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Introduction 

Iu this paper the different generalizations of the isometrieal mappings 
(metric-true in classical meaning) are dealt ·with. The first part gives the 
simplest generalizations; the second part j,,; a stronger generalization as a 
generalization of the Lipschitz-conditioll <inn examination of their properties; 
the third part deals with their applications and illustrations; namely ·with 
the fixcd point theOl'ems for the contractive mappiIl gs (on completely regular 
topological spaces), a local property (more properly local contractihility) and 
some illustrations of Banach's fixed point theOr('111 as the unique existence 
of solution of the distinct type of integral equations. In the cnd a numerical 
example of the iteration method (an integral equation) and an interesting 
condition ahout the :roots of algebraic equations in the complex plane will be 
presented. 

§ 1. 

Let us consider the sets X and X' ·with pseudostructUl'es 1: and I:' 
([3], [6], [7]). If I: is a pseudostructure then the following axioms must be true: 

A.I. a is a mapping from X * X into R + where R + is the set of the 
non-negative numbers. 

A.2. a is a symmctrical mapping, i.e. 

a(x; y) = a(y; x) 

A.3. a(x; x) 0 for every x from X. 
A.4. for every x, y, z from X 

a(x; y) ~ a(x; z) + a(z; y) 

In the follo1V-ings, suppose for every (X" 1:) and (X', E') space considered 
that there is a one-to-one mapping between E and E' (denoted by k: I: --+ I:')_ 

'" Presented in abbreviated form in Rostock, February 19, 1968. See [9]. 

1* 
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1.1. Definiton: Let f be a mapping from the space (X, E) into the space 
(X', 2:"), then the mapping f is called k-isometrical mapping* if there is a k 
one-to-one mapping bet"ween 17 and 17' and for all x, y EX; a E 17 such that 

(1.1.1.) a(x; y) = ka [f(x);f(y)] is satisfied. 
1.2. Theorem [1], [2], [7]: Let f be an isometrical mapping of the space 

(X, E) into (X', 17'), then 
(1.2.1.) f is continuous (according to 7:.:., -+ 7:~') 

(1.2.2.) f is proximity continuous (according to (\' -r b~.) 
(1.2.3.) f is uniform continuous (according to U.!; -+ U~.) 

(1.2.4.) If f(X) = X' holds, then f is an open and closed mapping. 
(1.2.5.) If f is a one-to-one mapping then space X and X' are homeo-

morph (in the topological sense), isomorph (in the uniform sense) 
and equimorph (in the proximity sense). 

Proof: (1.2.1.) and (1.2.2.) follow from (1.2.3.) thus it is enough to show 
(1.2.3.): it follows from the fact that 

(1.2.6.) Ue; 0', ' . 'O'r C (f * f) -1 [Ue; I((J', ' •• "(1' ] is true. 
(1.2.4.) is evident from 

(1.2.7.) Ue; (1', ... (Tr (x) = f- l [Ue; M, ... ""r <f(x) >] 
(1.2.5.) follows from (1.2.1.); (1.2.2.); (1.2.3.) and since f- l is an iso

metrical mapping. Q. E. D. 
Separable questions (See [1], [7]) 
1.3. Lemma. Let (X, E) be a T2-space, f(X) = X' and fan isometrical 

mapping, then (X: 17') is also a T2-space. 
Proof: Let x' and y' be two different points of X', because of f(X) = X' 

there are two points x, y of X such that x E f-l(X') and yE f-l(y'). 1£<**) 
a'[f(x);f(y)] = a(x': y') = 0 could be satisfied, then a(x; y) = 0 should fol
low. This fact cannot be satisfied for all a' E 2:", because X is a T 2-space, and 
thus x = y follows from {a(x; y) = 0: for every a E E}. Consequently there is 
a' from 17' such that a/(x'; y') > 0; i.e. X' is a Tz-space. Q. E. D. 

1.4. Theorem: Let the conditions of lemma (1.3.) be met then f is a one
to-one mapping too. 

Proof: Because of lemma (1.3.) X' is a T2-space. Let x ;=' y; then there 
exists a a from 17 such that a(x, y) > 0 and thus ka[f(x); fey)] = a(x; y) > O. 
In consequence f(x) ;=' fey). If x' ;=' y'; then there is a a' E 17' such that 
a(x' ; y') > O. Thus 

a'(x';y') = k- la'[f-l(x');f-l(y')] = a(x;y) > 0 
where f(x) = x',f(y) = y', therefore x ;=' y. Q. E. D. 

Quotient space. (See [1]) 

" k-isometrical mapping will be called below isometrical mapping. 
** k-1a' = a. 
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L~~t (X, l:') be a pseudostructure space. Let us define equivalent relation 
as: "x "- y if and only if o(x; y) = 0 for every 0 of l:''' (i.e. x and y are in 

separable points of X). 
Evidently it is an equivalent relation following from axioms A.I., A.2., 

A.3., A.4. 
Let us denote the set of the equivalent classes x by _x . 2' eontains each 

pseudo metric (j 'where (i ;5') = o(x; y) whenever x Ex and y Ej'. \Ve have to 
811O"w that a( . ) is a pseudometric. 

Let us choose Xl; Xo Ei, and )"l;)"a 6' using axiom AA. and definition of 
,i; leading to the following inequality: 

0(x1; )"1) :§ 0(x1; Xa) o(Xo; )"1) :§ 0(x1; Xo) O(Xo; )"0) -+- o(YJ; Yo) 
= o(xo; .1'0) 

Similarly 'we obtain o(xo; .1'0) :§ 0(X1; )'1)' Thus it fono'ws o(xo: Yo) 0(X1; Yl) = 

a(;'i:;y). 
The described method gives separate classification of the space (X, ~') into 

thE' space (X, X). The space (X, 1\) is the same as quotient space (X, l:')/~-,. 
, 1.5. Definition: Let us call the spaees (X. l:') and (X: 2) isometrical 
spaces, if there is a one-to-one isometrical mapping f bet'ween them. 

Let f; (X, 1.') -+ (X', l:"), then the mapping f can be defined as: 
"fix) = l(x) 'where x is an arbitrary representation of ;\:. Let us remark that 

this defiLitioll is usually in correct, but it can he easily proved on the isonlPtrical 
mappings that I is an unamhiguously defined mapping. 

1.6. Lemma: Let f hc an isometrical mappill g from (X, l:') into (X', 1."), 
then f is an isometrical mapping of (X,.s:) into (~?', T'). 

Proof; It is trivial from the definition of ~-. 

1.7. Theorem: If f is an isometrical mappin g of the ::ipaee (X, 2:') on to the 
space (X', 1.:") then spaces (X', 1.:")/~ and (X,2:)//'../ are isometrical spaces. 

Proof; The quotient spaces are T~-spaces thus it follows from lemma 
(1.6.) and theorem (lA.) that I is a onr-to-one isometrical mapping. Q. E. D. 

§ 2. 

In this part sonl<' further generalizations of the isometrical mappmgs 
will be given. 

2.1. Definition: Let (X, l:') and (X:, l:") be pseuclostructure spaces. Let 
us call the mapping f from the space (X, l:') into (X', 1.:") weak isometrical 
mappin g, jf there is a substructure 1.:'; of :E' such that f is an isomctrical map
ping from (X, l:') into (X:, :E;). 

2.2. Note: If T~'i > T'i:', then f is a real weak isometrical mapping; if 
T~i = T' J:', then only "profusion" of the structure };' can be spoken of. This 
IS the case of extending a pseudostructure with some pseudometries which did 
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not make a change in the primary topology nevertheless there is not a onc-to
one mapping between l:; and l:'. 

2.2.1. Example: Let (E, q) and (E', q') he metrical spaces,fan isometrical 
(metric-true) mapping from E into E', in thc classical sense. Extend the metric 
1/ to the pscudostl'ucturc: 

\" {' '(' ') .:.., = qi: qi x ; y ') _i '(' '). I ') } ~ q X; Y ; l· = ,~, ... 
thcnfis a 'weak isometrical mapping, not an isometrical mapping, nevertheless 
f is not a real weak isometrical mapping. 

2.2.2. Example: Let (X, l:) he a no metrizahle space, and let l:o be a 
countahle subsystem of l:. Then there exists no one-to-one mapping hetween 
l: and I:o' hecause L > No. :Moreover T.;:: is more refined than T.;::o' hecausf' 
T.;::o is a metrizable topology. 

Let us consider the identical mapping of the space (X, I:o) onto the 
space (X, I:). This mapping is a real weak isometrical one. 

In the following an extensive generalization of the isometrical mappings 
will he given, more properly, the Lip5chitz condition will be generalized for 
the class of completely regular topological spaces. 

2.3. Definition: Let f h~ a mapping from the space (X, I:) into the spacf' 
(X" I:'), it is called L-isometrical mapping, if there are some positive real 
numbers a and b such that 

(2.3.1.) aa(x; y) ;§ ka[f(x);f(y)] ;§ ba(x; y) 
for all a El: (ka EI:') and x, y EX. 

2.4. Definition: The mapping f as defined in 2.3. is a weak L-isometrical 
mapping, if a and b are positive real functions of a; i.e.: 

(2.4.1.) a(a)a(x; y) ;§ ka[f(x);f(y)] ;§ b(a)a(x; y) 
is met. 

2.5. Definition: The mappingf, as defined in 2.3, is called weak contractive 
mapping, whenever 

(2.5.1.) ka[f(x);f(y)] ;§ b(a)a(x; y) 
is satisfied. 

The mapping f is called weak expansive mapping, whenever 
(2.5.2.) a(a)a(x; y) ;§ ka[f(x);f(y)] 

is true for every a El: and x, y EX. 
Separation (See [I], [7]) 
2.6. Lemma: Hfis a weak expansive mapping from a T2-pseudostructure 

space (X, I:) into a pseudostructure space (X', E') then f(X) c X' provided 
the customary suhspace topology is a T2-space. 

Proof: Let Xl' X2 he two different points of X. SI) there is a a El: that 
a(x1 ; x2) > O. Thus for a' = ka El:' 

ka[f(x1); f(~)] = a'(y~; y~) > b(a)a(:\].; x2) > 0 
is satisfied. 

In consequence there are disjoint neighbourhoods of f(xl } and f(:c.J) 
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f(Xl) r= f(x2). That is for each y~, y~ where y~ == y; and y~; y~ Ef(x), there exist 
Xl; X z EX, such that Xl r= X z· From this fact the statement of 2.6. follows, 
hecause y; = f(xl ) r' f(xz) = y~. Q. E. D. 

2.7. Lemma: If f is a weak contractive one-to-one mapping of X onto 
X' and X' is Tz-space, thcn X is also a T2-space. 

Proof: Choose different X and y from X, then f(x) r' fey), because of the 
condition of lemma. Consequently therc exists a a' EE' such that the following 
inequality is satisfied: 

a' [f(x); fey)] > o. 

Thus hence a = k-la' and bccause of the properties of contractive map-
pmg: 

(*) 0< a'[f(x);f(y)] ;§ a(a)a(x; y) 

It follo,,-s from a(a) > 0, a(x; y) > 0 and (*) that x and y have some 
disjoint neighhourhoods. Q. E. D. 

2.8. Remarh: The separational results mentioned in the first part are 
easy to deduce from this part's result. Evidently, every isometrieal mapping 
has the properties from 2.1. to 2.5. 

Continllit~y (See [1], [2], [3], [6], [7]) 
~.9. Theorem: Let (X; E) and (X'; E') be given pseudostructure spaces. 

moreover a mapping f from X into X'. 
a) If f is a weak expansive mapping and f(X) = X' then f is an open 

mapping. 
b) If f is a 'weak contractive mapping then f is a continuous mapping. 
Proof: 
a) G is an opcn set from X, so for all X from G there exist pseudometrics 

vI' .. a r of E and a positive numher c such that the following relation is 
satisfied: 

UCTt •.• UC:E(X) C G 

Let us denote ka; by a;. For each point Xo from Uat ••• adS (X) 

a;(xo ; X) < c 
and 

are satisfied. Thus: 
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Let us choose f(x o) to fulfil 

(i 1, ... T). 
Furthermore 

IS true. 

If c' = min {c' ([(Ui)} is chosen, then from the preceding 
1. , . r 

is satisfied for each f(x o) E U~; ... '7; ;" [f(x) ] and thus 

c> 
a(Ui) 

where x~ f(x o). In consequence: 

j . e.: if G is an open set then f( G) is also an open one. 
h) Iffis a weak contractiv-e mapping and G' is an open :,et which helongs 

to X' then for every x from G = f-l(G') there are some pseudometrics ul ... u,. 

from E and a positive numher c' such that U~' ... er"/(x') C G where :-r.' . " 
= f(x). 

Moreover for each x~ E U' 
.(. I I 

Gi Xo : x) < c 

is satisfied, and introducing x~ = f(x o), because of the contractive property 
of f it is: 

U;(X~; x') < a(ui) Ui(XO; x) 

where Ui = k-1u;. Thus, if a(Ui)Ui(Xo; x) < c', i.e. the follo"\\-ing relation j" rea
lized: 

n' 
-"- > Vi(XO; x) IS satisfied, then with c 
a(vi) . { 

c' 
min --: 1 

a( Vi) 

.- I 7-, r
J 

U"l'" "r; < (x) cf-l [U~; ... er;; <'(X' )] C G 

It means that the set G is an open set. Q. E. D. 
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2.10. Let f be a 'weak L isometrical mapping from X into X', i.e. the 
inequality (2.3.1.) is satisfied: 

a(a)a(x; y) :§ ka[f(x);f(y)] :§ b(a)a(x; y) 

Evidently, if a(a) holds (2.3.1.), then every positiye real function a' (a) 
which satisfies the inequality 0 < a'(a) :§ a(a) also satisfies (2.3.1.). Since 
a(a) < b(a), that follows from (2.3.1.) for all a E S, there always exist 
following functions: 

(2.10.1.) a(a) = sup a'(a) 
and 

(2.10.2.) ~(a) = inf b'(a) 
where b'(a) can be chosen similarly. 

2.11. Theorem: A 'weak L-isometrical mapping is an L-isometrical mapping 
if and only if (for fixed]; and ];') 

lim inf {a(a): a E~"} = A > 0 

and 

lim sup {(a):~: aEL'} = B < T ox: 

dre true for the functions a(a), ~(a) defined in (2.10.1.), (2.10.2.). 
(2.11.1.) Remark: If either A or B exists, then it follows just the expansive 

or contractive property of f. 
Proof: Let f be a weak L-isomctrical mapping and let the conditions of 

the theorem be satisfied then the inequality 

Aa(x; y) :§ a(a)a(x; y) :§ a'[f(x),f(y)] :§ b(a)a(x; :,) :§ Ba(x; y) 

i::; evident and thus (2.3.1.) is going to be true; that is f is a weak L-isometrical 

mapping. 
Conversely: let f be an L-isometrical mapping. If the conditions of 

theorem 2.11. are not satisfied, then 

lim illf a(a) = A = 0 or lim sup ~(a) = B = 

must be true. 
For example let lim inf a(a) = O. Because of (2.3.1.), there are positive 

numbers A o' Bo such that: Ao a(x; y) < a'(x'; y') Boa(x; y), thus there 
exists a 0 from I: that a(ao) < Ao, because of lim illf a(a) O. This contradicts 
to the definition of a( a 0)' 
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The existence of Iim sup ~(a) can be proved similarly. Q. E. D. 
The folIo'wing theorem shows that the term "isometrical" is correctly applied 

for the weak L-isometrical mapping. 
~.l~. Theorem: Let f he a one-to-one weak L-isometrical mapping from 

(X, 17) into (X', L'). Then there is a pseudostructure 17{ which is equivalent to 
};' on f(X), such that f is an isometrical mapping from (X, 17) onto {f(X) , 
£;'j. 

Proof: Because of (2.3.1.). 

a(a)a(x; y) :::§ a'(x'; y') :::§ b(a)a(x; y) 

holds for all x,y EX (a E17).Tbe structure 17£onf(X) c X' can bf' constructed 
in the following ·way: 

a{ E.E~ if and only if aUx'; y') = a(x; y) for each x', y' Ef(X), where 
x' = f(x) and y' = f(y). This definitiun is evidently correct sincc fis a onc-to
one mapping from X onto f(X). 

Moreover it is evident that a{ is always a pseudometric and there is a 
one-to-one mapping bet,veen 17 Land 17. 

Let U' be from U~'I' ,then: 
- }(Xi 

1110reover 

I~ true. 

U' = rU~i'" '1;; e] n [j(X) * f(X)] , 

r 

n U~;; c 
i=1 

It is sufficient to show that there exist a~'l'; a~2 from 17£ and POSItIve 
i::1, £2 for some a' of 17 and a positive number £ such that the relation 

is satisfied. Since (2.3.1.) holds, we obtain 

£ I (' ') -->aL x ;Y 
b(a) 

I 
- a' (x' ;y') 
b(a) 

whenever 

e () . 1 '( I ') -->a x;y >--a x;y 
b(a) b(a) 
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is satisfied. Thus the relation UI(J" ; ~ ~ UI;I;' follows from (*). Similarly if 
L b(a) 

" I 
_c_ > __ a l (x' ;y') > aL (x ;)') 
a(a) a(a) 

is true we get from (:2.3.1.) that 

c 1 /(' , > a :r;y) 
a(a) a(a) 

a~(x' ;y') 

c: 
T hen from (* *) U' , -- ~ U;'.,o follows and from the relation 

(71,; a(a) 

1:- given. Q. E. D. 

11.c:L < c 11.c:' < c lhi: 

11.c:i <~> 111:' 

2.13. Remark: From the proof it reads off easily that if f is not an L-iso
metrical mapping, but it is only an expansive or contractive mapping, then 
the resulted uniform structure is coarser or finer than the primary onc. 

§ 3. 

Applications 

In the theory of differential equations the differential operators with 
less than one norm are very important. The Thyhonov-Cacapulli contractive 
principle or fixed point theorem of Banach are valid to them. Now, the Banach 
fixed point theorem can be generalized to the class of completely regular 
topological spaces. It is well-know'n fact that there is a pseudo structure for 
every completely regular space such that the topology defined by it is equiv
alent to the primary topology. Pseudo structures have to satisfy the axioms 
A..I.; A.2.; A.3.; AA. The topology defined by the pseudo structure is the 
following: for every x of X the sets'system 

U<7t ••• a,;" (x) = {y: ai(x;y) < c:, I i s: r} 

~vhcre c: > 0 and r's are arbitrary positive integers - there is a neighbour
hood system of the point x. 

Let us note that every topological vector space has a pseudo structure 
which defines an equivalent topology with the primary one. 

3.1. Theorem (Banach fixed point theorem): 
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Let (X, 1.') be a sequentially complete Tz-space concerning the uniform 
structure 11.:;-: 1110reOyer let f be a weak contractive mapping from X into iti'elf 

and b(a) < 1 for each a from .E. Suppose that ka = a. then there exists a u
nique fixed point x* from X to mapping f; i.e. f(x*) = x*. 

Proof: Let us show first that not more than one fixed point exists. If the 
existence of two different fixed points (Xl and x2) is suppos('d thp" ther{' if' at 
least one a o fro111 .r; for that (3.1.1.) 

is true, because X is a T 2-space. Hence f is a contractiYf' mapping :'0 tilt" 

following inequality has to be satisfied: 

ana from this ao[f(x1);f(xz)] = aO(x1 ; x2) = 0 follo·ws. Thus (3.1.1.) is Imp()~

sible, sinc{' a(x1; x2) 0 for all a E.E; i.e. Xl = X 2 • 

Let us take a fixed point. Let X be an arbitrary point from X. and Xo 

Xl; X 2 = f(x1 ) •.• x" = f(x l :-1) ... 
Then 

(3.1.3.) a(xl1+1 ; x l1 ) = a[J(xIJ :f(X"-l)] .::: b( a) a[f(x,,-l) ;f(xn-~) I 
/ b[(a) 1;-1 a[ (Xl); Xo] 

is satisfied for each integer 11, and a from 1.'. 
Let us consider a[.f(x,,):f(xm)] (let 11 > m), and usmg aXI0111 AA. and 

the relation (3.1.3.): 

a(x"+l ;xm +1) = a[fxl1 ) :f(xlll)] .. " a[J(xl1 ) :f(xn - 1)] -

a[f(x',-l) :f(xlIl)] a[J(x,,) ;f(xn- 1)] + ... 

... + a[f(x",+l) ;fxmi] a[J(x1); (xu)] . {[b(a)]n-l [b(a)]"'} = 

where 

= a[J(x1 ) ; xo] [b(a)]m {[b(a)]n-m-1 .,. -:- I} 

= a[f(x1) ; xn] [b(a)]'" 1 - < a[fh) : .170 ] ~(aW' = 
1 - [b(a)]n-m 1 b(a) 

(3.1.4.) 

= C(a) [b(a)]m 

C(a) 
a[J(x1) ; xo] 

1 - b(a) 
o 
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for all a EL". C(a) = 0 for all a EL' if and only if 

then f(x o) = Xo. 

In order to prove { Xn } is a Cauchy-sequence choose an arbitrary neigh
bourhood U01 ••• v,;< of U~ and an integer mo such that for every m > mo 

is satisfied (i = 1, ... r). 
This is always correct because of lim [b(a)r = o. 
Consequently ai(xn; xm) for n, m > mo (i = 1, ... r) and thus 

(xn ; Xm) E Uo- j • • • 0-,;<" 

It could be sho·wn that { Xn } is a Cauchy-sequence, so there has to exist 
a limit point x* for this sequence. Because of continuity of f, (see 2.9. b.) 
f(xn) ->- f(x*), moreover Xn = f(x lI - 1) and thus XII ->- f(x*). 

X is a T 2-space, hence {xn } might have no more than one limit point, 
in consequence f(x*) = x* holds. Q. E. D. 

3.2. Remark: The condition b(a) < 1 of the theorem 3.1. cannot be 
weakened. There may be a mapping f with the property a(x1 ; x2) > 
a[f(4); f(x2)], but there exists no fixed point. 

For example; Let f be a function from [0, =) into itself, of the form 
f(x) = X - g(x) + C where function g(x) satisfies the following conditions: 

(3.2.1.) 0 < g(x) < C for all x from (0, =) 
(3.2.2.) g(x) is differentiable in (0, =) and 

o < g'(x) < 1 for all X from (0,=), 
(3.2.3.) lim g(x) = C . 

x-;.= 

(The condition 3.2.2. might be replaced by the weaker condition 3.2.4.) 
(3.2.4.) g(x) EL1(1) 'where L1(1) is the class of functions which satisfy the 

1 power Lipschitz condition and their Lipschitz constant is 
less than one.) 

So I f(x2) - f(x1) I < i x2 - Xl I for every X 2 r' Xl and the equation 
f(x) = X has no solution because of the condition 3.2.1. 

n 
There exists such a function, for example f(x) = x - arctg X + 2; 

X x2 x+l 
or another onef(x) = x-- + 1 = --'-----

x+l x+l 
3.3. A question: Let f be a contractive mapping from a completely 

hounded set* of U complete space (X, L') into itself such that f 
a[f(x); fey)] ;§ a(x; y) holds. 2 Does f have a fixed point·! 

" i.e. this set is compact 
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(3.3.1.) Negative exameple: Let C(O, 1) be the class of continuous func
tions in interval [0, 1] ,dth the following norm: 

a(j, g) = [If - g i = sup If(t) - get) ! 

tE[O,l] 

Let us denote by 1(C) the set of the functions from C(O, 1) such that ° :::§ get) :::§ 1. 

t (::7 1 1 Moreover lct g(t) - --;- arctg - jf t ;::: 0 andg(O) = 0, theng(t) EC(O, 1). 
::7 _ t I 

The operator P[x(t)J (1 - t)x(t) g(t) meets tlll' following conditions: 

P: l(C) -- I(C) 

: P[x(t)] - P[y(t)] I [ < I: x(t) - yet) [. 

But, there is no fUIlction ;y(t) from I(C) to he as a solution for 
P[x(t)] = x(t); because this equation has a unique solution: 

x,,(t) :t' .l arctg . 

eauatioll 
" 

and this function does not belong to C(O, 1), since xo(t) cannot he defined so 
that it is continuous in the point t = O. (See other example and t'xamination 

in [4].) 
The precedin g results were always related to the whole spaces or a com

pact sets of a space. Let us now examine a loeEd property. 
3.4. Definition: Let f he a mapping from (X, I) into (X', El), moreoyer 

let k he a one-to-one mapping between 17 and I'. f is (weak) contractible in 
Xo from X, if there is (a mapping Lxo(a) from ::..' iDto R*) a constant Lxo and a 
real function h from X such that in some neighbourhood U of Xo: 

is satisfied and hey) -+ 0 whenever a(xo; y) -+ 0 for every a from .E. 
Evidently from 2.5.1. the following theorem is true: 
3.5. Theorem: All of the (weak) contractive mappings are (weakly) 

contractible. 
(3.5.1.) Note: Every differentiable function is contractible; all of the 

functions from the function class L(I) (1 - power Lipschitz functions'class) 
are also contractible. 

3.6. Theorem: Hfis a (weak) contractible mapping in Xo thenfis there 
continuous. 
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The proof is evident. 
An important question of numerical analysis is the folIo'wing: 
There is a solution Xo of the equation f(x) = x. Which beginning point 

does the iteration COilyerge to the solution Xo from? 
This question will be generalized for the completely regular spaces in 

the following theorem. 
3.7. Theorem (Local-contraction): Let (X, I) be a completely regular 

space, moreover let f he a mapping from X into itself which satisfies the 
following conditions: 

(3.7.1.) There is a fixed point to f; f(x o) = Xo 
(3.7.2.) f is weak contractible in Xo and le; I -;0- 1.,' is the identical mapping. 
(3.7.3.) Lxo(a) : I ->- [0, q] C R+, where 0 < q < 1. 
Then there is a positive number e such that f"(y) -;0- x, if n -,. GC (\\-here 

pi is the n-th iterated of f) for eyery y which holds a(xo; y) < e for eyery 

(j Er'.* 
(3.7.4.) Note: Here the minimal system I can be assumcd. For the 

following class cs of spaces the theorem 3.7. C::lIl give a real neighbourhooJ of 
Xo in which the iteration surely eOllyerges to the fixed point xo: 

~\Ietrical spaces, 
lHetrizable space (countable pseudometries). 
A space (X, I) is called locally metrizable in its point x O' if thel'e is a 

neighLourhood 'V, which is giyen the customary subspace topology and then 
it is a metrizable topologieal space. Then there exists a countable subsystem 

v of I such that it give:- an equivalent topology to the primary topology. 
Let this system II v L {ui} i:! then the form ~'(x, )-) = I 2 -"a,:(x; y) is

L 

- a 
k=l 

metric for the system {ui L:!; moreover f is contractible again with respect to 
the metric g. For this class of spaces there is a real neighbourhooJ for the 
iterations beginning points. 

Proof of theorem 3.7.: Let us choo5e r according to the condition Lxo(a) ::§ 

~ q < r < 1. Hence lim {(x --;0- xn)h(y)} = 0 thus there exists some positiy(" 
number e such that h(y) < (I - r)u(xo : y) if c > u(xo ;)-). (e can be supposed 
less than onc.) \Ve sho'w that e is the demanded number to the theorem 3.7. 

Indeed, because of contractibility: 

h(y)a(xo ; y) < 
(I r)a(xo ; y)] ~ 

where P = q + I - r and evidently 0 < P < 1. 

* See a special case of the theorem 3.7 in [5]. 



270 A. BLEYER 

Let us eonsider a[f(y) ;f(x)]; hence 

(*) a(f(xo) ;fCy)] = a[f(y) ; xo] < Pa(xo ; y) 

thus using the form 3.4.1. i.e. 

a[f~(y) ;f(xo)] < Lxo(a)a[f(xo) ;f(y)] + h[f(y)]a[f(xo) ;f(y)] :§ 

~ Lxo(a):r[f(xo) ;f(y)] + (1 - r)a2 [f(xo) ;fey)] < a[f(y) ;f(xo)](q + 1 - r) 

= Pa[f(y) ;f(xo)] < pZa(xo ; y) 

because of the form (*) -

Similarly, with complete induction the following form for arbitrary integer 
1l arises: 

Because of 0 < P < 1, thus pn -." 0 (n -;. =), it follows: 

a[f(y), x o] -,0: 

hencefis a continuous mapping and thefactfn(y) -,. xo(n -+ =) is true. Q.E.D. 

3.8. Application and illustration for some integral equations 

Let D be a finite ,a-measure set of a locally compact Haussdorf space. 
(See [8].) Let us consider the class of integrable real functions over D, moreover 
Jet the bounded real function K(x, t), which is defined over Q * Q, be a p,
multiplicant, if there exists .\K(x, t)g(t)dpt for every x ED and the p,-integrable 

Q 

fUllction g (t). 

Let us denote the space of these fUllctions f(t) by LQ,%,W The norm in this 
space is the following: 

a(j;g)=llf-gll =Slf-gl dt. 
LD,%,a f} 

(3.8.1.) Theorem: The operator 

f
p(x) ~f(t) K (x, t) dpt: xEQ' 

T°(j, Q') = --
10: xEQ- Q' 
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has a fixed point (that is the equation TOf f has a unique solution) in suit-
able subset Q' of Q. 

Proof: Because of Fubini's theorem TOf belongs to Ln,%,1' again, moreover 
Ln,Y.,'l is a complete space, thus we have to show that TO is a contractive map
ping with L less than one. 

Let us consider a(TOf; Tag). 

a(TO f; TO g) < J ,( .f ,(K (x, t): :f(t) - g(t) I at) ax 
[} D 

J (sup I (K (x, t) ; J IJ(t) - g(t): at) ax f.l(Q') Ka(f;g) . 
[} Q' 

If ,a(Q)Ka(f; g) < La(f: g), where L < 1, then there is a fixed point to 
1 

TOf. That holds whenever ,a(Q')K < 1; that is p(Q') < K . Q.E.D. 

Let us dcfine the class of the functions B q• The fUIlction f(t) belongs to 
Bp if and only if 

J (Jf(t)K(x, t)! at) a:\: < q 
!l D 

i~ satisfied. 

(3.8.2.) Theorem: Let q be less than one. Then for every p(x) from Bq and 
o < x < 1 there exists an integer no such that the operator 

T111= p(x) (1 -- x) + xUJ(t)K(x, t) ell]"" 
n 

has a unique fixed point in the set Bp (that is the operator cquation TllOf=f 
has a unique solution), moreover if T""j = f has a solution, then for some 
n > no the operator equation T"f f has also a unique solution in the set Bq• 

(3.8.2.1.) Lemma: T"(Bq) C Bq for suitahle> n. 

Proof: Let U~ consider 

.\' ,\', (T"f) K (x, t) elx elt: 

,I' J i, (T"f) K (x, t) elx elt .\' Cl' (1 -- x) 
DD Q Q 

p(x) K(x, t) clx] elt -j- J (J [Jf(t) K (x, t) elt]" K(x, t) elx! elt < (1 - x) 
Q D Q 

q -.- 7.q,u2 (Q) q',-1 sup i K(x, t) I = (1·- x) q x qr 
(x, nE [] * [] 

Because q is less than one, there is a suitable n. denoted by TZ 1, to satisfy: 

r ,u2(Q)q,,-1 sup K(x, t) ! ;§ 1 

So (1 - x)q + xq = q(l - x -L 7.) = q < 1. 
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That is TnfEBq for every 11 > 11 1 , 

(3.8.2.2.) Lemma: a(Tnf; Tng) < La(f; g), where L is less than one for 
a suitable n. 

Proof: a(T" f; T" g) = ,\' iT" (J(t» - Tn (g(t»i dt = 
n 

= .\' i~[Of(x) K(x, t) dx)n - (.\' g(x) K(x, t) dx)"] dt 
D D D 

(Let us choose n = 2k + 1 first) 

= ~ J l( .\f(x) K(x, t) d;-r) - ,\' g(x) K(x, t) dx) [( JfKdxfk -
n D n D 

- (JfK dxflH (,f gK dx) ... + (J gK dxfk]\ dt 
Q n D 

x ,r (J IK(x, t)l If(x) - g(x) dx) [( J fK\ dxfk -7- . , . -L 
n n 

-'- (J IgKi dxr"] dt sup 'K(x, t)' v(f; g) n [£(Q) J.11~k - where 
(x, t)ED*Q 

Jl = max { J IfK: dx ; J igKI dx) , 
j,g Q Q 

Hence r g E Bq, thus -'lJ = q < 1. Then: 

V (Tl1f : T" g) ~ :x sup iK(x, t)i nf£(Q) q"-1 aU: gj: 

hecause of q <:: 1; thus there exists an integer 112 such that a(T'f: r'g) ;§ 

;§ La(f, g) - where L < 1 
Let us choose 11 2k then: 

a~k b~{( = (a - b) (a~k-l -+- a'2k-~ b -'-", b~i; I) 

a result similar to a(T"f: T"g). Let this index be denoted by n 3' 11' llll 

max f n[ ; n2 : n 3 }, then 

and 

(j(T"f; Tn g) < L v(f; g) 

where L < 1 for allf,g EBq and n> no' Q.E.D. 
(3.8.2.3.) Lemma: Bq is a complete space. 
Proof: Bq ELa ,,,,,!, because of the completeness of L Q ,%", it is enough to 

show that the set Bq is a closed set of La,,,,,,, . This fact is made evident by the 
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Fatou theorem [8] 

if 

lim J fll(t) K(x, t) dt = J (limfll (t)) K(x, t) dt 
n~cc n !J 

limfll = f, then from \"fll(t) K(x, t) dt < q 
n 

the inequality Jf(t) K(x, t) dt::::;;: q follovs. Q. E. D. 
t:.i 
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Proof of theorem (3.3.2.): From (3.8.2.3.) and (3.8.2.2.) follows the 
possibility to apply the theorem 3.1. The solution is unambiguous except a 
zero measure set. Q.E.D. 

Example to 3.8.2. 
1 

Let [2 bc [0, 1], q = :X = 1/2, k(x, t) = 2 (x2 t2), p{x) = xj2 then the 

equation 

1 

(*) ; + ~ [~ Jf(t) (x2 + t2
) dtr =f(x) 

o 

has a unique solution for every positive integer n. 

Indeed, from [l(Q) = 1, sup (x2 t2)/2 = 1 
(t, x) E [£hQ] 

and flV2) sup ~ (x2 + t2) p"-l < 1 
2 

it follows for every n > 0 (see the proof of theorem) 3.8.2. that equation (*) 
has a unique solution, to be found by the method of iteration. 

2* 

Let fl(X) = 1 EB .. be the beginning point of the iteration, then 

1 X x 2 

f~(x) = - + --;; +-
6 '" 2 

xa x4 

4 4 

x3 X4 x5 ti 
I : 

X -,-,-
3 6 8 S 

1 25x x2 

f1(x) = -
- ~ 24 

1 133x 5x2 29x3 X4 5x5 Xfl 

f1(x) = 6-! + 216 + 432 + 72 + 16 + 24 + (5 
x7 x 8 
_...L_ 

IS I 16 
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if 

and 
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An interesting application oJthe theorem 3.7 (or 3.1) 

Let P,,(;:;) be a polynomial function of the complex variable ::;. 
P ne::;) = ao:;n -;- a 1 ::;n-1 -;- ••• -- an_I:; -;- an (an- 1 ;= 0) 

::;ED 

is 5 atisfied in certain closed suhset D of complex plane then there is only one root of P,,(::;) in D· 
Fcr e;-.:amp!c: Every p ,.(::;) = a o::;" -;- ..• + n~::; -;- an 0 with t af I < 1 i ;= n - 1 has 

. I .. I 5(0 1) L PIl(::;) - a"_I::; Q () h h . only one root In the C osed Ulllt clrc e ,. et = Il::;' t en t c equatIOn 
a rz _ l 

Qn(:;) = ;:; has the same roots as the equation Pr,(::;) O. }Ioreover the condition 

I Q;,(OI) - Q,,(::;2) i < q [ ::;1 -::;2 t and q < 1 

is satisfied for every :;1; ;:;2 E 5(0,1), if ; Q;(;:;) I < 1 for every::; E S(O, I).Thus from the com
pactness of the closed unit circle (and Qr.(::;) E 5(0, 1» it follows by the theorem 3.1 (or 3.7). 

SUilll1Hl"Y 

Different generalizations of the isometrical mappings are dealt with. In the first and 
second part 5'ome generalizations are given as the generalizations of the Lipschitz-condition 
and their properties examincd, in the third part their applications are presented together 
with illustrations, namely the fixed point theorems, local contractible mappings, unique 
existence of solution of the distinct type of integral equations. In proving the fixed point 
theorem the condition of this theorem cannot be ,,-eakened. The local contractibilitv shows 
how a neighbourhood of the solution of the equations Tx = x can be found assuming 'it has a 
uniqne solution and local contractibility, from where beginning, the iteration always converges 
to the solution. Finally a numerical example of the method of iteration (an integral eqnation) 
and an interesting condition ahout the roots of algebraic equation in the complex plane are 
presented. 
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