady state yalues, that is from the 
initial conditions. Variations ilx(t) are generally not periodic. If LIlo, .::1t', Lltl 
are positive, then 

dilxs 

dt 1 
} 

I 
(13) 

In intervals Llto' LIt', .atl the above equations are not satisfied by ilx(t) , 
instead of them on the basis of Fig. 3, the follo'wing relations may he written 
(the second band e index, respectively, refers to the heginning and cnd of the 

section) : 

il,r,) = 1: sbJto - il;r sa , 

Ll~lt'bbdt' -:- flxiJi> , 

il~l = 'csc_lt' - il.x·sc' , 

il;x'l =Vb2Jtl - fl.rae· 
(14) 

The relation bet'ween flxsb and ilxse is giyen by differential equation (13). 
Since these arc small quantities of first order, the small 'variation of first order 
of the time will cause only a small error of second order and, therefore, the 

solution of (13) might he applied to range to < t t' instead of to -:- LI to < 
t < t' LI t'. Making use of the quantities calculated for the periodic 

",olution, it may he written that 

(15 ) 

where flys and ilYb represent the particular solutions for voltage variation 
ill{, with initial conditions 11 Ys(t o) = 0 and il Yb(t') = 0, respectiyely. 

Intervals LIt' and .::1tl are determined by the extinction and firing con­
di tions of the thyristors: 

(16) 

Equs (14)-(16) yield the following final result: 

(17) 

The coefficients can be calculated from the periodic condition data: 
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Cl = E -'--, (t' aD - t:se)k* . C'.> = XV·C
I

• C C X Z C' C' 
, 3 = .~ 5' 11 = .~ '3' k*cse . - ' 

f3(l1u) = Czllys -'-- I1Yb, fl(l1u) = CJf3(l1u) -+- ccbel~I111(tl) , 

fAI1'll) = - C[1.~f3(l1u) -!- l~l1u(tl)] , 

I (17a) 

These calculations can be readily carried out on computers, hy using matrix 
suh-routines. In a number of practical cases, the formulae are much simpler. 

If, for example, .:1to = L1t I = 0, then Zu C3 and Z12' Z;l' ':;22 are not needed; 
fl(l1u) = f3(l1u). 

In Equ. (17), for I1x and L1t, indices 1 and ° may he replaced hy k and 
k - L thus a difference equation is obtained for the further periods. If the P 
periodicity matrix is not a unit matrix, i.e. P .. ' E, then it is hest to apply the 
reduced differences l1;rl = P -111x1 instead of I1xl' 

3.2 Transient response, time constants 

If, for example, Lluc is yaried hy a step change, or the input signals are 
changed to develop a new periodic steady state condition, then it is preferable 
to consider the new steady state condition as an operating point, and to cal­
culate 'with the differences therefrom. In this case, difference equation (li) 
will he homogeneous, "ince l1u and .:1uc are equal to zero. 

P-1
Z 12 -I [ P-(k-l.)!1.Ti:_1 ] 

':;22 J -'t;'_l 
(18) 

or. 'with a shorter expression, 

(18 a) 

The initial value is obtained hy the difference het"wcen the preyious and new 
steady state condition, respectively. If L1to = 0, then 

[ ~:: 1 = [ Xo,pr ~ J'u,ncw ] (19) 

and the solution of (l8a): 
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This way, the variation of quantities in the instance of th)Tistor firing is ob­
tained. In the periodic condition, the instance of firing is tk = to + k c. If 
in (19) k is expressed by tk, and the formula thus obtained is considered as 
valid not only for the discrete tk values, some formal time constants may be 
introduced. Designating the eigenvalues of Z by ;'i, the equivalent time con­
stants and oscillation frequencies can be calculated from the following for­
nUlla: 

(20) 

Obviously, the eigenvalue (or eigenvalues) ;. = 0 must be neglected here. 
Another approximative continuous substituting scheme i,. ohtained, if 

Equ. (17) is written as follo·ws: 

(21) 

and the left-hand side quantity is considered as an approximate derivative. 
1 

hus th') eige nvalues ofmatrix-(Z - E) give the time constant,.. From Equ. 
c 

(20), Equ. (21) makes possihle to plot a block diagram for the difference equa­
tion, by using a digital integrator (summator) or deri-\-ative element. 

3.3 Harmonic analysis 

In practice the mean values, fundamental harmonics. etc. are more 
nteresting than the values at ,.,\-itch-over points. Although small variations 
do not represent periodical signals, harmonies can he interpreted approximately 
for any individual peri.od, although their amplitude and phase will vary from 
one period to the other. Since in the integrals taken for intervals T 3 and T" 

the parts taken for .::1to' !It', and .Jt1 are small value,. of second ordcr, the 
ntegration range can he set in a simple way: 

2 ' ') , 
Ilu,-.illb,= J Ilx,e-jnn1!dt+--=- J Il.T!> 

T • T • 
dt. (2la) 

to 'r1-'0 

If Ilu = 0, then Ilx's and Ilx'b contain only the solution of the homogeneous 
equation, and a simple formula is ohtained: 

Ilu,. 
') 

.iIlb, = --=- [llsllxst, 
T 

(22) 
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Substituting the values of l:lxsb and l:lxbe from (14), it can be seen that the 
harmonics depend only on l:lxo' and the result can be readily generalized to the 
k-th period. 

3.4 Frequenc~y response 

\Vith the .Juc control signal (or any in put signal) sinusoidally oscillated, 
and the steady state solution of (17) found, the frequency response will be 

obtained. 
In case of 

A 5. R f 5. jwt) 
LJUc = U cos co t = e l U e f 

the steady state solution of equation 

will be 

(22fl ) 

(22b) 

= Re{E - 2Z cos eJT ,- Z~]-l [E - Z cos OJT - jZ sin OJT ]V6 ejW!k} , (22d) 

thus the frequency response is 

y(jw) [E - 2Z cos (!)T - Z2]-1 [E - Z cos OJT - jZ sin wt]v. 

The first factor in (22c) to he im'erted has the determinant 

. D71 " 
1 [E-Z] -JWT]_ n (1- 'le -Jon) ( et e - i=l I. e . (23a) 

This can he similarly applied as the denominator of the tral18fer function in the 
calculation of Bode diagrams and from this factorized form the cutoff fre­
quencies can be easily determined. HE're the values i.i represent the eigenvalues 
of the Z matrix. 

A.bove l:lx represents the output signals. On ground of the Fourier 
analysis, the harmonics are the functions of l:lx and thus the corresponding 
frequency responses can also be determined. 

4. Applications 

Some applications are shown in this chapter. Only the basic equations 
are presented. On that hasis the computer analyses can be readily carried out. 
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4.1 Inverter 

The differential equations obtained from the circuit diagram (Fig. 1) 
haye been presented at the beginning of Chapter :2 (Equs :2a, b). It will be 
noted here that in condition b Xl = X 2' thus the second equation could haye 
been omitted but, because of the uniform interpretation of Yector X in both 
ranges, this ·would not haye been reasonable. Owing to the general form (3), 

La must be inyertable. For this reason (L1 -i- L 2) cLt" 2 jdt had to be used. 
The vector of the condition of extinction is: k* = (I, -I, 0, 0, 0), that 

of the firing condition: r; = (0, 0, 0, I, 0), l~ = 0*, while the control voltage 
ltc is constant in steady state. The periodicity matrix is: P = E. Steady state 
condition can be determined for two U c yalues, with the first one analyzed in 
detail. 

In this case the a o mean values of the yariables x(t), the a 1 - jb 1 ampli­
tude of their)' = I fundamental harmonics, and the X1eif effective values of 
the latter are essential. 

4.2 D. C. motor fed by thyristor rectifier 

The example assumes a symmetrically controlled three-phase SCR bridge 
rectifier (Fig. 4), where Ua, Ub, and lle are the open circuit phase volt ages of the 

Fig. 4-

three-phase transformer, R j and Lt are the short circuit data of the transformer 
(as reduced to the secondary side), Rd and Ld are the direct current circuit 
data including those of the motor armature, e is the e.m.f. induced by rotation 
of the motor, e = k rp w, where rp is the flux of the motor (constant), and IV is 
the angular velocity. The equation of motion is: 
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dw 
J--=m-m. 

dt ' 

which can be written, by substituting e = k cP le, m 
= k cP it as follows: 

. . J 
z,-z·=-~ 

U I k2CP2 
de de 

=Cm -
dt dt 

(24) 

(25) 

Here J is the rotor inertia moment, id is the direct current of the armature, and 
i l is the ml loading torque in current scale. On the basis of (25) the mechanical 
relations can be taken into account with a capacity Cm in the equivalent circuit. 

Before to the thyristors Te+ and T b- are on and at to the thyristor Ta+ 
is turned on, thus the condition s represents the commutation from Te+ to Ta+. 

The direct current Xl = id, loop current X~ = i h and the e.m.f. x3 = e 

are used as variables. The phase currents are ia = ill + ld/2, ib = - id, and 
ie = ill id/2. The differential equation for state s is 

o o 

o 

o o Cm_ 

dx 

dt 

o 

-I 

I 

o 0 

At the end of the Lr, T e ,," is extinguished; the precondition of extinction iE 
ie 0 - X~ Xl! 2. that is k* (I, -2,0). The differential equation of 
con clition b is: 

o 
L, 
o 

o 
o 
o 

At tIC (7: = 1/6 period), the thyriEtor Te- isfired; the matrix of periodicity is: 

p 
o 0] 

-I 0 . 
o I 

Calculating two steady-state conditions, the changes during the transition 
from one state to another can be determined from Equ. (18). 
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4,3 I nductioll motor fed through back-to-back thyristor pairs 

Connection is shown by Fig. 5, Before to the thyristors Ta- and Tc-;. are 
on, at t = to the Tb- thyristor is turned OIL thus in section Ts all three primary 

Fig. 5 

terminals of the motor aro connected to the nenrork. At the end of condition s. 
when ia becomes zero, Ta- will be off, thus in condition b only t,ro terminals are 

connected to the system. In t1 the Ta+ thyristor is turned on and r amounts to 
1/6 of the period of the supply. The condition of periodicity, as expressed 'with 
phase currents, is: 

[ ~all=[ 0 1 0] [~aol 
Ib1 0 0 - 1 IbO 

in -1 0 0 i·co 

Since ia ib ic = 0, two free variahles will he left. Applying the x, y, 0 tran:"­
formation used in the theory of alternating current machines (see, fOT example 

R nf ",T 1)' .. - . I') : • lf~'') . - . I') • -;"-:') d 1 
c erence ~'o ,la lx, 10 - lxj~ -:- lyy 3:-, le - - l x /.:.. ly I 3;-, an tIe 

condition of periodicity is: 

[;::] [ 

1/') 

\~: 
W'ith the rotor currents expressed also in the x, y coordinate system fixed to 
the stator then by using x* (i;:, i y, i,,,, iry), the periodicity condition 'will 
assume the form 

Xl = P.x·", 

p~ l11: -Y3/2 0 0 

I 
1/2 0 0 
0 1/2 13/2 
0 Y3/2 1/2 

It will be noted here that, when thyristor-diode pairs are applied or three 
thyristors in delta are in the disconnected neutral point of the motor, the value 

7 P.:riorlica Polyt(,l'lIniea El. )3/:~ 
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T equals to one-third of the period, and the matrix of periodicity is P2. The 
condition of extinction is: ia = 0, that is, k* = (1,0,0,0). 

The motor equations in the s condition of three-phase conduction are: 

dx + R;r + nIL;]; = u , (26) L 
dt 

where 

L= [I 0 Lm 

o r R=r 0 °T ~m 
L 0 ~m o R o 0 
0 Lr o 0 Rr 0 

Lm 0 Lr .0 0 o Rr_ 

11 = [~ 
0 0 

~l 
u= 

[11' 
x= 

[ i, 1 0 0 

~~x 0 0 w 
0 -w 0 Lr}' 

In condition b (when ix = 0), the first row and column of matrices Rand WL 
must be made equal to zero and, in the matrix L of the dxldt coefficient, the Lm 
in the first ro·w and column must be replaced also by zero, furthermore llx = O. 
The symbols are those of Fig. 6 and W is the angular yelocity of the rotor in 
electrical all gle. 

R L-L", Rr 

-:-t> \ <r--:--

I 

Ix; ty Ir;,; try 

U
x j Lm=Lr 

Uy 

Fig. 6 

It must be noted here that, since the torque equations of A. C. motors are 
non-linear, Equ. (26) can be simply analyzed in case of constant W. Since, 
howeyer, pulsating torque is produced in periodic condition as well, W will 
pulsate. In case of small variations, the inertia moment can be taken into ac­

count with good approximation by assuming an additional pulsating torque 
opposite to that of the periodic condition. Then the equations for small yaria­
tions will be linear. 

Summary 

In this paper a general theory, developed for the analysis of deviations from periodic 
steady-state condition of quasi-periodic, multi-parameter systems, linearized for small varia-
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tIOns by means of matrix calculation, is discussed. The theoretical results are well applicable 
for the digital computer analysis of, for instance, thyristor and diode circuits. 

First the paper considers the determination of the periodical condition (Chapter 2,) 
then investigates the small variation from the periodic steady-state condition, that the tran­
sient and frequency responses, etc., can be readily determined from Chapter 3. 

This general theory was used to carry out digital computer analyses on the following 
non-linear, practical systems: SCR-inverter involving five energy-storage element, D. C. 
motor drive, supplied by three-phase bridge rectifier, and finally a three-phase voltage­
controlled induction motor drive (Chapter 4). 
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