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W-e shall consider a stationary, axially symmetric magnetic field with 
linear axial distribution and non-zero initial intensity: 

H(z) (1) 

where Ho and HI are constants. The field distribution (1) corresponds to a 
magnetic field h with the following components in cylindrical system of coordi
nates (r. iF. z): 

(2) 

(This is the so-called "cusp" magnetic field [1]). 

1. The rigorous solution of the paraxial ray e(Iuation 

Let us consider the paraxial motion of high yelocity electrons with charge 
-e and rest mass In in magnetic field (2). The Gaussian system of units is to he 

used. The electron source is situated at the (r = ro. i( = y)o = O. Z = Zo = 0) 
point. The electron velocity is given by 

t" 
1/_2e Cfr 1/- d ',' 'd"-)" -(d .,' 

l 1')- [!P - z 1-= - + 1'2._ + - = const . 
1 + erp dt dt , , dt , 

(3) 

, In
O

C2 

w htTe Cf = const. is the electric potential. c is the velocit y of light. and 
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q; r = Cf 1 + -. --q = const . ( 
eq;) 

, 2moc-
(4) 

is the relativistic potential [2]. In special case of non -relativistic motion one can 

~r 2e 
assume Cfr p~ q; and l' ~ - (I' • 

mo 
Since we consider the paraxial case, it may be assumed that 

Hence 

dz 
'Vr8-==Z 

dt 

dr dr 
r=-~v- and 

dt dz 

. d1p dlf' 
1p=-~L'-

dt dz 

The initial conditions at z = 0 are as follo'ws: 

1'(0) = r ll 

dr ' , i'o =ro=--
dz ,Z=lJ V 

1p(0) = 1po = 0 1 
d1p , '00 = 1po=-
dz ':=u V 

(5) 

(6) 

(7) 

The paraxial ray equation for the case of non-zero initial value of the 
axial magnetic field intensity and arbitrary initial conditions may be 'written in 
complex form as follows [2]: 

where 

and 

d" -u 

d') 

u(z) = r(z) exp [iZ(z)] 

7.(z) = !p(z) 

(i If -1 is the imaginary unit). 
At the initial point we have from (9), (10) and (7): 

l(O) = 1p(0) = 0 

dz IV-e = 1p;, - - --- H(O) 
dz :=[1 c 8moCfr 

u(O) = reO) exp [il(O)] = r" 

and 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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[ 
dr d'l i J = -, + ir(O) -"! exp[i1.(O)] = 
dz z=:) dz Iz=o 

= r~ + iro [1f~ - ~lr e H(O)] 
c 8mo<t'r 

(14) 

Let us substitute now the axial field distribution (1) into paraxial ray 
equation (8). We obtain 

(15) 

where 

(16) 

and 

(17) 

We have the following initial conditions from (13) and (14): 

u(O) = r" (18) 
and 

(19) 

since H(O) = Ho in this case. 
Equation (15) has the following exact solution [3]: 

(20) 

where Jp is the Bessel function of 1st kind and p-th order; Cl and C2 are arbit
rary constants. If ko = 0 and ~,;) = 0, this solution corresponds to that given 
in [4]. 

Differentiating (20) with respect to z we have 

du 

dz [ 
(ko + klzYlll/2[c J_ ' [J~~LklZ)~l_ c.,J ,f [(ko + k1Z)211 

k 1 3~ 9k - 34 9k (21) 
1 ~ '1 . ... 1 



224 JI. SZIL..fGYI 

Substituting now the initial conditions (18) and (19) into (20) and (21), 
and carrying out the necessary calculations one can obtain the values of the 
constants as fo11o"ws: 

(22) 

and 

Lsing (22) and (23), we can rewrite (20): 

where 

(25) 

Expression (24) is the exact solution of Equation (15) with initial condi
tions (18) and (19). This solution corresponds to that given in [3] for the charged 
particle motion in a time-dependent uniform magnetic field. 

Our next task is to return to the yariahles r andlp. It follo'l"s from (9), (10), 
(1), (16) and (17) that 

r (26) 

and 

k.:;~ Im(u) 
koz -+- _1 - + arc tg ___ .. 

2 Re(u) 
(27) 

where u* is the conjugate of the complex number u,Re(u) and Im(u) are its real 
and imaginary parts, respectively. 

Using (26), (27) and (24), we obtain the rigorous expressions which, to
gether with (25), exactly determine the paraxial trajectory of an electTon moy
ing in the magnetic field (2): 
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(28) 

and 

-'- arc tg -
(29) 

velocity is Fo = z(1' so 

(30) 

Snh;;;tituting (30) into (28) and (29) we ohtain the trajectory as foHows: 

r(z) 

(31) 

and 

(32) 

Ir: special casE' of zero initial field intensity we haye 
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Ho= ko= 0 (33) 

and after necessary operations we obtain from (28), (29) and (25): 

(34) 

and 

(35) 

where r (p) is the gamma function. 
If the azimuthal initial velocity of the electrons is zero (1jJ~ = 0) in such 

a field, all the electrons with different values of r 0 and r~ will move in a plane 
which is rotating around the z-axis. In this case ·we obtain from (35): 

(36) 

independently of the initial conditions. Otherwise, in this case we need not use 
the complex variable u because X = O. Then we can consider the motion in a 
meridian plane common for all the electrons. In this plane negative values 

of r may occur formally ·while those are evidently positive when rotation of 
the plane is taken into consideration. 

If the electron enters the field parallel to the z-axis. we obtain from (34) 

and (30): 

(37) 

using (36) anJ (37). it is easy to find a simple expression for the projection of 
the trajectory to the r, ~) plane: 

(38) 

Expression (38) entirely coincides with the corresponding one given 1Il 

[3] for charged particles moving in linearly time-dependent uniform magnetic 
field and having zero initial velocity. 

The uniform magnetic field is another special cas"" derived from (1) when 
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(39) 

The solution of the paraxial equation becomes very simple: 

(40) 

and 

1p(Z) = kOz + arc tg (41) 

From these expressions one can easily obtain all the well-known formulae 
regarding to the motion of charged particles in uniform magnetic field. 

2. Electron-optical properties 

The solution (20) of the paraxial ray equation may be written as follows: 

(42) 
where 

(43) 

and 

U ( ~) -If ko · ~ J (;-) ., ~ - I - -:- ~ -1.1 ~ - k
j

-
(44) 

:(z) is determined by (25). 
The position Zb" of the Tl-th electron-optical image i;;: determined by the 

following equation [2, 4]: 

U1(Zo) 

u2(zo) 

III (zo,,) 

ll2(Zb,,) 
(45) 

where Zo is the object position. (Our condition Zo = 0 is quite suitable because 
an arbitrary value of Ho may be chosen.) 

In case of non-zero initial magnetic field the value of the electron-optical 
magnification lvI" is giYen by 

NI" = (-1)" ~l(Zb") 
TO 1l1(ZO) 

(46) 

where 11 is the serial number of image. 
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Substituting (43) and (44) into (45) and (46) we obtain the first order 
electron-optical characteristics of the magnetic field (2): 

and 

where 

and 

]i:4(:b',) 

J-1i.l(:bn) 
A = const. 

JI" = (-I)IlV1 + k1zb
'2-

ko 

':::on 
(ko -+- k1zbn )2 

2kl 

In special case of zero initial field intensity we have 

For large ralues of; Wt" can ust' the wt'll-known asymptotic formula 

]- 11:2 cos I: :,(-) =! , 
t :-c; }) 

(47) 

(48) 

(-19) 

(50) 

(51 ) 

(,52) 

It follows from (43), (44) and (52) that in case of:: p. 1 the trajectory may he 
calculated hy means of the following expressions: 

(53 ) 

and 

(
' :-c ~,,:-C. '_) 
cose cos ~ - SIn 8 sIn", (54) 

Lsing tht'st' formulae together with (47) and (48) we ohtain asymptotic 
expressions for the image position and magnification: 
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A cos ~ - sin :7 

;bn = arctg 
cos ;r _ A sin ;r 

8 8 
(55) 

8 8 

and 
.:r '_, :7. __ 

SIn - COS ~bn T COS - Sin ~ on. 
8 8 

(56) 

If the initial field intensity is zero, the asymptotic formulae become much 
:oimpler: 

(57) 

and 

T(3j4) 
NI" = -1(=;r:-k1-'-f4-'-1,-==:-"'=-

} .' '1 ~bll 

(58) 

3. Examples 

We have calculated various electron trajectories with r 0 = 1 em, lP~ = 0 
and r~ being a parameter, for two different field forms. 

In the first ease ko = 0.2/cm and k1 = 0.1/ cm" Electron trajectories are 
calculated from (28) and (29) and plotted in Fig. 1 and Fig. :2 for 5 different 

0,8 

0,6 

Do 

0,2 

D 
D 2 12 

Fig. 1 
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----------- ~ 
8 - 12 

Fig. 2 

Tahle I 

Image position )Iagnification 
=;,,(cm) !tIn 

5.99 0.578 

9.24 0.489 

11.75 0.441 

13.87 0.412 

15.74 0.393 

17.43 0.372 

18.98 0.358 

20.43 0.346 

r; 
-QlO'-'-
-0.05 .......... . 

14 

0.00--
0.05-----
0.10 .. _ .. -

Z fcm! 

yalues of r~. (The notation of the trajectories is given in the figures.) One can 
see that in the plotted interval (0 < Z < 12) 3 electron-optical images are form
ed. We have also calculated the image positions and magnifications from (47) 

and (48) (Table 1). Since these values for the 4th image have practically coin
cided with those calculated from the asymptotic formulae, the further image 
characteristics haye been calculated from (55) and (56). It can be seen from 
Table 1 that the successive images become smaller and smaller. 

The second example is given for the case of zero initial field intensity: 
ko = 0; kl = 0.1/ cm" These trajectories are calculated from (34) and (36). 
Since in this case !j!(z) is a very simple parabolic function which is independent 
of the initial conditions, only r(z) is plotted (Fig. 3). Values of r~ are the same 
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r~ I 
-=§.Ws :-.~~:.=.: 
0,0,0,--
00,5-----
010 .. -.- .. 

Q0r-----------~~~----_7~----~r_------

-0,5 

r; 2 5 8 iD i2 14 Z [cm] 

Fig. 3 

Table 2 

Order of image! Image position ~fagllification 
'=btl(cm) '-' ~\ll! 

7.46 0.448 

Z 10.87 0.37Z 

3 13.45 0.335 

-l 15.61 0.311 

5 17.51 0.294-

6 19.22 0.281) 

7 20.79 0.270 

8 22.25 0.261 
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as in the previous example. As ·we have mentioned earlier, appearance of 
negative values of r is to be considered only formal. In the plotted interval 
(0 < z 14) 3 images are formed. The image characteristics are also calculated 
from (50) and (51) (Table 2). Asymptotic formulae (57) and (58) give practically 
the same results for n > 2. 

Other examples have been calculated by different authors using numeri
cal [5 - 8] and approximative [1, 9] methods. 
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4. Concluding remarks 

Long magnetic lenses are commonly used in beta-ray spectrometers. 
Thus, the rigorous solution of the trajectory equation has a practical import
ance. On the basis of the very close analogy between charged particle motion 
in time-dependent uniform magnetic field and that in non-uniform stationary 
magnetic field with corresponding distribution [10], the paraxial equation 
can be solved for some other cases too. These cases will be covered in the next 

papers of the author. 
The solution given in this paper may easily be applied for an electrostatic 

field. Introducing the variable 

R(z) = r(z) qU(.:;) (59) 

where <p(z) IS the axial potential, 'we can 'write [2] the paraxial equation in 
form of 

(60) 

This equation has the same form as Equation (15) if 

jf3 
4 

(61) 

Thus, the solution (24) for u is directly applicahl,' as a solution for R if 

q(Z) (621' 

where <Po is the potential on the axis at the initial point Z = 0, ko and kl an' 
arhitrary constants. For the special case of ko = ° this solution had beell 
ohtained in [11]. 

On the hasis of the solution presented in this paper we are ahle to suggest 
a TlelG magnetic lens model. As a matter of fact, every magnetic field distrihu
tion can he approximated by a hroken line (Fig. 4-). Since the trajectory is 
kno'wn at every linear segment of the magnetic field distrihution, the wholt' 
electron-optical analysis of the given magnetic lens can he calTied outwith 
great accuracy by linking together the series of trajectory segments. The 
thorough description of this new method and its application to a short magnetic 
lens is shortly to he puhlished hy the author. 
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if (z) 

z 
Fig. 4 
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Summary 

A rigorous solution of the paraxial equation of relativistic electron trajectories ill axially 
sYllllllelric magnetic field of the form H(::;) = Ho -:- Hi::; is given for arbitrary initial conditiom. 
Electron-optical properties are investigated. Special cases as well as numerical examples are 
given. The results ohtained serve also as hases for some generalizations and a ne"· magnetic 
lens model. 
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