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Introduction

In this paper the different generalizations of the isometrical mappings
(metrie-true in classical meaning) are dealt with. The first part gives the
simplest generalizations; the second part is a stronger generalization as a
generalization of the Lipschitz-condition and examination of their properties;
the third part deals with their applications and illustrations: namely with
the fixed point theorems for the contractive mappings (on completely regular
topological spaces), a local property (more preperly local contractibility) and
some illustrations of Banach’s fixed p&int theorem as the unique existence
of solution of the distinct type of in g ral equations. In the end a numerieal
example of the iteration method (an integral equation) and an interesting
condition shout the reots of algebraic equations in the complex plane will be
presented.
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0

Let us consider the sets X and X’ with pseudostructures X' and 2°
([3], [61, [7]). If Zis a pseudostructure then the following axioms must be true:

A.l. ¢ is a mapping from X = X into R™ where R* is the set of the
non-pegative numbers.

A.2. ¢ is a symmetrical mapping, i.e.

o(x; y) = oly; %)
A3, o(x; x) = 0 for every » from X,
A4, for every x, v, z from X
o(x;y) = o(x; 2) + o(z:y)

In the followings, suppose for every (X, &) and (X, 27) space considered
that there is a one-to-one mapping between X' and X’ (denoted by k: X' — 27).

* Presented in abbreviated form in Rostock, February 19, 1968. See [9].
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1.1. Definiton: Let f be a mapping from the space (X, X) into the space
(X, X7, then the mapping f is called k-isometrical mapping® if there is a k
one-to-one mapping between X and X’ and for all x,y € X; 0 € 2 such that

(1.1.1.) o(x: y) = ko [f(x): f(y)] is satisfied.

1.2. Theorem [1], [2], [7]: Let f be an isometrical mapping of the space
(X, 2) into (X', 27), then

(1.2.1.) f is continuous (according to ;- i)

(1.2.2.) f is proximity continuous (according to 0, — 0%

(1.2.3.) f is uniform continuous (according to Uz — U%)

(1.2.4.) If f{X) = X’ holds, then fis an open and closed mapping.

(1.2.5.) If fis a one-to-one mapping then space X and X’ are homeo-

morph (in the topological sense), isomorph (in the uniform sense)
and equimorph (in the proximity sense).

Proof : (1.2.1.) and (1.2.2.) follow from (1.2.3.) thus it is enough to show
(1.2.3.): 1t follows from the fact that

(1 2.6. ) ESoy ... Ty < (f*f)-l [Us; koy o ka'] is true.

(1.2.4.) is evident from

(1.27) U oy .o, () =1 U ko, . . ke, < fx) >]

(1.2.5.) follows from (1.2.1.); (1.2.2.); (1.2.3.) and since f~ is an iso-
metrical mapping. Q. E. D.

Separable questions (See [1], [7]) ,

1.3. Lemma. Let (X, 2) be a T,-space, f(X) = X’ and f an isometrical
mapping, then (X 2") is also a T,-space.

Proof: Let 5” and y* be two different points of X’, because of f(X) =
there are two points %, y of X such that x € f~(x’) and y € fi(y"). IfG*
o' [f(%); f(¥)] = o(«’; ¥°) = O could be satisfied, then o(x;y) = O should fol-
low. This fact cannot be satisfied for all ¢’ €X', because X is a Ty-space, and
thus x = y follows from {o(x;y) = O: for every o € 2'}. Consequently there is
o' from X such that ¢'(x";y") > O; ie. X’ is a Ty-space. Q. E. D.

1.4. Theorem: Let the conditions of lemma (1.3.) be met then fis a one-
to-one mapping too.

Proof: Because of lemma (1.3.) X° is a T,-space. Let x = y; then there
exists a ¢ from X such that o(x, ¥} > O and thus ko[f(x); f(y)] = o(x;y) > 0.
In consequence f(x) == f(y). If ° = y; then there is a ¢’ €2’ such that
o(x’; ¥) > 0 Thus ‘

o (5 5) = B0 I )] = ol ) > 0
where f(x) =z, fly) = v, therefore x =9y Q.E.D.

Quotient space. (See [1])

# k- hometncal mapping will be called below isometrical mappmtr
*# Emlg" = g,
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Let (X, L) be a pseudostructure space. Let us define equivalent relation
~ as: “x ~ yif and only if ¢(x; y) = O for every ¢ of X* (i.e. x and y are in
separable points of X).

Evidently it is an equivalent relation following from axioms A.1., A2,
A3, A,

Let us denote the set of the equivalent classes x by X - X' contains each
pseudometric ¢ where (X ;y) = g(x;y) whenever x €x and y €y. We have to
show that ¢( - ) is a pseudometric.

Let us choose x;; v, €x and yy; v, €y using axiom A4, and definition of
% leading to the following inequality:

o(x;: 1) = o(w;5 %) + olxgs 1) = olwy: x) + o(xg5 yo) + 0y 5g) =

= 6(%3 ¥o)

Similarly we obtain o(xy; ¥,) = o(x;; y;). Thus it follows o(xy: v,) = a(xy; v)) =
= G(x;y)

The described method giv es
the space (X, 3). The space (X ,) is the same as quotient <pace (X, Xy~
) 1.5. Definition: Let us ca H the spaces (X, X) and (X 1) isometrical
spaces, if there is a one-to-one isometrical mapping f between them.

Let f; (X, 2) — (X7, 17), then the mapping f can be defined as:

“f(%) = f(&) where xis an arbitrary representation of ¥, Let us remark that
this defirition is usually incorrect, butit can be easily proved on the isometrical

separate classification of the space (X. X)into
F

mappings that f is an unambiguously defined mapping.

1.6. Lemma: Let f be an isometrical mapping from (X, X) into (X7, L7),
then f is an isometrical mapping of (X, £) into (X7, X%).

Proof; It is trivial from the definition of ~.

1.7. Theorem: If fis an isometrical mapping of the space (X, X) onto the
space (X°, X7) then spaces (X°, X7)/~ and (X, X)/~ are isometrical spaces.

Proof; The quotient spaces are T,-spaces thus it follows from lemma
(1.6.) and theorem (1.4.) that f is a one-to-oneisometrical mapping. Q. E. D,

§ 2.

In this part some further generalizations of the isometrical mappings
will be given.

2.1. Definition: Let (X, 2) and (X7, 2%) be pseudostructure spaces. Let
us call the mapping f from the space (X, 2} into (X°, X%) weak isometrical
mapping, if there is a substructure Iy of X7 such that f is an isometrical map-
ping from (X, 2) into (X7, Zf)

2.2. Note: If 7%, > 7’5, then fis a real weak isometrical mapping; if
7:3;} = 7', then only “profusion” of the structure X’ can be spoken of. This
is'the case of extending a pseudostructure with some pseudometrics which did
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not make a change in the primary topology nevertheless there is not a one-to-
one mappmcr between 2% and X7

2.2.1. Example: Let (E, g) and (E’, ¢°) be metrical spaces, f an isometrical
(metric-true) mapping from F into E’, in the classical sense. Extend the metric
0" to the pseudostructure:

= Aok oiwiy) =270/ (¥: ) i =12, )
then fis a weak isometrical mapping, not an isometrical mapping, nevertheless
fis not a real weak isometrical mapping.

2.2.2. Example: Let (X, X) be a no metrizable space, and let X, be a
countable subsystem of X. Then there exists no one-to-one mapping between
L and X, because X > X,. Moreover 7y is more refined than 7y, because
Ts, is a metrizable topology.

Let us consider the identical mapping of the space (X, 2,) onto the
space (X, 2). This mapping is a real weak isometrical one.

In the following an extensive generalization of the isometrical mappings

generalized for

will be given, more properly, the Lipschitz condition will be g

the class of completely regular topological spaces.

2.3. Definition: Let f be a mapping from the space (X, X) into the space
(X0, 27), it is called L-isometrical mapping, if there are some positive real
numbers a¢ and b such that

(2.3.1) ao(x:y) = holfx): f3)] = bolxs )
forall 6 €2 (ko €27) and x, y € X.

2.4. Definition: The mapping f as defined in 2.3. is a weak L-isometrical
mapping, if @ and b are positive real functions of ¢; i.e.:

(24.1) a(o)o(x: ¥) = ho[f(); f5)] = b()o(xs )
1s met.

2.5. Definition: The mapping f, as defined in 2.3, is called weak contractive
mapping, whenever

(2.5.1.) ko[f(x): ()] = blo)a(x; y)
is satisfied.

g, whenever

The mapping f is called weak expansive mapping,

(25.2) a(0)o(x: 5) = ko f(x)s f(2)]
is true for every o €2 and =%,y €X.

Separation (See [1], [7])

2.6. Lemma: If fis a weak expansive mapping from a T,-pseudostructure
space (X, 2) into a pseudostructure space (X°, 2”) then f(X) < X’ provided
the customary subspace topology is a T,-space.

Proof: Let x;, x, be two different points of X. So there is a ¢ € X that
o(xy; x5) > 0. Thus for 0" = ko € 2" ,

Bolf(m); flw)] = o' (vis 55) = b(o)olas 23) > 0
is satisfied.

In consequence there are disjoint neighbourhoods of f(x;) and f(x,}
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flx) # f(x,). That is for each y1, y; where y{ = y;and y1;ys €f(X), there exist
2y 3 %y €X, such that x; = x,. From this fact the statement of 2.6. follows,
because y; = f(%;) = f(x,) = y5. Q. E. D.

2.7. Lemma: If fis a weak contractive one-to-one mapping of X onto
X’ and X’ is Ty-space, then X is also a T,-space.

Proof : Choose different x and y from X, then f(x) = f(y), because of the
condition of lemma. Consequently there exists a ¢’ €X” such that the following
inequality is satisfied:

o’ [f(%); f(x)] > 0.

Thus hence ¢ = k=%’ and because of the properties of contractive map-
ping:

) 0 < o' [f): 3)] = alo)olx: )

It follows from a(o) > O, o(x; y) > O and (*) that x and y have some
disjoint neighbourhoods. Q. E. D.

2.8. Remark: The separational results mentioned in the first part are
casy to deduce from this part’s result. Evidently, every isometrical mapping
has the properties from 2.1. to 2.5.

Continuity (See [1], [2], [3]. [6]. [T])

2.9. Theorem: Let (X;ZX) and (X’; 27) be given pseudostructure spaces,
moreover a mapping f from X into X’

a) If fis a weak expansive mapping and f(X) = X’ then fis an open
mapping.

b) If fis a weak contractive mapping then fis a continuous mapping.

Proof:

a) Gis an open set from X, so for all x from G there exist pseudometrics
G,...0; of 2 and a positive number ¢ such that the following relation is
satisfied:

Let us denote ko; by o}. For each point x, from U, .- . ., (%)

r3
Gilxgs2) < e

a1l f(x0) s f(2)] = alo7) o 5 %)

and

are satisfied. Thus:

1
a(ay)

oi flae) 1 f(2)] = 0i(y 5 )
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Let us choose f(x,) to fulfil

i=1,...1).

Furthermore
ea(a;) > oif f(x) 1 f(x)]
s true.
If ¢ = min {e - a(oy)} is chosen, then from the preceding
i= 1.7

& > G;[f(xo) f(’”)]
1s satisfied for each f(x,) € Us. ..., /[f{x)] and thus

& o flw)]

> > (g 2 a
a(ay) a{o;)

&>

where xg = f(x,). In consequence:

U(:-i et [f(.‘C)] [ f[ D’VGI g, (.\‘)] Cf(G) .
i.e.: if G is an open set then f(G) is also an open one.

b) If fis a weak contractive mapping and G’ is an open set which belongs
to X’ then for every x from G = f~1(G’) there are some pseudometrics oy . .. o,

from X and a positive number &’ such that Uy...,. (') C G where & =

= f(a).

Moreover for each af €U’

is satisfied, and introducing x§ = f(x;), because of the contractive property
of f it is:
oi{xg 3 27) < aloy) 0w, 3 x)
where ¢; = k~1g}. Thus, if a(c;)o{x,; x) < &', i.e. the following relation is rea-
lized:
, P

> 6i(xy; x) is satisfied, then with & = min S 1<i<r |
a(o;) A ala;) |

o
c

UUL cve G e ® Cf“‘-l[U;i...g;;g’(z’)] (o G

It means that the set G is an open set. Q. E. D.
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2.10. Let f be a weak L isometrical mapping from X into X’ i.e. the
inequality (2.3.1.) is satisfied:

a(o)o(x; y) = ko[f(x): f(y)] = b(o)o(x; ¥)

Evidently, if a(o) holds (2.3.1.), then every positive real function a’(c)
which satisfies the inequality O < d’(g) = a(v) also satisfies (2.3.1.). Since
a(o) < b(0), that follows from (2.3.1.) for all o€ZX, there always exist
following funections:

(2.10.1.) a(c) = sup a’(0)
and

(2.10.2.) b{c) = inf b’(0)
where b°(¢) can be chosen similarly.

2.11. Theorem: A weak L-isometrical mapping is an L-isometrical mapping
it and only if (for fixed X and X7)

lim inf {a(c):0€X} =4 >0
and
lim sup {(0):b:0€X} = B <7 + =~

are true for the functions a{c), b(s) defined in (2.10.1.), (2.10.2.).

(2.11.1.) Remark: If either 4 or B exists, then it follows just the expansive
or contractive property of f.

Proof: Let f be a weak L-isometrical mapping and let the conditions of
the theorem be satisfied then the inequality

Ao(x; y) = a(o)o(x; y) = o'[f(x). f(y)] = blo)o(x; y) = Bo(x;y)

is evident and thus (2.3.1.) is going to be true; that is fis a weak L-isometrical
mapping.

Conversely: let f be an L-isometrical mapping. If the conditions of
theorem 2.11. are not satisfied, then

lim inf a(¢) = 4 = 0 or lim sup b(o) = B = =

must be true.

For example let lim inf a(c) = O. Because of (2.3.1.), there are positive
numbers A4, B, such that: 4, c(x;y) < o' (&";y) < Byo(x: ¥), thus there
exists ¢, from X that a(c,) < A,, because of lim inf a(¢) = O. This contradicts
to the definition of a(c,).
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The existence of lim sup b(c) can be proved similarly. Q. E. D.
The following theorem shows that the term “isometrical” is correctly applied
for the weak L-isometrical mapping.
2.12. Theorem: Let f be a one-to-one weak L-isometrical mapping from
(X, X) into (X7, 2°). Then there is a pseudostructure £/ which is equivalent to
27 on f(X), such that f is an isometrical mapping from (X, ZX) onto {f(X),

1
1'

s_\_.l

Proof: Because of (2.3.1.).
a(c)o(x; v) = o'(&; ¥") = blo)o(x: ¥)

holds for all x, y € X (o € 2).The structure X7 on f{X) C X’ can be constructed
in the following way:

or €2 if and only if ¢[(x";y") = o(x: ) for each «°,y’ €f(X), where
x" = f(x) and y° = f(y). This defuu ion is evidently correct since fis a one-to-
one mapping from X onto f(X).

Moreover it is evident that o) is always a pseudometriec and there is a
nne-to-one mapping between Xy and X\

Let U’ be from u:‘f'/i(z;' then:

"= Uty o] N )= ()]
moreover
Uc’ri---o;;a = ﬂ U'(;g;e
i=1
is true.

It is sufficient to show that there exist 07,,; o, from X and positive
2, & for some ¢’ of X and a positive number ¢ such that the relation

, e e
UOJLL 3 o U(r' e C UV.‘Z:; BN

is satisfied. Since (2.3.1.) holds, we obtain

o’ (2" 35")

FANRN 1
I

b(o) ‘ b(o)

whenever
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~
<

is satisfied. Thus the relation U’ ;

o 3 b(o) ) U’;,;E:follows from (*). Similarly if

) a(g)ﬁ (sy )y = oL (xs5y)

is true we get from (2.3.1.) that

€ 1 ’ ! 4 ’ 4
>——0'(x";y") Z o' :¥)
a(o)  a(o)
g
Then from (*%) U:a,ﬂ(_) D Ul follows and from the relation
55 alo ;

Ur, << Uy << Uy
Uz, (~) Uy

is given. Q. E. D.

2.13. Remark: From the proof it reads off easily that if {'is not an L-iso-
metrical mapping, but it is only an expansive or contractive mapping, then
the resulted uniform structure is coarser or finer than the primary one.

§ 3.

Applications

In the theory of differential equations the differential operators with
iess than one norm are very important. The Thyhonov—Cacapulli contractive
principle or fixed point theorem of Banach are valid to them. Now, the Banach
fixed point theorem can be generalized to the class of completely regular
topological spaces. It is well-known fact that there is a pseudosiructure for
every completely regular space such that the topology defined by it is equiv-
alent to the primary topology. Pseudostructures have to satisfy the axioms
Al A2 A3.; A4, The topology defined by the pseudostructure is the

following: for every x of X the sets’system
Uovvvo,el@) ={yiolz;y)<e, 1 <i<r}

— where ¢ > 0 and r’s are arbitrary positive integers — there is a neighbour-
hood system of the point x.

Let us note that every topological vector space has a pseudostructure
which defines an equivalent topology with the primary one.

3.1. Theorem (Banach fixed point theorem):
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Let (X, L) be a sequentially complete Ty-space concerning the uniform
structure U; morcover let fbe a weak contractive mapping from X into jtself
and b(c) <7 1 for each o from L. Suppose that ko = o, then there exists a u-
nigue fixed point x* from X to mapping f; f.e. f(x¥) = ¥

Proof: Let us show first that not more than one flxed point exists. If the
existence of two different fixed points (x; and x,) is supposed then there is at
least one ¢, from X for that (3.1.1.)

ol 35) > 0

is true, because X is a T,-space. Hence f is a contractive mapping so the
following inequality has to be satisfied:

(3.1.2.) o[ f(ay); flwe)] = blog)og(mys %) T oplys X0) = ap[f(x); flxg)]:

and from this o,[f{x)): f(xs)] = o4(xy; 5) = O follows. Thus (3.1.1.) is impos-
sible, since g{x;;a,) = O for all 6 €X' i.e. x = x,.
Let us take a fixed point. Let x be an arbitrary point from X, and x ==

= aps & = f(x) ... %= flan_q) ...
Then
(3.1.3.) 0(xpay s %) = o[ fl) s o0 1)] =2 b(0) O f ) 1 f ()]
Lo 2 b(0) o] (ay) s xy)

is satisfied for each integer n, and ¢ from 2X.
Let us consider o[f(xp): f(xn)] (let n >> m). and using axiom A4, and

the relation (3.1.3.):

0(Xps13 ¥mss) = [ f22) 1 f( ‘nv)] = [ v) s f(xn)] +
-+ GL x.rz—-l) ;f(xm)] R G[f(xr7) f(x;z-—l)] +

4 ol f o) 1 fr)] Z o[ flx) s ()] - {[B@)] + - + [b(0)]"] =
= o[ f(x) 1 %] [B() ™ {[b() ] + ...+ 1) =

- G[f(xl) ;x(,] [b(a)]m _—[:—é%; < G[f(h) ;x(,] "1_[9_(.61);]([:) =

= C(o) [b(o)]"

where

: _ o[f(x) 3% -
(3.1.4.) o= AR =
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]
S
=3

for all 0 €X°. C(o) == 0 for all ¢ €2 if and only if

7[f(x1): %] = 0[f(%0)> %] = 0.
then f(xy) = =x,.
In order to prove { x, } is a Cauchy-sequence choose an arbitrary neigh-
bourhood U, ..., of U and an integer m, such that for every m > m,

e > C(oy) [b(o)]™
is satisfied { =1, ...71).
This is always correct because of lim [b(c)]" = 0.
o0
Consequently oyxp3x,) for n,m>my (@=1...r) and thus

(%0 32%m) €Ugy v v oo

It could be shown that { x, } is a Cauchy-sequence, so there has to exist
a limit point x* for this sequence., Because of continuity of f, (see 2.9. b.)
flxn) — f(x*), moreover x, = f(x,_,) and thus x, — f(x*).

X is a T,-space, hence {x,} might have no more than one limit point,
in consequence f(x*) = x* holds. Q. E. D.

3.2. Remark: The condition b(c) << 1 of the theorem 3.1. cannot be
weakened. There may be a mapping f with the property o(x;3x,) >
o[f(x1); f(x,)], but there exists no fixed point.

For example: Let f be a function from [0, <) into itself, of the form
flx) = x — g(x) + C where function g(x) satisfies the following conditions:

(3.2.1.) 0 < g(x) << C for all x from (0, o)

(3.2.2)) g{x) is differentiable in (0, o) and

0 < g(x) <1 for all x from (0. =),

(3.2.3.) lim g{x) =C.

N
(The condition 3.2.2. might be replaced by the weaker condition 3.2.4.)
(3.2.4.) g(x) €L,(1) where L,(1) is the class of functions which satisfy the

1 — power Lipschitz condition and their Lipschitz constant is
less than one.) ,
So | flxe) — fl(xy) | < |2y — x| for every x, = x; and the equation

f(x) = «x has no solution because of the condition 3.2.1.

7

9 B

There exists such a function, for example f(x) = & — arcig x -

or another onef(x) ==
x-+1 x+1

3.3. A question: Let f be a contractive mapping from a completely
bounded set* of 1l complete space (X, X) into itself such that f
o[f(%); f(¥)] = o(x;y) holds. 2 Does f have a fixed point?

* j.e. this set is compact
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(3.3.1.) Negative exameple: Let C(0, 1) be the class of continuous func-
tions in interval [0, 1] sith the following norm:

olf.g) = l|f—g !l =sup | fl) — g(t) |
t€[0, 1]

Let us denote by 1(C) the set of the functions from €(0, 1) such that 0 = g(z) =1.

1
& arctg —|if ¢ =0 andg(0) = 0, theng(n) €C(0, 1).

i
Mereover let g{t) == — (
e 2

:z !
The operator Pla(f)] = (1 — t)x(t) + g(t) meets the following conditions:

P :1(C) — 1(C)
I P] = PLWT I < 120 =20 |

But, there is no function x(z) from 1(C) to bhe as a solution for equation
Plx()] = =(¢); because this equation has a unique selution:

ot

x{t) = 1= -+ arctg —
z |2 t

and this funection does not beleng to C(0, 1), since x4(f) cannot be defined so
that it is continuous in the point ¢ = 0. (See other example and examination
I I
in [4])
The preceding results were always related to the whole spaces or a com-
pact sets of a space. Let us now examine a local property.

3.4. Definition: Let f be a mapping from (X, X) into (X7, 27}, moreover
let k& be a one-to-one mapping hetween 2 and 2. fis (weak) contractible in
pping J
x, from X, if there is (& mapping Lxu(o‘) from & into R*) a constant Ly, and a

real function £ from X such that in some neighbourhood U of x:

(3.4.1.) ko[f(x0): ()] = Lxy(0)a(xg; ¥) + h(y)olxe: ¥)

is satisfied and A(y) — 0 whenever o(x,; ) — 0 for every o from 2.

Evidently from 2.5.1. the following theorem is true:

3.5. Theorem: All of the (weak) contractive mappings are (weakly)
contractible.

(3.5.1.) Note: Every differentiable function is contractible; all of the
functions from the function class L(1) (1 — power Lipschitz functions’class)
are also contractible.

3.6. Theorem: If fis a (weak) contractible mapping in x, then fis there
continuous.
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The proof is evident.

An important question of numerical analysis is the following:

There is a solution %, of the equation f(x) = x. Which beginning point
does the iteration converge to the solution x; from?

This question will be generalized for the completely regular spaces in
the following theorem.

3.7. Theorem (Local-contraction): Let (X, LX) be a completely regular
space, moreover let f be a mapping from X into itself which satisfies the
following conditions:

(3.7.1.) There is a fixed point to f; f(x,) = =,

(3.7.2.) f is weak contractiblein xyand k; 2 — X'is the identical mapping.

3.7.3.) Ly(o) : £ — [0,q] © R*, where 0 g 1.

Then there is a positive number ¢ such that f(y) — x, if n — oo (where
fMis the n-th iterated of f) for every y which holds o(x,: ¥) <7 e for every
G

(3.7.4.) Note: Here the minimal system X can be assumed. For the
a 7

sses of spaces the theorem 3.7. can give a real neighbourhood of

h the iteration surely converges to the

x, in whic
nT :
Hetrical spaces,
Metrizable space (countable pseudometries).
A space (X, ) is called locally metrizable in its point xj, if there is a

neighbourhood ¥, which is given the cust tomary subspace topology and then

it is a metrizable topological space, Then there exists a ceuntable subsystem

s
Ly of X such that it gn/e~ an equivalent topology to the primary topology.
v 2l . % . I R S SR S S
Let this system X/, = {¢;};,2, then the form o(x.y) = 22 ox(x;y) is a
Fe=1

ric for the system {o;},7(; moreover fis contractible again with respect to

B
=
[
ot

the metric p. For this class of spaces there is a real neighbourhood for the
iterations beginning points.
Proof of theorem 3.7.: Lee‘; us choose r according to the condition Ly (o) =
tiv

= g < r <_1. Hence lim {(x — x)h(y)} = 0 thus there exists some positive
q <L 0 P

-

number ¢ such that A(y) < (1 — r)olx,y 1 ¥) if e > o(x; 5 ¥). (¢ can be supposed
less than one.) We show that ¢ is the demanded number to the theorem 3.7.
Indeed, because of contractibility:

o203 f(3)] = o[f(wg) s f(1)] = Lxf0)o{x 5 5) + h(y)ol(xe 55) <

<Z L(0)a(%g 5 ) + (1 — 1)o(x4 5 ¥) = (% 3 ¥)[Lxo(0) + (I — r)a(x, 5 y)] =
= 0(xg : ¥)[Lxy(0) + 1 — 1] = olxp 1 5)(g + 1 — 1) = 0o(x0 5 ¥)P;

where P = ¢ 4+ 1 — r and evidently 0 < P < 1.

* See a special case of the theorem 3.7 in [35].
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Let us consider o[f%(y) ; f(x)]; hence

(*) o(f(=o) s f()] = o[f(y) s xo] < Po(x, ;)
thus using the form 3.4.1. i.e.
7[f3(y) s flxo)] < Lxy(0)o[f(x0) 5 f(3)] + ALf(¥)]o[f(xe) s f()] =
= Le(0)[f(xe) s f(1)] + (1 — 1o [flxo) s f(0)] <o[fly) s flxo)lg + 1 — 1) =

= Po[f(y) ; f(x,)] < P?o(x, ;)

— because of the form (*) —

Similarly, with complete induction the following form for arbitrary integer
n arises:

a[f"(y) s flxg)] < Pla(xg 5 5)
Because of 0 <C P <C 1, thus P" — 0 (n — <o), it follows:

o[§"(5): %] — 0:
hence fis a continuous mapping and the fact f(y) — x4(n — oo) is true. Q.E.D.

3.8. Application and illustration for some integral equations

Let 2 be a finite y-measure set of a locally compact Haussdorf space.
(See [8].) Let us consider the class of integrable real functions over 2, moreover
let the bounded real function K(x, t), which is defined over 2 * 2, be a u-
multiplicant, if there exists YK(x £)g(t)dy; for every x €2 and the y-integrable

function g ().

Let us denote the space of these functions f(z) by Lo, . The norm in this
space is the following:

ofsg=If—gl  =[lf—gd
(3.8.1.) Theorem: The operator

[P0) + [ K () i e
T°(f, Q) =

0:260 -
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has a fixed point (that is the equation T% = f has a unique solution) in suit-
able subset Q7 of Q.

Proof: Because of Fubini’s theorem T°f belongs to Ly, , again, moreover
Lo, . is a complete space, thus we have to show that T?is a contractive map-
ping with L less than one.

Let us consider o(T%f ; T0).

ST Tog) < [ ([(K @ 0)| |f0) — ) | dt) dw <
< [ (sup (K (50) | [1/) — &(0) | d0) d < (@) Ko(f35)

If w(2)Ko(f; g) << Lo(f +g), where L <1, then the1e is a fixed point to
T°f. That holds whenever u(Q)K < 1; that is u(Q°) < /-—— . Q.E.D.

Let us define the classof the functions B,. The functlon f(t) belongs to
B, if and ounly if

(0K dyde < g

is satisfied.
(3.8.2.) Theorem: Let q be less than one. Then for every p(x) from B, and

0 <z < 1 there exists an integer n, such that the operator
Trf = p(x) (1 — =) + «[| f() K(x, t) di]™

has a unique fixed point in the set B,(that is the operator equation Tf = f
has a unique solution), moreover if T"°f = f has a solution, then for some
n >> n, the operator equation T"f = f has also a unique solution in the set B,.
(3.8.2.1.) Lemma: T"(B,) < B, for suitable n.
Proof: Let us consider
& S (T"fYK (x, 1) dxdt:
S (T K (x,0) [dede < [ [[ (1 — )
o0 Q
px) K(x, ndx]dt + ﬁ i \ , [\ FJO K (x,0) di]" K(x,0) dx [ de < (1 — 2)
2

Q2 n

g+ xqu (Q)q" sup [K(x, ) =(1 —=)q+agr

| K
(x, g™ I”
Because ¢ is less than one, there is a suitable n, denoted by n, to satisfy:
r=u(Q)g" " sup | K(x, 1) | = 1
0 (1 —a)g+ a2g=g(l —x-+x)=q<].

2 Periodica Polytechniva EL XITI/.
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That is T"f€B, for every n > n,.
(3.8.2.2)) Lemma: o(T"f; T"g) << Lo(f; g). where Lis less than one for

a suitable n.

Proof: c(T"f;T"g) = S (T (f(r)) — T (g(r)) de =

“\ ;9:[( f(x) K(x,t)dx)* — ( [ (x) K(x, 1) dx)]i dt =

(Let us choose n = 2k -+ 1 first)

l

= [I( Yf(x) K(x, 1) dx) — j‘g(x)lx x, 1) dx) [( \dex'):’f: —
)

([ 2 (e de) = ([ dop ] =

A

Q
< 2}2( (K (% 0] i f(x) — glx) dx) [( (1 fK dx)¥ 4+ ...+

+({lgKldx)*|dt < sup K(x,1) o(f:g)nu(Q) M* — swhere
BT =ltal }

(x, yen=n

M = max g-’fIx dx; X |gK | dx|
ig

Hence f, g €B,, thus M = q < 1. Then:
O(T"f 3 T g) <= = sup (K (s 1) nae(@) ¢ o f: )

because of ¢ <C 1; thus there exists an integer n, such that o(T"f: T'g) =
= Lo(f,g) — where L <1 —.

Let us choose n = 2k then:
a.’k e b:l«: — (a . b) (‘a"zk—l. _ aalc-—z b __ . I 1)

a result similar to ¢(77f: T"g). Let this index be denoted by n,. If n, =
max {n, ;n,:ny}, then

T(B,) < B,

and
T f;Tg) <La(f;g)

where L < 1 for all f, g €B,; and n > n, Q.E.D.

(3.8.2.3.) Lemma: B, is a complete space,

Proof: B,€Lg,,, because of the completeness of Ly, , it is enough to
show that the set Bqg is a closed set of Ly, , . This fact ismade evident by the
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Fatou theorem [8]

lim {f,.(6) K(x, 1) dt = { (lim f, (1)) K(x, ) dt
n—cc O 2
if
limf, = f, then from |f,(f) K(x,t)dt <gq

the inequality j‘f(t) K(x, tydt < g follovs. Q. E. D.
2

Proof of theorem (3.8.2.): From (3.8.2.3.) and (3.8.2.2.) follows the
possibility to apply the theorem 3.1. The solution is unambiguous except a
zero measure set. Q.E.D.

Example to 3.8.2.

1
Let 2 be [0,1], ¢ = o = 1/2, k(x, 1) = > (x* -+ 12), p(x) = x/2 then the
equation
!
PN N s eyl — i
O3+ 5| Jroe el =
: i

has a unique solution for every positive integer n.
Indeed, from u(Q) =1, sup (2 4+ 3)/2 =1
(t, x) € [2-2]

and pXQ) sup —i~ (x2+?)prLl

“

I
opu(2) sup — (22 + 19)¢" n <1
2
it follows for every n > 0 (see the proof of theorem) 3.8.2. that equation (*)
has a unique solution, to be found by the method of iteration.
Let fi(x) = 1 €B .be the beginning point of the iteration, then

J"(x)___‘_ﬁ_l_’_xz__l.i___xi
: 62 12 6 4 4
fi(x):_l__g._?..s_f.z_ﬁf_ﬁ_t-ﬁfi_;i
’ 63 36 24 3 6 8 8
1 133x . 5x2  29x3  at 55 xf x7 x8

o
i



274 A. BLEYER

Ar, interesting application of the theorem 3.7 (or 3.1)

Let P,(z) be a polynomial function of the complex variable =.

,_(~)—a0-“~'-a1~““—;—...~—a, z-a, (e, =0)
if
fo ponm + ! (n—1)sm2 4., = i P
Ap_1 Ap Apy
and
Pz e 2. s €0

is satisfied in certain closed subset 2 of complex plane then there is only oneroot of P(s) in Q2
For example: Every P, (z) = ayz,; + ... + n°z + a, = 0 with 1 al<lizn—1 ha~

Puls) —ay_=

711

only one root in the closed unit circle S(0, 1). Let = (,,(z), then the equation

Q,(z) = 5 has the same roots as the equation P, (z) == 0. Moreover the condition
[Q4() — Qulz) | <gqla—= | and g<1

is satisfied for every zy; = 5 € S0, 1), if | Qx(= ) | < 1 for every z € S(0. 1).Thus from the com-
pactness of the closed unit circle (and Q,‘( z) € 5(0, 1)) it follows by the theorem 3.1 (or 3.7).

Summary

Different generalizations of the isometrical mappings are dealt with. In the first and
second part some generalizations are given as the generalizations of the Lipschitz-condition
and their properties examined, in the third part their applications are presented together
with illustrations, namely the fixed point theorems, local contractible mappings, unique
existence of solution of the distinct type of integral equations. In proving the fixed point
theorem the condition of this theorem caunot be weakened. The local contractibility shows
how a neighbourhood of the solution of the equations Tx = x can be found assuming it has a
unique solution and local contractibility, from where beginning, the iteration always converges
to the solution. Finally a numerical example of the method of iteration (an integral equation)
and an interesting condition about the roots of algebraic equation in the complex plane are
presented.
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