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We shall consider a stationary, axially symmetric magnetic field with
linear axial distribution and non-zero initial intensity:

H(z) = H,+ H;= (1)

where H; and H,; are constants. The field distribution (1) corresponds to a
magnetic field & with the following components in cylindrical system of coordi-
nates (r, y, z):

o= Hyr ]
2 .
} (2)
hy. =0
h. = H“‘;_le]

(This is the so-called “cusp” magnetic field [1]).

1. The rigorous solution of the paraxial ray equation

Let us consider the paraxial motion of high velocity electrons with charge
—e and rest mass m in magnetic field (2). The Gaussian system of units is to he
used. The electron source is situated at the (r =r. p =y, = 0. 5 =z, = 0)
point. The electron velocity is given by

i

V—igﬁ, dr

=t M0 l/ —~—J- +r? /f—iﬂ];—% (—Zl~ = const . (3)
1o de, de] o Ldt)
Comyet

where ¢ = const. is the electric potential. ¢ is the velocity of light, and
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) = const. (4)

v A =z >
dt )
Hence
dr dr . dy dy
Fr— — Az v — and = L agp 6
a e VT a T (©)

I‘(O)v: Ty p(0) =, =0 A
dr | — =10 i — oy = (0
dz [ z=0 v dz 220 v

The paraxial ray equation for the case of non-zero initial value of the
axial magnetic field intensity and arbitrary initial conditions may be written in
complex form as follows [2]:

d*u | eH¥3) l

f (=0 8
> 8m,* g, ®
where
u(z) =r(z) exp [izi(s)] 9
and
1]/ )
2(z) = w(z) — —V - fH(z) d= (10)
ci 8myy, .
(i = | —1 is the imaginary unit).

At the initial point we have from (9). (10) and (7):

7(0) = %(0) =0 (11)
dy , 1 e )
=y, — — - H(0 12
dz ., 4 ¢ V8m0¢, © 12)
u(0) = r(0) exp [2(0)] =r, (13)

and



ELECTRON MOTION IN A STATIONARY MAGNETIC FIELD 223

:4+WP«~%/6 mﬂ (14)

Let us substitute now the axial field distribution (1) into paraxial ray
equation (8). We obtain

-.—_dh‘: 4 (ko + By2)?u =0 (15)
where
[
mzi/e (16)
2¢ | 2myg,
and
g= 1 [ e (17)
2 Zmofﬁr
We have the following initial conditions from (13) and (14):
u(0) =r, (18)
and
du
=1y + irg(w, — k ky) (19)
dz '._,

since H(0) = H in this case.
Equation (15) has the following exact solution [3]:

O P N [
®) l/ Al 1J14[ 0 J f cm1_14[ 0 JJ (20)

where Jp is the Bessel function of 1st kind and p-th order; C, and C, are arbit-
rary constants. If k) = 0 and ¢; = 0. this solution corresponds to that given
in [4].

Differentiating (20) with respect to s we have

du - (ky + kyz)° 2 (I"g";»_'_l__:')z (ky + k) 911
5?"{ hﬁ% %i“f'%l] CL{ 2, U(m
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Substituting now the initial conditions (18) and (19) into (20) and (21),
and carrying out the necessary calculations one can obtain the values of the
constants as follows:

7 k2 K
€= ;;“ i [I‘ roJ 3/ (71»1] +[ro + irg(wy — o)]J~—114( li} (22)
and
1/ ks K3 o (K3
.- s [g] = i = w L @)
Using (22) and (23), we can rewrite (20):
() L’ 1"
u()_7k ( 5 ){ UIU['JSJ' } 1als) + J—s: ]J—l-l( ):’
= ky
“[féfi"u(w(,—ku)][f—l I(ZALJL +(9) J14’-—}J-1 é)} (24)
where
o kg 7 kyz)? oz
. = T 2]{1 — (ZD)

Expression (24) is the exact solution of Equation (15) with initial condi-
tions (18) and (19). This solution corresponds to that given in [3] for the charged
particle motion in a time-dependent uniform magnetic field.

Our next task is to return to the variables r and . It follows from (9), (10).
(1), (16) and (17) that

r=uw* = J[Re(u)]? = [Im(u)]? (26)
and
k= Im(u) -
)= ks + — tg 27
T T T ) &0

where u* is the conjugate of the complexnumber w, Re(u) and Im(u) are its real
and imaginary parts, respectively.

Using (26), (27) and (24), we obtain the rigorous expressions which, to-
gether with (25), exactly determine the paraxial trajectory of an electron mov-
ing in the magnetic field (2):
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i 7 solbeo —+ k_l:w 0 s % -
r(z) = “—‘V ]l(-—‘"”"‘) {"6(% - ko)'[»’—m (T)]}I':}JM(Q) -

2k 2

_J11(7A jJ_“()] [Oro <JM[7AAJ e
e @) i T [ -

=2 ,kg povo)f (28)

—J—sx

2k,
and
k,z?
i) ~) e k(’z —+ 2 -
- are tg o . ,: - 0(1/(,) - kU) B e (.2 9)
R (_;l’l]Jl (5 = J,s.{?_k }J_HU
gy = k()l'o 12
J—J!;[ 7A ]Jl 4( ) Jlf’»l‘“z ]J——l ;( )

If the electron enters the magnetic field parallel to the z-axis, the initial
velocity is zy = 3, s0

o=y =0 (30)

Substituting (30) into (28) and (29) we obtain the trajectory as follows:

—

. A“ ky = k=
on B (s
2y

F 12 R (L2 }
—Juy —Z-ZO;} —1 ‘(%)j : {J31 ‘z}f: Juy()
15 R EE T
_J-; 1['_2—;:1“]‘]4 1“)] } (31
and -
k22
¥(2) = kes +— S
A o — T
tg J'[ 7 iy %/ - (32)
ST "]J TN ATICS
3:4( 2%, | 1sl(2) —3/1 l 2]11] —1 445

Ir special case of zero initial field intensity we have
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Hy=Fky=0 : (33)

and after necessary operations we obtain from (28), (29) and (25):

F(1/4) e o 1o T k Z?’ ) . R - 52 (
r(z) = __.____21/_2%%/4 V= {ra%ﬂfm (1*7] + [rﬂjl/4 ( J +

2 2
/L. L 22\ 2 )12
—{—1 L '3(3/4) J—1!4[k12 ”} (34)
and
() = kl’)z“ + arctg To¥o 2 (35)
2 15"
V3 L, J‘M( 2 ]
Ty + To -;MP~(3/4) klzg
“ J1/4( :) ’

where I' (p) is the gamma function.

If the azimuthal initial velocity of the electrons is zero (y; = 0)in such
a field, all the electrons with different values of r, and ry will move in a plane
which is rotating around the z-axis. In this case we obtain from (35):

kz?
2

¥(z) = (36)
independently of the initial conditions. Otherwise, in this case we need not use
the complex variable u because y = 0. Then we can consider the motion in a
meridian plane common for all the electrons. In this plane negative values
of r may occur formally while those are evidently positive when rotation of
the plane is taken into consideration.

If the electron enters the field parallel to the z-axis, we obtain from (34)
and (30):

MO oy, (52 (37)

r(z) = rq ——-—1/—_2_——~ V= _iy ( >

Using (36) and (37). it is easy to find a simple expression for the projection of
the trajectory to the r. p plane:

r = 1 T(3/4) ({—]1/4J_m(w) (38)

o

Expression (38) entirely coincides with the corresponding one given in
[3] for charged particles moving in linearly time-dependent uniform magnetic
field and having zero initial velocity.

The uniform magnetic field is another special case derived from (1) when
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Hl = hy = 0 (39)
The solution of the paraxial equation becomes very simple:

r(z) :V ry cos kyz -+ T8 in koz)- + 15 Yo 1 sin2 ko= (40)

ky k,

and
T [-%i—o — 1] sin kg2
p(z) = kyz + arctg . = (41)
rocos kyz - —2 sin kyz

0

From these expressions one can easily obtain all the well-known formulae
regarding to the motion of charged particles in uniform magnetic field.

2. Electron-optical properties

The solution (20) of the paraxial ray equation may be written as follows:

u(z) = € uy(z) + Gy uy(3) (42)

where

u1(~) :]/%’- -+ x Jlf.;(f;) (43)
and i '

wi =[R2 0 (19

2{z) is determined by (25).
The position zy, of the n-th electron-optical image is determined by the
following equation [2, 4]:

U< U5 -
l( 0) _— l( 0”) (43)
ux(30) Uy(zpn)
where z, is the object position. (Our condition z, = 0 is quite suitable because
an arbitrary value of H, may be chosen.)
In case of non-zero initial magnetic field the value of the electron-optical

magnification M, is given by

M, = r(zpn) — (=1 El(zhn) (46)

To u1(30)

where n is the serial number of image.
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Substituting (43) and (44) into (45) and (46) we obtain the first order
electron-optical characteristics of the magnetic field (2):

; k-_g
oo Jyis l 913 J
];4(53,1) = “k‘; = A = const. (47)
J174(5n) J 1,,[ 0 J
aky
and
M, = (—1)”V1+i@”— JuslCon) (48)
k kg
0 Jl/;{ 0 J
2k,
where
e _Sk(l - kyson)? (19)
2k,
In special case of zero initial field intensity we have
Jm(kl_f’;” =0 (50)
and
e T ACT T A Lo 51)

For large values of J we can use the well-known asymptotic formula

It follows from (43). (41) and (52) that in case of I > 1 the trajectory mav be
calculated by means of the following expressions:

5 ) .
Uy (3) = ‘sin “L cos I+ cos x sin (53)
Dk = 111::)
and
2 i 4 : )
uy(z) = —rzzmmee———— lcos—cos I = sin--- sin - ' {54)
Va(ky + kz) 8

Using these formulae together with (47) and (48) we obtain asymptotic
expressions for the image position and magnification:
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7T

T .
A cos — — sin

L., = arctg 55)
= arerg —— > (55
— A sin —

cos

and
. . . T, .
$1n—— €08 Lz, -7~ COS — SIN Lpy
M 2(—1)y" 8 8
M, = _ - S — -
n — _’(Q) B ()6)
adus |+ I N
2k, k. '
1
If the initial field intensity is zero. the asymptotic formulae become much
simpler:
k=3 ( 1 <
tbn — [n___ —] 7 (D ")
2 , 8
and

__TGAH)

p= e 58]
BRE"TEe e

3. Examples

We have calculated various electron trajectories with ry = 1 em. y{ = 0
and rg being a parameter, for two different field forms.

In the first case ky = 0.2/, and k; = 0.1/ .. Electron trajectories are
calculated from (28) and (29) and plotted in Fig. 1 and Fig. 2 for 5 different

[emi

A

Fig. 1
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g 4 5 8 i 2 %z fem)
Fig. 2
Table 1
Order of imageé3 Image position ‘ Magnification
R Eem) | M
1 5.99 0.578
2 9.24 0.489
3 11.75 0.441
4 13.87 0.412
3 15.74 0.393
6 17.43 0.372
7 18.98 0.358
8 20.43 0.346

values of ry. (The notation of the trajectories is given in the figures.) One can
see that in the plotted interval (0 <{ z <{ 12) 3 electron-optical images are form-
ed. We have also calculated the image positions and magnifications from (47)
and (48) (Table 1). Since these values for the 4th image have practically coin-
cided with those calculated from the asymptotic formulae, the further image
characteristics have been calculated from (55) and (56). It can be seen from
Table 1 that the successive images become smaller and smaller.

The second example is given for the case of zero initial field intensity:
ky = 0; k; = 0.1/ ;pp.. These trajectories are calculated from (34) and (36).
Since in this case p(s) is a very simple parabolic function which is independent
of the initial conditions, only r(z) is plotted (Fig. 3). Values of ry are the same
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7 z 4 5 8 0 7 4 Z em]
Fig. 3
Table 2
Order of image | Image position Magnification
n 2 p{cm) M,
1 % 7.46 0.448
2 10.87 0.372
3 13.45 0.335
4 15.61 0.311
3 17.51 0.294
6 19.22 0.284
7 20.79 0.270
8 22.25 0.261

as in the previous example. As we have mentioned earlier, appearance of
negative values of r is to be considered only formal. In the plotted interval
(0 << =z < 14) 3images are formed. The image characteristics are also calculated
from (50) and (51) (Table 2). Asymptotic formulae (57) and (58) give practically
the same results for n > 2.

Other examples have been calculated by different authors using numeri-
cal [5 — 8] and approximative [1, 9] methods.
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4. Concluding remarks

Long magnetic lenses are commonly used in beta-ray spectrometers.
Thus, the rigorous solution of the trajectory equation has a practical import-
ance. On the basis of the very close analogy between charged particle motion
in time-dependent uniform magnetic field and that in non-uniform stationary
magnetic field with corresponding distribution [10], the paraxial equation
can be solved for some other cases too. These cases will be covered in the next
papers of the author.

The solution given in this paper may easily be applied for an electrostatic
field. Introducing the variable

R(z) = rls) 4(2) (59
where ¢(z) is the axial potential, we can write [2] the paraxial equation in
form of

g\
R 31 % | Rr—o (60)
z* 16\ ¢

This equation has the same form as Equation (15) if

dg
V3  dz )
T T = b~ 13
. - =k, + bz (61

Thus. the solution (24) for u is directlv applicable as a solutlon for R if

: 4 ks .
@(s) = goexp | ~——=|k,; + — {62y
/() 0 Ih,g{t 5 ” \
where ¢ 1s the potential on the axis at the initial point 5 = 0, &k, and k; are

arbitrary constants. For the special case of k; = 0 this solution had been
obtained in [11].

On the basis of the solution presented in this paper we are able to suggest
a new magnetic lens model. As a matter of fact, every magnetic field distribu-
tion can be approximated by a broken line (Fig. 4). Since the trajectory is
known at every linear segment of the magnetic field distribution, the whole
electron-optical analysis of the given magnetic lens can be carried out with
great accuracy by linking together the series of trajectory segments. The
thorough description of this new method and its application to a short magnetiec
lens is shortly te be published by the author.



ELECTRON MOTION IN A STATIONARY MAGNETIC FIELD 233

Hz)

Acknowledgement

The author is indebted to Professor V. M. Kelman (USSR) who suggested the problem

and provided very helpful discussions.

Summary

A rigorous solution of the paraxial equation of relativistic electron trajectories in axially

synumetric magnetic field of the form H(z) = H, -+~ H, zis given for arbitrary initial conditions.
Electron-optical properties are investigated. Special cases as well as numerical examples are
given. The results obtained serve also as bases for some generalizations and a new magnetic
lens model.
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