ELIMINATION OF ERRORS DUE TO THE LENGTH
OF ELECTRIC RESISTANCE TYPE STRAIN GAUGES
By
Gy. Szropa
Department for Technical Mechanics, Technical University, Budapest
(Received January 29, 1969)

Presented by Prof. Dr. A. Bosznay

1. Preface

Calculation and measurement methods have been sought for eliminating
the errors caused by the non-zero length of electrical resistance type strain
gauges on linearly flexible straight bars of either symmetric or asymmetric
constant cross section, made of homogeneous and isotropic materials,

As proved by experience and the findings of the Research Institute for
Measuring Techniques (Méréstechnikai Kutaté Intézet), the larger the bonded
surface and the better protected the applied strain gauge, the less is the
probability and magnitude of errors due to bond imperfections or to slipping.

To prevent the said errors, particularly in outdoor measurements, it is
advisable to use strain gauges with large tags, in spite of the fact that strain
gauges of as little as 2—3 mm base length are currently available.

In the specific case when the side a of the surface area occupied by the
resistance wire of the strain gauge — closely approximated by a parallelo-
gram — is much smaller than its length [, (Fig. 1), the “nominal” specific
strain &, measured by the gauge can be obtained from the following relation-
ship, neglecting the effect of the wire lengths normal to the direction of I:

ey = [ o dx (1)
L

where
ex is specific strain of the longitudinal axis of the gauge in direction x,
pertaining to a point of the coordinate x as a function of x.

To define g, first the matrix U of the stress tensor pertaining to an x
point of coordinate x must be written down.

The elements of U are the functions of the unknown forces F,...F,
acting on the bar and regarded to be concentrated forces, the f; ..., inten-
sities of the distributed forces and of the M, ... M; moments, regarded to be
concentrated. The functionality of the elements of the matrix U can be obtained

on the basis of either the theory of elasticity or the elementary relations of
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the strength of materials, the degree of accuracy depending on the accuracy
aimed at in the functionality relating to ey.

From the matrix U, on the basis of the correlation between the strain
and stress tensor, the specific elongation &, in the direction x, pertaining to the
point of coordinate x, can be determined as a function of place.

Substituting ex back into (1) and performing the integration, a func-
tionality is obtained between the rated specific strain & obtained by measure-
ment and the unknown ¥, ... F,, £ ... f,, M, ... M, and the known length
of the gauge [,, the elasticity modulus E and the Poisson factor m.

ey = & (F Fosf o ML M Ems k) (2)

- Be g the number of unknown quantities in the so-called correction
equation (2).
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Fig. 1. Strain gauge with a resistance wire over an area approximable by a parallelogram

To determine the ¢ unknown quantities, a g number of equations are
necessary. They are produced in the following way.

Specific strains of g, . .. Epx, are measured by g strain gauges attached
in appropriately selected points of the bar. Their specific strains yield a system
of g equations of the (2) type.

.............. (3)

It follows from the above reasoning that the F, ... M, values obtained
by solving the system of equations do not contain any more the error due to
the length I, of the gauge.

The system of equations (3) permits to use strain gauges of any length,
since the correction equations help to eliminate the source of error due to the
dimension I,

This fact is particularly favourable from the aspectof the second paragraph
of the Preface.

By a simple transformation, the right sides of Eqs (3) can be divided into
sums of two terms each.
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Namely be ¢y, the specific strain in direction x pertaining to the end
77 of the gauge of length I, (Fig. 1). The specific strain pertaining to point
evx is not, generally, identical with &y measured by the gauge in the direction
x viz. with the nominal specific strain. Let the difference between &, and
&yx be gy the specific correction strain in direction x

Epx == Eyx T Epx (4>

Also g4y is a function of ¥, ... F,s £, .. . £ M, ... My E; m; and [,
In the expression of g the unknown quantities Fl NN (N PR S
M, .. .M, may also be eliminated. This renders it possible to write down the
functionality of g with the known quantities K; m: and [,. This functionality

includes the geometry of the tested bar.
Sex = S (E3m s ) (5)

Since in possession of gy, on the basis of the values ¢y, measured accord-
ing to (5) the specific strains pertaining to point &y, can be determined, on
hand of the well known methods the strain or stress temsor of point ¥ can

also be defined.

2. Examination of the deformation of a strain gauge
attached to a cantilever prismatic beam

To support the theory outlined in the Preface, let us now examine the
cantilever beam shown in Fig. 2, with the following assumptions:

a) its cross section is a narrow rectangle with a cross-sectional area A ;

b) the beam depth 2¢ is of the same order as the length I;

¢) the system of forces of the resultant F, acting along the right side end
cross-section of the beam is distributed according to the parabolic law of
shear stress variation;

d) the resultant of the system of forces uniformly distributed along the
cross-section of the beam at its right-side end, perpendicular to the cross-
sectional plane is F,, and

e) a uniformly distributed vertical system of forces of intensity f acts
along the beam top.

Let us follow now the deformation of a strain gauge of length [, attached
parallel with the longitudinal axis of the bar, starting out from point 4 on the
beam surface (Fig. 2).

Let the coordinates of point 4 by [, and y,. At a point of the bar of
optional coordinates x. y, the following stresses will arise:
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Due to tension

oy
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Fig. 2. Cantilever beam with a strain gauge of length [, at point 4

Due to bending:
a) due to F:

sy = B )
opl.y) = 0 # (7)
M o
b) due to f: 7 |
Tay = Z (¢* — 5%

In the above correlation I denotes the inertia moment of the cross-section
referred to the bending axis.
Summing up the corresponding stresses:
g g

L F oyx [ty f (2 5 ]
e e s [ 2y (9
T4 T T )
1,2
Oy == Ogy =+ Oy Gm:“—%{c’} _‘333‘?’5‘03} {10)
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In accordance with the relationship of the strain and stress matrices

as assumed in the Preface, and taking into consideration that ¢, = 0,
g, = S (o — vay) (12)
E
where

E modulus of elasticity,
v reciprocal of the Poisson factor.

Substituting (9) and (10) into (12), the nominal specific elongation &
measured by the gauge will be:

1 [F E1l 12
=g e g
F . fl v f:} 3
_1_[ ].}1 _:_ 1_,”4‘ 1[ o
0[ 21 2I 6l "J (13)
f 2 3 2 I Tf' 2 1 3 2 i
A I S DU B Py — s 2
2[[331 5 ‘1) 5 [ Y1 3)1 5

(13) may be split to the sum of the specific elongation pertaining to
point eax and the correction strain ggy.

P L (nyl | fliy, | Iy I

R T (14)
sA_-l_ _I_i’._{_& By l

" El4 170 20 ‘ .
fi2 . 2 of 12, (12)
U ST N V2! S V) +____ CE"‘ —‘—.'/V‘ +‘—“C

oT (37 5)).21[)1 37073 J

The relationship (15) for e includes the quantities depending on the
geometry of the tested bar, the modulus of elasticity, F; and f from among
the characteristics of the external loads and the length [, of the strain gauge.
In spite of the smallness of the gauge length [, other numerical quantities
in the expression for e, may cause it to be of an order of magnitude which is
either comparable to €4, or non negligible in relation to it. This fact should
be taken into consideration depending on the accuracy requirements and
possibilities.

The problem may be, e.g. to define by extensometry the values of the
unknown loads f, F, and F, acting on the beam in Fig. 2.
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To define the three unknown quantities, three equations are necessary.
Therefore optionally three gauges are attached on any chosen points of the
bar surface parallelly with the x axis (Fig. 3).

From the nominal specific strains ¢,, of the gauges of known lengths
ly, attached at points 4, B, and C, the correction equations may be set up on
the basis of (14):

eox, = enx, (f, B, E:a L)
evx, = eox, (f, By, By L)

(16)
eve = e, (1, o By ) |

vielding the values of the unknown f, F| and F,.
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Fig. 3. Cantilever beam with strain gauges at points 4, B and C

By this procedure the source of error due to the gauge length [; could he
eliminated, provided the assumptions in the Preface are regarded to be valid.

3. Examination of the strain gauge deformatior
on a pierced plate under tension

Let us examine a plate under tension with a relatively small circular
hole @ 2b drilled in its midline (Fig. 4).

by

Fig. 4. Tensile plate with circular hole and strain gauge at point 4

As known, stress peaks tend to arise at the hole, with values varying in
function of the relationship b/c. Strain gauges are seldom used in such cases
because, due to the finite non-zero length of the gauges, the peak stress values
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cannot be defined from the nominal specific strains measured by the gauge
alone, without the application of some correction formula.

Author wanted to establish to what extent strain gauges of basic length
I, (7 to 20 mm) lend themselves to define stresses at points under high stress
gradients, or stress peaks, with the intermediary of correction formulae not
vet known in literature.

To establish stress peak at point .4 of the hole in direction x (Fig. 4)
the deformation of the strain gauge of length I, attached parallel with the
longitudinal axis of the beam and strating from point 4 was examined.

Ly
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Fig. 5. Stresses arising in point E of the longitudinal axis of a strain gauge of length [,

The nominal specific strain ¢; of the strain gauge was found to be

Expressed in terms of polar coordinates the following relationships
are known:

G ) b* b?
=20 - 123 42 | eos2g
o, 2[( .1_2} 1{ " 4T2]Vco ¥
G b? G | 4] |
-1 — 2132 cos2g
e 2 r‘“’] 2[ r4JCO ! (18)
a 2
fw:.___f_lﬂs%ﬁ-zﬂ]smz(;

These stresses, pertaining to point E of coordinate x on the longitudinal axis
of the gauge, are shown in Fig. 5.
Find the function e, parallel to the x axis, to define the relationship (17).
Matching to point E the &, 7 system seen in Fig. 5. in accordance with
the relationship of strain and stress matrices, and corresponding to the plane
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stress state
1
£ = = (0 —vo,) (19)

The stress matrix F characterising the stress state at in plane point E is:

o [o‘, r,(p}
Trp G,

Now find functions ¢ and o, for Eqs. (20); n, and n, are unit vectors of

(20)

system (&, ) while e, and e, are unit vectors designating the direction of o,
and a,.
Thus:
o =n,. F.n, ]

(21)

o, =ny. F.ny |

Substituting (21) back into (19), a function is obtained for e: which
includes the polar coordinates r and ¢.

G b? b* b?
g == — {1—» +1+3——4-—cos2¢||cos?p —
T 2E r ré r
~—psin ¢ | + lJ—-Z)—Z——(l—L3ﬁcoq? @) {|sin? ¢ —
oI B ] T Y (22)
o] b* P :
— vcosip| -+ ~—{1~—3———+2 sin 2 ¢ [ — sin 2¢—
— vsin 2 ¢]
In accordance with (17), &: = e, must be integrated along a line of

length [,

Therefore ¢ has to be eliminated and a coordinate x parallel /, introduced
as a variable. This can be achieved by the following relationships of transfor-
mation:

recosp =x

rsing =y =1»% ]
| (23)

r:’:xz_g_bﬁ

Applying the transformation equations (23), function e(x) arises, whereby

i,

£y = %J ee(x) dx (24)

0
0
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More precisely:

3o o
Epx E °F [ 4 l A i B : C] (...Z))

In (25) the constants 4, B and C stand for the following quantities:

A= )b— . 5+

I+ b2
B Y (54

= 9 —-3~ P 2

(ll _:_ b‘l)fﬁ ("6)
bG

C=—"" (44

(Il + b2

3¢ ..
Since in (25) — denotes the specific strain ¢x, pertaining to point A of
E I Kx P & I

direction x and denoting the specific correction strain by g, we obtain:

o
2E

A

[—4+4+ B+, (27)

Epx = €ax + € (28)

viz.: the constants 4, B and C in (26) depend solely on the [, gauge length,
the radius b of the bore and the reciprocal of the Poisson factor ».

In consideration of (27) and (28), Eq. (25) may be written also in the
following form

— 44+ 4-B+C)

Eax = Epx 1 - 29
A | 2141 B1C 29)

In the course of the checking tests three steel plates (each of a length
of | = 45 cm, a width 2¢ = 6 em and a thicknessv = 0.5 cm) have been pre-
pared each pierced by circular holes of different diameters. In the first the
hole diameter was 2b; = 0.5 cm, in the second 2b, = 0.7 em and in the third
2by = 1.3 cm. ‘

The experiments aimed at informing by measurements of the variations
of the stress peak values arising under centric tension, depending on the hole
diameter and the plate width by means of strain measurements and correction
equations,

Tensile force F has been determined in tensile tester; the strain gauge
stuck in point 4 in direction x was of type EMG 2359 TH 110 Q and of a
length I, = 20 mm.
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Ponomariov [9], FoprL-SonnTAc [10] generally refer o 44 to the so-called
mean oy stress, quotient of the actual tensile force acting on the beam by the

smallest cross-sectional area A4’ of the pierced beam.

Table 1 contains the
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Fig. 6. Variations of 04, as a function of b/c. The functional curve 1 is the one plotted by
author, No. 2 was taken from literature

values obtained by extensometry at the three hole diameters compared to
those by Foppr-Sonnrtac [10]. Fig. 6, on the other hand, shows the strain
gauge values ¢4 vs. the quotient b/c compared to

the F6ppL-SONNTAG

curve [10].
Table 1
Values of —— as a function of bjc
Ok

b Gax Tax/OK !
fem] fepjem] T i b) P o
0.5 2491 2.85 2.89 0.0835
0.7 2497 275 2.78 0.117
1.3 2603 2.54 2.60 0.216

Column a) shows authors’ values. Column b) shows the values found in literature.

The applied Hungarian strain gauges were of the following types:

1. EMG 2359 TH, 110Q; I,, = 200 mm

2. Kaliber, 1100; Ly, =
3. Kaliber, 1150; lyg =

16 mm
7 mm
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Denoting by h the quotient of the absolute value of the specific correction
strains by that of the strain in the selected point:

le,
b= ke (30)

%anE

The percentage i as a function of different gauge lengths [, and of rela-
tions bjc for the three different bore diameters, have been compiled in Table 11.
It appears that the numerical values of the specific correction strain may
amount to 41 or 65 per cent of the numerical values of the specific strain
pertaining to a point, and that these values must not be disregarded in the
exact definition of the specific strain pertaining to that point,

Table I1

Variations in the h value, in function of b/c and I

k
N
fem] . _
j bic = 0.083 | bie = 0.117 : bie = 0.216
2 65.5 63.2 | 59.3
1.6 04.2 62.9 56.3
0.7 ! 58 52.6 41

According to Table I, on the other hand, the described method lends itself
to measure stresses, or stress peaks at points with high stress gradients, using
strain gauges of even large basic lengths /,, provided conditions specified in
the Preface prevail.

Summary

The errors caused by the length of strain gauges can be eliminated if the function of the
specific strain at an optionally selected point in the direction of the longitudinal axis of the
gauge can be determined, depending on the external forces acting on the tested bar, making
use of the relationship between strain and stress tensors. Integrating the function of the specific
strain along the gauge length, a functionality can be created between the so-called nominal
specific strain as measured by the gauge and the unknown external beam loads. Setting up as
many functionalities termed correction equations as there are unknown gquantities, the un-
known quantities can be defined from the equations.
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