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Introduction

Electric energy is distributed by the help of transmission line systems.
The applied transmission lines are forming a system in two aspects. A trans-
mission line section namely contains more than two conductors. (Also the
earth is to be included in the number of the conductors.) The electromagnetic
field of the conductors is creating a coupling between the conductors and thus
a transmission line section forms a system consisting of coupled transmission
lines. Beyond this the individual transmission line sections are connected to
each other at the ends. At the connection places also generators and consumers
may be connected to the transmission line secticns. Such a network may be re-
zarded also as a system.

In practice the requirement may arise that the equations for the whole
energy distributing transmission line system should be handled jeintly.
A problem of this kind is e.g. to determine the generator voltages to be employed
to obtain the necessary consumer voltages in the case of a given arrangement
of the network, or to establish in a given network the consumer voltages arising
in the case of known generator voltages and consumers. Various approximative
methods were published for solving these problems [8]. The majority of these
is disregarding the fact that the transmission line is a network with distributed
parameters, in some of the methods the transmission line is simply substituted
by a two-pole, in others the joint handling of all the equations necessary for the
solution of the problem is not possible.

In the present paper a general method is described. which solves the
above problems by jointly writing all the necessary equations for the station-
ary state transmission line system. The calculation described in the followings
is utilizing results published earlier on the theory of coupled transmission lines
[5. 7] and on transmission networks [9].

The examinations refer to an excitation changing in time sinusoidally on
the following conditions. The system is linear. The conductors have a circular
cross-section. Earth is regarded as limited by a plane and homogeneous within a
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transmission line section. In the individual transmission line sections the con-
ductors are parallel to each other and to the earth. The electromagnetic field
of different transmission line sections does not create a coupling between the
sections. The connection of the network, the material constants essential from
the aspect of the electromagnetic field (e, u, o), generator voltages, and the
individual impedance values are assumed to be known. Only such cases are
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examined where the displacement current in the earth is negligible with respect
to the conduction current.

Our further conditions on the connection of transmission line sections
will be given in full details later.

The topology of the network

The examined transmission line system is built up of k transmission line
sections. The number of the conductors of the hth section is designated by m,
and these conductors are given an order number (1, 2, .. ., mp). The number of
conductors in the section containing the highest number of overhead con-
ductorsis n (n = myp, h = 1,2, ..., k). The conductors of all transmission line
sections are given also a general numbering relating to the complete system,
where the order number of conductors connected at the vertices is identical.
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In the followings only such systems are to be examined in which such a num-
bering is possible. Let us define the matrix t; describing the hth section in such a
way that the jth element in the ith row #; = 1 if the general numbering of the
jth conductor according to the own numbering of the section is i, and other-
wise £;; = 0. The rows of matrix t; correspond to the general numbering, while
the columns to the own one. Let the section consist of e.g. three overhead
conductors (m = 3) (Fig. 1) and be in the system n = 4. A possible own
numbering is indicated in Fig. 1 at the left side, while the general numbering
at the right side. Matrix t; pertaining to the section is then found to be

own
e

1 2 3

general 1 1 0 0
2 0 1 0 (1)

th = i 3 0 0 0

4 0 0 1

The expression

a; = th l; (2)

will be necessary which is a characteristic of the selected hth section. (The
asterisk * denotes the transposed matrix.) In our previous example

1 0 O]l 0 0 0 1 0 0 0
~Jo 1 offo 1 o of Jo 1 0o o0
=10 o oflo o o 1] T Jo o o o (3
0 0 1 0 0 0 1

a, is a diagonal matrix of n order, both the rows and columns of which corre-
spond to the general numbering of the conductors. The element in the main
diagonal is 1 if the section is containing the conductor with an order number
corresponding to the row (column), otherwise it is 0. If the section charac-
terized by a; contains n conductors, then a; = E (E is the unit matrix of the
nth order).

Let us form from the matrices t, pertaining to the individual sections a
hypermatrix describing the topology of the complete system.

t, o . . . O

o t, . . . o )
T=| (&)

o o . . . i

A graph (Fig. 3) can be made to correspond to the examined transmission net-
work (Fig. 2) [1, 3]. The branches of the graph correspond to the transmission
line sections, and the vertices of the graph to the connection places. A branch
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consisting of m conductors represents from the aspect of network theory a
2x(m -+ 1) pole (earth is namely counted as a conductor). The branches and
vertices of the graph are given an order number. The order number designating
the vertices is in brackets for the sake of distinction. The number of vertices
is designated by c.

The graph may have such branches too, which are connected to further
branches only at one end. Such a graph, containing also terminal elements,

2]

(5]

(4

can best be described by a vertex matrix, indicating the coincident branches
and vertices. For our problem let us define a vertex matrix which gives informa-
tion also on the order number of the conductors belonging te the individual
transmission line sections, according to the general numbering, The vertex
matrix is given in the form of a hypermatrix. A vertex corresponds to the
rows formed of the matrix elements, and a section to the columns. The Ath
element of the ith row is the matrix a, as defined in (2). if the hth section is
coincident with the ith vertex, otherwise the matrix o of the nth order.

Thus e.g. the vertex matrix of the network shown in Fig. 2 is found to be

bl

o a, a, a, 0 o o 0
a, a, 0 0 a; o ) 0
A — [} o 0 a, a a, a- a
a, o a; o o a; 0 (5)
0 0 0 0 o ag
B 0o o 0 ¢ o a. o __J

If all the sections of the transmission network contain n conductors, then the
elements of matrix A are E and o matrices of the nth order.

For writing the equations of the network the sections of the network
and the branches of the graph, should be given a direction (a reference direc-
tion indieated). This direction is accordingly valid for the conductors in the
transmission line sections as well. Reference directions mayv be chosen arbi-
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trarily. (Thus e.g. a possible case of the direction of the graph shown in Fig. 3
is indicated in Fig. 4.) For the directed graph obtained in this way the directed
vertex matrix may be defined. The build up of the directed vertex matrix is
similar to that of the vertex matrix. The matrix element in the Ath column of
the ith row is ap, if the hth section is coincident with the zth vertex and its
direction is away from the vertex. If in turn the hth section is coincident with
the ith vertex and its direction is towards the vertex, then the hAth element

x
o
Oq
N

of the ith row is —a,. If the hth section does not coincide with the ith vertex,
then the hth matrix element of the ith row is the o matrix of nth order.

The directed vertex matrix of the network described by the directed
graph shown in Fig. 4 is found to be

o —a, —a, a, o 6 -
—a, a, o 0 a; o 0
A — 0 o o —a, —a; a; &, & (6)
a o a, o o —a, © )
0 o o o o 0 o —a,
o 0 o ) 0 o —a. o

Overbead iransmission line system

tn the followings the results of the theory of overhead transmission line
systems [4, 7] which will be necessary for our further calculations, are briefly
summarized.

The examined arrangement is shown in Fig. 5. Let us form the column
vectors # and 7 of the voltages of the individual conductors with respect to the
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earth, and of the current of the conductors, respectively. The dependence of
these values on the coordinate z in the direction of the transmission line is
described by the equations

u(z) = ¢ T% y#) L oIz =)

i(z) = yole TFult) —el*u) (7
where %'+ and u'~’ are the column vectors formed at the place z = 0 from
voltages advancing in directions -z and —z, respectively. The propagation
coefficient matrix I' and the wave admittance matrix y, can be determined
from the parallel admittance matrix y, for unit length and from the series
impedance matrix z; for unit length, respectively:

= ZsYp s T= Vz_sy—p'l Yo=12,'T (8)
The expressions for matrices y, and zs are

yp = joeM™!
(9)

ZSZ%RI_%“ZD
T

Matrix M can be determined from geometrical data. The kth element of the
ith row is found to he

1 "
m;, = —‘;‘ in E{gli (10)
~ ik

If i = k, the meaning of g, and Ry, can be read in Fig. 5. If i = k, then

0ii = 2h; and R;; = a;, where h; and a; can similarly be determined from Fig.
5. Zy is the sum of two matrices:

Zp, = Z, + % (11)
where z, is a diagonal matrix, with the internal impedaunces of the individual
conductors related to unit length in the main diagonal, while the earth imped-
ance matrix z;is a symmetrical matrix. For writing an element of z;, let us
introduce the designation

Iik = Oty 07 05 (12)

With this, an approximative value for the kth element in the ith row of z;
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is found to be

wu, | « Vi . . . .
i = ou| @ Vi (e=90ix H, (ryy €/ ) - IO H,(ryy e =19 ) —
T ) 4‘ Tik
— e~k N (ryy /%) — % N, (ry e=99 )) — M] (13)
Ty

The first order Struve function H,(z) and the first order Neumann function
Ny(z) can be approximated by some terms of their series. At a given frequency
s55ix depends only on the value of the material constants and on geometrical
dimensions.

The matrix functions in Equation (7) can be interpreted by the help of
the Lagrange polynomials. To write these, the eigenvalues 5} of matrix I'?
have to be determined by means of the roots of the algebraic equation of mth
order

detI? — 2E =0 (14)
In the general case (14) has m different roots.
The calculation of the eigenvalues of matrix I'? is reduced on the basis of
(8) and (9) to those of the matrix

G = jwenz, M™! (15)

We find that

det I — 7*E| = det |G* — g*E[ = 0 (16)

where
=6+ k*E (17)
=g+ K (18)

% denotes the propagation coefficient of the plane wave advancing in the
dielectric medium surrounding the conductors,

k? = jougjwe, (19)

2 : - Ey
g; denotes the eigenvalues of matrix G2
. . 2 ;. < .
Having determined 77 (i==1,2, ..., m), the matrix Lagrange polyno-
mials can be written.

mye g
Li (I"Z) — H - Il‘
=1 y} — i

I£i

(20)
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By the help of the Lagrange polynomials, some function f(I'?) can be calculated
as follows.

f(r) = ,ﬁf(y%) L,(r?) 1)

On the basis of this the matrix functions in (7) can be written.

€7 = 3T L(TY) (22)
[
u/f) .S/a,r u(..)
ey %:::
- Rare.
i i
u; Y

pe 5
S
7

e

/

/
N

N

L}

S
N

It

By considering (21) the propagation coefficient matrix I' can be determined.

I'= 2 v L/(I?) (23)

f=1

and in the knowledge of this matrix y, can also be calculated on the hasis of (8).

The admittance matrix of the transmission line section

We have seen that in the transmission line section consisting of m con-
ductors both in directions 4~z and —z a bundle of waves advanced, both of
which were superpositions of m waves.

Neither of the ends of the transmission line sections is a preferred one
in the transmission network. The starting coordinate of the two bundles of
waves advancing in the individual sections in directions opposite to each other
is chosen at that end of the section where the wave actually starts. Let us
choose that bundle of waves as advancing in positive direction the propagation
direction of which is identical with the reference direction of the section.
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Accordingly the voltage at the ends of the transmission line section pertaining
to vertices (i) and (j), respectively (Fig. 6), is found to be

w; = ulH) L e Thy™ (24)
w; = e My Ly, (25)

where { denotes the length of the transmission line section. By introducing
the designation

b =T, (26)
formulae (24) and (25) can be summarized in the form
- 4 -
{; Eb ulH
L= (27)
Lo, b E u)
The currents arising at the ends of the transmission line section belonging to
vertices (7) and (j) can be written on the basis of (7) as follows.

i." = }'n(’ll(‘:‘) — b‘ll(—)) (28)
I=yu - but+) £ ) (29)
that 1is
[ E bl | ut®
i = ¥y ) 30
‘ l.l;‘ _] 70 o b E} [ ! :i ( )
By using (27) it can be written:
K - E b TE BT Ju u;
"}:y‘” H ] ‘l:Y[ (31)
- lj b E b EA 7’(‘{].‘ ll]

The admittance matrix of the transmission line section is accordingly found

to be
v - E -b] [E b )
Y=Y o el E| (32)

Let us take correlation (20) into consideration and perform the indicated
operations. Then we obtain that

v—y ook T —E sinh Ti=|" P (33)
—-E coshT'l p )
where
v/ = y,coshT [-sinh™ 1T (34)
and

p =— y,sinh?T'[. (35)
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r’ and p’ are quadratic matrices of the mth order, where m is the number of
the overhead conduetors in the transmission line section.
Let us form a hypermatrix from matrices r’ and p’ in the following way.

[T, o 0. . . o

R —|° r, e. . . d (36)
o o 0. .. K]
Dy o o o]

p—|° p. © 0 (37)
| o . (') 0 Pr |

The order of the matrices obtained in this way is identical with the number of
conductors in the system. Let us still form the nth order quadratic matrices

rj =15t (38)
and
P=4D Y (39)
We shall need also the matrices
ry o o
o r, . . . ©
e (0
o o 1
and
P 6 . . . o
o P - - . ©
potere=|’ P 4y
o o . . . P

The elements of these matrices are of the nth order and the individual admit-
tance parameters are at the places corresponding to the general numbering.

Characterization of the network components at the vertices

There may be consumers or generators at the vertices. These network
components are regarded as active linear (n -+ 1) poles. As limiting cases, net-
works containing only passive consumers, and solely ideal gemerators, res-
pectively, can be considered.
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The terminal of the examined (n -+ 1) pole connected to the earth (Fig. 7)
is designated by the index 0. The numbering of the other terminals corresponds
to the general numbering of the conductors to which they are connected.

Let us form the column vector u; out of the voltages of terminals desig-
nated by 1,2, ..., n with respect to the earth, and column vector i;; out of
the respective currents. For a number m of the terminals of the network
components connected to the vertex (m <n), in column vectors u; and i,

there is a 0 at the places corresponding to the order number of the absent

Uen

e

“f

Fig. 7

terminals. From the voltages of the terminals of the network components
connected to the vertex, with respect to the earth, the column vector can be
written for an open-circuit line, designated by u,. By employing the principle
of superposition we obtain the correlation

Ug = Uy + 2y i, (42)

where z,; is the impedance matrix of the network component. For the deacti-
vated network component ¥, = 0 and then

Uy == — Zg; iy (43)

In the knowledge of the connection and of the electric characteristics of the
network part this matrix equation and from this zg can be written.

If the network part contains exclusively ideal voltage generators, then
Zy; = 0, and thus

Uy = Uy (44)
If in turn the network part is passive, then uy = 0, and

zgi = Zy; (45)

6 Periodica Polytechnica” El. XIIT/4
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where z; is the impedance matrix of the consumers.
Equation (42) can be written for some of the vertices (i =1,2,...,¢)
and these can be summarized in the following relationship.

U,=U,+2,1, (46)
hence:

I,=Y,U,—Y,U, (47)

where U, U, and I. denote the column vectors formed from the matrices u,;,
Ug; and iy, respectively, in accordance with the order numbers of the vertices,

Uy Uy 21
Ueo ug? icz
U,= 3 Ug= s I,= (48)
_uCC__ __uEC_ L LCC —
Z, is the hypermatrix
Zg o o
0 Z o
Z,= 8 (49)
S5
o 0 Zgc
formed of the matrices zg, and Y, is its reciprocal:
e -
Y, =Z; (50)

(ircuit equations

In the foregoing the determination of the circuit equations for the
network was prepared.

At the ith vertex ends of transmission line sections, voltages u; are
equal and identical with vertex voltage u.;. In the followings the vertex voltages
are assumed to be unknown and with this the circuit equations are written in
such a way that the Kirchhoff loop equations should be satisfied automatically.

To a vertex nnodes belong at maximum, The node rule should be satisfied
for each node. The node equations for the nodes at a vertex are written in a
single matrix equation.

Currents flowing to or from a node of some of the vertices can be con-
sidered as the sum of three groups. To the first group those currents belong the
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direction of which is identical with the reference direction of the respective
branch. The second group contains the currents the direction of which is
contrary to the reference direction of the respective branch. Finally the third
group contains the currents of the generators and impedances at the vertex.
If the hth section is connected to vertices (i) and (j) and its reference
direction is given from (i) towards (j), then the current of the section in the

first group is found to he
Upi = Ep Ui+ Ppl; (51)

f6)

Fig. 8

Similar equations can be written for each section. The system of equations
obtained in this way can be summarized as follows.

1%

I'= L R(A* +ANU + - P(A* — AN U 2

L

The column vector formed of the currents of the first group is given in our
example by

kY RAUES T
i By Uy -+ Prly
i, T Uy — Pty
” iy Tl TPy U =
I= 15 . Ty Uy Ps s (!)3)
Zg3 Tg Uy —+ Py Uy
i3 B U TP U
| g3 | T Uy P Us |

The subseript of r and p is the order number of the section, that of u the order
number of the vertex. The first subscript of the currents forming I” indicates
the branch, while the second one the vertex (Fig. 8/a).

The current of the hth section belonging to the second group is

Ty = P Uy -+ Th U, (54)

6*
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Similar equations can be written for each section. This system of equations is
the following.
* * - 1 * = 7 . -
I = %- P(A"+ AD U+~ R~ A) U (55)

In our example

These currents are indicated in Fig. &/b.
The currents of the generators and impedances arranged at the vertices
were expressed in the previous chapter [see (47)].

I.=Y,(U,— U, (57)

The currents should satisfy the node equations. From the individual nodes of
the vertices the currents written in I’ flow away. Let us form from these the
sum of currents belonging to the individual vertices and let I denote the
column matrix formed from these.

L= —(A+A)T (53

By using our previous results, we obtain in our example, that

Tyl Pyl
Ty Uy = P Uy + T5 Uy + Ps U
7| YUy P Uy T Uy PL Uy T Uy - Py U
P

Byly 7 Pyy T T3y

|- .

0

2]

In Fig. 8/a those currents are indicated, among which the sum of those belong-
ing to one vertex supplies one element of column vector I7. Their direction iz
identical to the reference direction of the respective sections.

The branch currents forming I7 flow away from the individual nodes of
the vertices, from which we obtain. upon avranging by vertices, the following
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column matrix I;.

|~

"= (A —A)I" (60)

~

L

Let us write also this for the discussed example,

Poly T Lol T Pylly X3
Pyl XUy

Lo L |
I Py Uy Ty Uy 7 Ps U Ky Uy 1 (61)
€T PelUp T Te Uy

Ps U3 T Tg Us ‘

Pr Uz + Iyl {

Currents in I, flow towards that node of the vertex, from which the current
corresponding to the elements of I{ and I{ flows away. Thus the matrix form
of the node rule, upon using (57), (58), and (60), further (52) and (55), is found
to be
P 1 e A . 1T
LI —I.=—(A+A)[RA* - A) - PA* — AU, +

- % (A — A)[P(A* - A") - R(A* - AN U, + YU, — Y, U, =0 (62)

Upon arranging:

H— AR 1+ P)A* © -i— A (R —P)A* - §J U.=Y,0, (63)

The multiplication factor of U, in equation (63) will be termed the vertex
admittance matrix.

ot

Y. = A(R - P)A* — AR —P)AT - Y, (61)

o

Let us write its first two members for our example.

1 ,

TA(R L PYA* —1— AR —P)A% = (65)
1y P Py Ps o o =

P Xy T 1 Ps P o o

. Pa Bs e L Tl Tl ol Ps Ps | L

B | 51 j R R o

o ° Ps 0 rg 0

B ) 0 - o o E. J
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This hypermatrix is seen to be symmetrical. The main diagonal includes matrices
r belonging to sections coincident with the vertex corresponding to the row
(column). The other matrix elements are the matrices p pertaining to the section
connecting the vertices corresponding to rows and columuns. If the two vertices
are not connected by a section, then the corresponding element of the hyper-
matrix is o.

If one or more of the generators connected to the vertices are ideal ones,
then the respective elements in Y, are infinitely high. In this case it is advisable
to rewrite equation (63) so that it includes Z, = Y;!

1 ] ) .
{TZg[A(R+P)A*+A,.(R—P)Aj%]+E}Uc:ug (66)
From these the required matrix U, is
1—1
U, = [_}A(R L) A% L %-A,-(R —P)Ar Y, } YU,  (67)

and
U, = {i Z,[AR + P)A* - A(R —P)A* - E| U (68)

2 |
In the knowledge of U, currents I’ and I’ can be calculated on the basis of
(52) and (53) and thus the problem may be regarded as solved.

Summary

Electrical energy is distributed by transmission line systems. The individual sections of
these transmission lines consist of coupled conductors. Processes taking place in them can be
described by matrix functions. Relationships for the connected transmission line sections can
be summarized by employving the graph theory in matrix equations. Thus the complete system
can be characterized by a single equation containing hypermatrices.
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