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Introduction 

Electric energy is distributed by the help of transmission line systems. 
The applied transmission lines are forming a system in two aspects. A trans­
mission line section namely contains more than two conductors. (Also the 
earth is to he included in the number of the conductors.) The electromagnetic 
field of the conductors is creating a coupling between the conductors and thus 
a transmission line section forms a system consisting of coupled transmission 
lines. Beyond this the individual transmission line sections are connected to 
each other at the ends. At the connection places also generator8 and consumer8 
may be connected to the transmission line sections. Such a network may he re­
garded also as a system. 

In practice the requirement may arise that the equations for the 'whole 
"Ilergy distributing transmission line system 8hould he handled jointly. 
A, problem of this kind is e.g. to determine the generator voltages to be employed 
tu obtain the necessary con8umer voltages in the case of a given arrangement 
of the network, or to establish in a given network the consumer voltages arising 
in tl1<' case of known gencrator voltages and consumers. Yarious approximative 
methods were published for solving these problems [8]. The majority of these 
is disregarding the fact that the tran3mission line is a net'work with distributed 
parameters, in some of the methods the transmission line is simply substituted 
hy a two-pole, in others the joint handling of all the equations necessary for the 
,;olution of the problem is not possible. 

In the present paper a general method is described. which solves the 
above problems by jointly 'writing all the necessary equations for the station­
ary state transmission line system. The calculation described in the following:­
j" utilizing results publi8hed earlier on the theory of coupled tran8mi8sion line,. 
[5. 7] and on transmission net'works [9]. 

The examinations refer to an excitation changing in time sinusoidally on 
the following conditions. The system is linear. The conductors have a circular 
cross-section. Earth is regardcd as limited by a plane and homogeneous within a 
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transmission line section. In the individual transmission line sections the con­
ductors are parallel to each other and to the earth. The electromagnetic field 
of different transmission line sections does not create a coupling bet'ween the 
sections. The connection of the network, the material constants essential from 
the aspect of the electromagnetic field (10, ft, a), generator volt ages, and the 
individual impedance values are assumed to be known. Only such cases are 

Fig. 1 

(ZJ 

(It) 

Fig. :2 Fig. 3 

examined where the displacement current in the earth is negligible with respect 

to the conduction current. 
Our further conditions on the connection of transmission line sections 

will be given in full details later. 

The topology of the network 

The examined transmission line system is built up of k transmission line 
sections. The number of the conductors of the hth section is designated by mlz 

and these conductors are given an order number (1, 2, ... , m/z). The number of 
conductors in the section containing the highest number of overhead con­
ductors is n (n m/z, h = 1,2, ... , k). The conductors of all transmission line 
sections are given also a general numbering relating to the complete system, 
where the order number of conductors connected at the vertices is identical. 
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In the followings only such systems are to be examined in which such a num­
bering is possible. Let us define the matrix th describing the hth section in such a 
way that the jth element in the ith row tij = 1 if the general numbering of the 
jth conductor according to the own numbering of the section is i, and other­
wise tij = O. The rows of matrix t,z correspond to the general numbering, while 
the columns to the own one. Let the section consist of e.g. three overhead 
conductors (m = 3) (Fig. 1) and be in the system n = 4. A possible own 
numbering is indicated in Fig. 1 at the left side, while the general numbering 
at the right side. Matrix th pertaining to the section is then found to be 

own 
--7 

1 2 3 
general 

~l 
1 0 

~1 I 0 1 

th = t 0 0 
4 0 0 

(1) 

The expression 
aiz = tlz t~ (2) 

will be necessary which is a characteristic of the selected hth section. (The 
asterisk * denotes the transposed matrix.) In our previous example 

o 
1 
o 

o 
o 
o 

o 
1 
o 
o 

o 
o 
o 
o 

(3) 

ah is a diagonal matrix of 12 order, both the ro"ws and columns of which con"e­
spond to the general numbering of the conductors. The element in the main 
diagonal is 1 if the section is containing the conductor with an order number 
corresponding to the ro"w (column), otherwise it is O. If the section charac­
terized by ajz contains n conductors, then alz = E (E is the unit matrix of the 
nth order). 

Let us form from the matrices tlz pertaining to the individual sections a 

hypermatrix describing the topology of the complete system. 

o 

t~ 

o 

(4) 

A graph (Fig. 3) can be made to correspond to the examined transmission net­
work (Fig. 2) [1, 3]. The branches of the graph correspond to the transmission 
line sections, and the vertices of the graph to the connection places. A branch 
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consisting of m c(mductors represents from the aspect of network theory a 
:2x(m I) pole (earth is namely counted as a conductor). The branches and 
vertices of the graph are given an order number. The order number designating 
the vertices is in brackets for the sake of distinction. The number of vertices 
is designated by c. 

The graph may have such branches too, which are connected to further 
branches only at one end. Such a graph, containing also terminal elements, 

(5) 

Fig . .J 

can best be described by a vertex matrix. indicating the coincident branches 
and vertices. For our problem let us define a vertex matrix 'which gives informa­
tion also on the order number of the conductors belonging to the individual 
transmission line sections. according to the general numbering. The vertex 
matrix is given in the form of a hypennatrix. A vertex corresponds to the 
rows formed of the matrix elements. and a section to the columns. The hth 
eh-ment of the ith row is the matrix alz as defined in (2). if the hth section is 
eoineident with the ith vertex, otherwise the matrix 0 of the nth order. 

Thus e.g. the Yertex matrix of the network shown in Fig. :2 is found to he 

0 a2 a;] a.1 0 0 0 0 

a1 a2 0 0 a3 0 0 0 

0 0 0 a! a- a 6 a, as 
A ., 

a1 0 aa 0 0 a 6 0 0 (5) 
0 0 0 0 0 0 0 as 
0 0 0 0 0 0 a_ 0 

I 

If all the sections of the transmission network contain 11 conductors, then tht· 
plements of matrix A are E and 0 matriees of the nth order. 

For writing the equations of the net'work the sections of the network 
and the branches of the graph, should he given a direction (a reference direc­
tion indicated). This direction is accordingly valid for the conductor:, in the 
transmission line sections as wel1. Reference directions may he chosen arhi-
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trarily. (Thus e.g. a possible case of the direction of the graph shown in Fig. 3 
is indicated in Fig. 4.) For the directed graph obtained in this way the directed 

Yertex matrix may be defined. The build up of the directed Yertex matrix is 
similar to that of the vertex matrix. The matrix element in the hth column of 

the ith row is ah, if the hth section is coincident with the ith vertex and its 
direction is away from the vertex. If in turn the hth section is coincident ·with 
the ith vertex and its direction is towards the vertex, then the hth element 

a 

Fig. 5 

of the ith ro'w is -af!. If the hth section does not coincide with the ith vertl'x, 

thCIl the hth matrix element of the ith row is the 0 matrix of nth order. 
Tll(' directed Yertex matrix of the nP!work dpscrihed hy the directed 

graph shown in Fig. 4 is found to be 

0 -a2 -a:~ u! 0 0 0 0 

-u1 a:.! 0 0 a5 0 0 0 

Ai 
0 0 0 -a,1 -a-

0 an a: as (6) 
a 1 0 a 3 0 0 a{i 0 0 

0 0 0 0 0 0 0 -as 
0 0 0 0 0 0 -a~ 0 

Overhead transmission line system 

[n the followings the results of the theory of oyerhead tran811lission line 

systems [4, 7] which will he necessary for our further calculations, are hriefly 
I'u1l11narized. 

The examined arrangement is shown in Fig. 5. Let us form the columll 
Ycctors U and i of tht' yoltagc5 of the individual conductors with respect to the 
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earth, and of the eurrent of the conductors, respectively. The dependence of 
these values on the coordinate Z III the direction of the transmission line is 
described by the equations 

u(z) = e-r: u(+) + erz u(-) 

i(z) = yo(e-rzu(+) -erzu(-» (7) 

where 1.i +) and u(-) are the column vectors formed at the place z 0 from 

volt ages advancing in directions +z and -z, respectively. The propagation 
coefficient matrix r and the wave admittance matrix Yo can be determined 
from the parallel admittance matrix YP for unit length and from the series 
impedance matrix Zs for unit length, respectively: 

(8) 

The expressions for matrices y p and Zs are 

YP = j(t)s1\-:[-l 

(9) 

.Matrix 1\-1 can be determined from geometrical data. The kth element of the 
ith row is found to be 

1 1 Qili 
rnik = - n--

2 Rile 
(10 ) 

If i r' k, the meaning of (!ik and Ru: can he read in Fig. S. If i = k, then 
Qii = 2h; and Rn ai, where hi and ai can similarly be determined from Fig. 
S. Zb is the sum of two matrices: 

(ll) 

where Zv is a diagonal matrix, with the internal impedances of the individual 
conductors related to unit length in the main diagonal, while the earth imped­

ance matrix Zj is a symmetrical matrix. For writing an element of zf' let us 
introduce the designation 

(12) 

With this, an approximative value for the kth element III the ith row of Zj 
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is found to be 

(13) 

The first order Struve function H 1(z) and the first order Neumann function 
N1(z) can be approximated by some terms of their series. At a given frequency 
Zjik depends only on the value of the material constants and on geometrical 
di m ensi ons. 

The matrix functions in Equation (7) can be interpreted by the help of 
the Lagrange polynomials. To write these, the eigenvalues ·A of matrix r 2 

haye to be determined by means of the roots of the algebraic equation of mth 
order 

(14) 

In the general case (H) has m different roots. 
The calculation of the eigenvalues of matrix rz is l'educed on the basis of 

(S) and (9) to those of the matrix 

(15) 

We find that 

(16) 

(17 ) 

k.·' '- (IS) 

k denotes the propagation coefficient of the plant> waye advancing 1Il the 
dielectric medium sUTrounding the conductors, 

(19) 

g7 denotes the eigenvalues of matrix G2• 

Having determined 1'1 (i 1,2, ... , m), the matrix Lagrange polyno-
mials can be written. 

L. (r2) = fi F -
I .).) 

1=1 Y7 - Yf 
l¥i 

(20) 
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By the help of the Lagrange polynomials, some function f(r~) can bt, calculated 

as follows. 

m 

f(f2) = ::::f(y7) L; (f2) 
;=1 

On the basis of this the matrix functions in (7) can be written. 

z=o 

m 

e=r: = .:E e+;·'iZ L;(r2) 
;=1 

Ya,r 

Fig. 6 

<l-;­
lj 

, '. ,.j ;: Z 

z=! 

(21 ) 

(22) 

By considering (21) the propagation coefficient matrix r can he det('rmined. 

m 

r = .:E i'i L;(f2) (23) 
;=1 

and in the knowledg(, of this matrix Yo can also lw calculat('d on the IHlsi,: of (8). 

The admittance matrix of the transmission line section 

W/' have seen that in th/' transmission line section consisting of m con­
ductors both in directions -Lz and -z a hundlp of waves advancecL hoth of 
which werp superpositions of m waves. 

Neither of the ends of the transmi,:sion line sections is a preferred one 
in the transmission ll{'twork. Tlw starting coordinate of the t,\·o bundles of 
·waves advancing in the individual sections in directions opposite to each other 
is chosen at that pnd of the sf'ction wherf' the wave actually starts. Let us 
choose that bundle of waves as advancing in positive direction the propagation 
direction of ·which is identical with the reff'rence dirf'ction of the section. 
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Accordingly the voltage at the ends of the transmission line section pertaining 
to vertices (i) and (j), respectively (Fig. 6), is found to be 

Ui = u(+) + e-riuC-) 

Il i = e-ri u(+) + u(-), 

(24) 

(25) 

where I denotes the length of the transmission line section. By introducing 
the designation 

h - -rl -e , 

formulae (24) and (25) can he summarized in the form 

I· Hi 
I 
l It I = l E h l' Il( +) .] 

h E l ll(-) 

(26) 

(27) 

The currents arising at thf' f'llCls of the transmission line section helonging to 
verticf's (i) and (j) can he written on the basis of (7) as follows. 

that IS 

i 

if = y,,(u(+) hu(-» 

i y,J. hu(+) -'- H(-i) 

E 

h E
h] l u(+J ] 

u(-) 

By u<;ing (27) it can be writtt'n: 

I =y 1 hl-" Ill·1 lU.] 
E. Itjl llj 

(28) 

(29) 

(30) 

(31) 

Thf~ admittance matrix of tllt' transmission line section is accordingly found 
to be 

y = Yo[ . . 
E 

h 
(32) 

Let UO' take correlation (26) into con;:ideration and perform the indicated 
opprations. Then we obtain that 

and 

Y = YOfCOSh r 1 
--E 

r' 

-E 1 . smh- 1 r l 
cosh r I 

y" cosh r l· sinh- 1 r I 

p' = - yusinh-lr l. 

(33) 

(34) 

(35) 
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r' and p' are quadratic matrices of the Inth order, where In is the number of 
the overhead conductors in the transmission line section. 

Let us form a hypermatrix from matrices r' and p' in the following way. 

I"~ 
0 0 

:,1 R'= : . 
1'2 0 

0 0 

(36) 

lP' 
0 0 

jJ P'= : 
P2 0 

0 0 

(37) 

The order of the matrices obtained in this way is idcntical with the number of 
conductors in the system. Let us still form the nth order quadratic matrices 

(38) 
and 

(39) 

We shall need also the matrices 

r 
0 0 

R =TR'T* = : 
r2 0 

0 rk 

(40) 

and 

r' 
0 

j P=TP'T*= : 
P2 

0 

(4.1) 

The elements of these matrices are of the nth order and the individual admit­
tance parameters are at the places corresponding to thc general numbering. 

Characterization of the network components at the vertices 

There may be consumers or generators at the vertices. These network 
components arc regarded as active linear (n 1) poles. As limiting eases, net­
works containing only passive consumers, and solely ideal generators, res­
pcctively, can be considered. 
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The terminal of the examined (n + 1) pole connected to the earth (Fig. 7) 
is designated by the index O. The numbering of the other terminals corresponds 
to the general numbering of the conductors to which they arc connected. 

Let us form the column vector Ud out of the volt ages of terminals desig­
nated by 1, 2, ... , n with respect to the earth, and column vector ici out of 
the respective currents. For a number m of the terminals of the network 
components connected to the vertex (m < n), in column vectors Uci and ic 
there is a 0 at the places corresponding to the order number of the absent 

Ucn 

Fig. 7 

terminals. From the volt ages of the terminals of the network components 
connected to the vertex, 'with respect to the earth, the column vector can be 
written for an open-circuit linE', designated by 'Ugi. By employing the principle 
of superposition we obtain the correlation 

'Ugi = -Uci (42) 

where Zgi is the impedance matrix of the network component. For the deacti­
vated netw·ork component Hgi = 0 and then 

(43) 

In the knowledge of the connection and of the electric characteristics of the 
network part this matrix equation and from this Zgi can be written. 

If the network part contains exclusively ideal voltage generators, then 

Zgi = 0, and thus 

(44) 

If in turn the network part is passive, then Ugi = 0, and 

Zgi = Z/i (45) 

6 Periodic. Polytechnica~ El. XIII/4 
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where Z/i is the impedance matrix of the consumers. 
Equation (42) can be written for some of the vertices (i = 1,2, ... , c) 

and these can be summarized in the following relationship. 

hence: 

(47) 

where Ue, Ug, and le denote the column vectors formed from the matrices Ud, 

Ugi and id, respectively, in accordance with the order numbers of the vertices. 

Zg is the hypermatrix 

r:~ Zg= 

0 

0 

Zg2 

0 

. 01 

z:J 

formed of the matrices Zgi, and Yg is its reciprocal: 

Circuit equations 

(48) 

(49) 

(50) 

In the foregoing the determination of the circuit equations for the 
network was prepared. 

At the ith vertex ends of transmission line sections, voltages Ui are 
equal and identical with vertex voltage Ud. In the follo,\ings the vertex voltages 
are assumed to be unknown and with this the circuit equations are written in 
such a way that the Kirchhoff loop equations should be satisfied automatically. 

To a vertex n nodes belong at maximum. The node rule should be satisfied 
for each node. The node equations for the nodes at a vertex are written in a 
single matrix equation. 

Currents flowing to or from a node of some of the vertices can be con­
sidered as the sum of three groups. To the first group those currents belong the 
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direction of "which is identical with the reference direction of the respective 
branch. The second group contains the currents the direction of which is 
contrary to the reference direction of the respective branch. Finally the third 
group contains the currents of the generators and impedances at the vertex. 

1£ the hth section is connected to vertices (i) and (j) and its reference 
direction is given from (i) towards (j), then the current of the section in the 
first group is found to be 

(51) 

(6) 

!S) 
f5j 

Similar equations can be written for each section. The system of equations 
obtained in this way can be summarized as follows. 

l' =~R(A* 
2 

A~') U ....:.... ~P(A'; - A7') U 
- I I 2 -- - I (52) 

The column vector formed of the currents of the first group is given in our 
example by 

-
ll.l r 1 u j +Pl u~ 

i'2~ 1'2 'U;2 P~U1 

l3J 1'3 U 4 +PJU,l 

l' 
i 41 

1'.j U1 P.l1.la 
( 153) - i-o 1'5 U~+P5U3 v_ 

i63 1'6 H3 PG U4 

~::J 
1"', 'll3 + PiU6 

_1"'8 U3 +PS U5J 
The subscript of rand p is the order numher of the section, that of u the order 
numher of the vertex. The first suhscript of the currents forming l' indicates 
the branch, 'while the second one the vertex (Fig. 8/a). 

The current of the hth section helonging to the second group is 

(54) 
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Similar equations can be written for each section. This system of equations is 
the following. 

In our example 

I" = 1 P(A* + Ai) U +~R(A' 
2 2 

J"= 

- I PI U 4 -;- r 1 U 2 

P2 U 2 + r 2 U 1 

p3 u.j + 1'3 U 1 

p" U 1 + r.1 U 3 

P5 U 2 + r5 U 3 

Ps U 3 + I"S U j 

P7 U 3 1"7 Us 

Ps U:l --i- 1"S Us 

These currents are indicated in Fig. 8/h. 

Ai) U (55) 

(56) 

The currents of the generators and impedances arranged at the vertices 
were expressed in the previous chapter [sce (47)]. 

The currents should satisfy the node equations. From the individual nodes of 
the vertices the currents 'written in l' flow away. Let us form from these tl1l' 
sum of currents belonging to the individual vertices and let J~ denote tIlt' 

column matrix formed from these. 

J ' - 1 (A I A)-' c - - ,~'1 -;- ~"'-'-i 1 
') 

By using our previous results, 'we ohtain in our example, that 

1'.j u1 P4 1L3 

1'2 112 -+- P2 1L1 -T- 1'5 112 T Ps 1l;3 

T' _ 
'e -

r6 1L:) ...:.... PG u.j r; 1L3 Pt U" + 1"6 ll;) ...:.... Pc Us 

1'1 u-! PI U:2 + r:3 ll_t + P3 III 

o 
() 

(58) 

(59) 

In Fig. 8/ a those currents are indicated, among 'which the sum of those helong­
ing to one vertex supplies one element of column vector J~. Their direction i" 
identical to the reference direction of the respective sections. 

The branch currents forming I'~ flow away from the individualnode~ of 
the vertices, from which we ohtain. upon arranging hy vertices, the following 
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column matrix I~. 

I~ = ~ (A -- Ai) I" 
2 

Let us 'write also this for the discussed example. 

I "­e -

P2 u 2 + 1'2 U I + P:l U 4 -'- 1'3 U I - I 
PI U j -: 1'1 U 2 I • I 
:::: ; :::: I P5 U

2 
I 1'5 U

3 
,I 

Ps U a + 1'8 U5 

P7 U 3 -+- 1'7 U 6 I _I 

(60) 

(61) 

Currents in le flow towards that node of the vertex, from which the current 
corresponding to the elements of I~ and I; flows away. Thus thc matrix form 
ofthc node rule, upon using (57), (58), and (60), further (52) and (55), is found 
to be 

I~ I~ - le = ~ (A - Ai) [R(A* -'- A-;) -'- P(A* - An ]Ue + 
4 

- ~ (A Ai) [P(A* -+- An -'- R(A* An] Cc + Yg Uc -- Y" U Ii = 0 (62) 
4 

Upon arranging: 

[~A(R + P)A* 
2 

1 
-Ai(R 2 . P)A7 VJ-[T-'-'[T 

.lt g c-L;z g (63) 

The multiplication factor of Uc in equation (63) will be termecl the vertex 
admittance matrix. 

v 1 
~e = -A(R 

-1 
p) A* I J_ A.;(R - P)A7 ~ Y, 

2' . • 

Let us write its first two member~ for our example. 

1 A(R -'- P) A* +- ~ A,.(R -- P) A~ 
2 2 

r::] -r- f3 l' .j P2 p.j P3 
P2 1"1 + r 2 + 1'5 P5 p} 

P4 Po 1'4 + 1'5 ~ 1'6 -'- 1', - 1'8 P6 

P3 PI PG r ] + l'a + 1'5 

0 0 Ps 0 

0 0 p-
- I 

o 

o 
o 

Ps 
o 

1'8 

o 

(M) 

(65) 
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This hypermatrix is seen to be symmetrical. The main diagonal includes matrices 
r belonging to sections coincident with the vertex corresponding to the row 
(column). The other matrix elements are the matrices p pertaining to the section 
connecting the vertices corresponding to rows and columns. If the two vertices 
are not connected by a section, then the corresponding element of the hyper­
matrix is o. 

If one or more of the generators connected to the vertices are ideal ones, 
then the respective elements in Yg are infinitely high. In this case it is advisable 
to rewTite equation (63) so that it includes Zg = ygl 

{~ Zg [A(R + P) A* + Ai (R - P) AT] + E} Uc = Ug (66) 

From these the required matrix Uc is 

P)A* P) A'!' -L Y Y U 
] 

1 

... l J g g f! (67) 

and 

Uc = {~z" [A(R 2 0 

P)A* Ai(R P)Af (68) 

In the knowledge of Uc currents I' and I" can be calculated on the basis of 
(52) and (53) and thus the problem may he regarded as solved. 

Summary 

Electrical energy is distributed by transmission line systems. The individual sections of 
these transmission lines consist of coupled conductors. Processes taking place in them can be 
described by matrix functions. Relationships for the connected transmission line sections can 
be summarized by employing the graph theory in matrix equations. Thus the complete system 
can be characterized by a single equation containing hypermatrices. 
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