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The main purpose of control systems is to eliminate the effect of the dis-
turbances d(¢) and to influence the controlled variable ¢(t) in such a way that
the latter should approach or follow the constant or changeable input r(¢) with
the highest possible accuracy (Fig. 1). This general requirement can be decom-
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Fig. 1. Simple control system. Here 7(¢) is the reference input, e(t) is the error, ¢(t) is the
controlled variable. d(t) is the disturbance. G(s). Gp(s). Gy(s) are the transfer functions of
the controller. plant and disturbance, respectively

pssed to several partial demands. The first of them is the minimization of the
control deviation or error e(t) under steady state conditions. It is well known
that changes in the reference input r(f) according to unit step-functions can bhe
followed by a type-0 (so-called static) controlsystem only with an error of
finite magnitude, while by a type-1 (or astatic) control system it can be fol-
lowed without any error in the steady-state. Control systems of type-1 may
follow the ramp-function input (the constant-velocity input) with a finite
error, but they are unable to follow the parabolic input (the constant-accelera-
tion input). Finally, control systems of type-2 follow the ramp-function input
without any error and the constant-acceleration input with a finite error.

In addition to the so-called steady-state requirements there are also
several dynamic requirements playing highly important roles. The first
dinamic demand relating to control systems is that of stability, When the system
is deviated from the equilibrum state it must be restored to it. It is also well
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known that the increase of the loop gain deereases the steady-state error but at
the same time the risk of unstable operation becomes more probable. In order
to meet the conflicting requirements compensating elements must be built
into the control system.

In addition to the provisions for stable operation, so-called quality re-
quirements also arise, such as e.g. for comparatively small overshoot, short
settling time, low number of oscillations, etc. It is self-evident that these dynam-
ic requirements can be fulfilled only at the expense of compromises, as the
merit of the control process is generally opposed by the costs of the controller,

It should also be considered that the development of the most advanta-
geous control process depends highly on the means of application. Thus, e.g.
when the rate of flow of a medium is regulated, even considerable overshoots
can often be permitted which, in case of voltage regulation are, on the other
hand, not permissible. In the control process of a copying jig lathe, only aperi-
odic positional changes may come into question, even at the expense of the
increase of settling time.

The most advantageous setting of the controller greatly depends also
on whether the effect of the disturbances must be balanced possibly quickly
or the driving signal (command) must be followed at the highest possible rate.
In the latter case, the quality of the disturbance also considerably influences
the selection of the controller parameters. With short duration disturbances
e.g. it is the purpose to amplify the proportional (P) effect, with long-duration
disturbances; on the other hand, the integrating (I) effect.

In the solution of the optimization problem, it is advisable to set out from
the transient processes of the control system, i.e. from the time response
behaviour. The comparatively close relationship between the time domain
and the frequency domain must, however, be taken into consideration. Thus,
the conditions for the optimization can often be determined by the parameters
of the frequency domain.

1. Integral criteria of optimization

The quality requirements for the transient control processes are more or
less conflicting. Compromises can be made by means of the so-called integral
criteria. A dynamic control process is called optimal if a certain pre-selected
integral criterion attains a minimum value. The generalized form of the integral
criterion is the minimization of the functional:

oo

I = S F(x(i) t) dt = min (1)

0

Here F stands for a certain function of two variables at least: of the time ¢
and of a suitably selected signal x(t). For the latter. we may select e.g. the



DETERMINISTIC OPTIMIZATION TECHNIQUES 3

weighting function of the closed-loop system:
x(t) = w(t) (2)

or the difference between the transient response of unit step function and its
steady-state value, that is, the transient component of the transient response:

t -
a(t) = c(t) — c(e0) = [w(t)dt — | w(t)dt 3)
0 i
or the error (being the difference of the reference signal and the controlled
variable):

x(t) = e(t) C

or when examining the effect of the disturbance the controlled variable itself is:

x() = et (5)

There are, of course, also further possibilities for selection.

Note that the integral criterion contains simultaneously also the effect
of signal x(t) and of time ¢. The function to be integrated shall be selected
intentionally to characterize suitably, on one hand, the quality of the transient
process (e.g. by considering both the overshoot and settling time) and, cn the
other hand, to assume a comparatively simple form to give possibly simple rela-
tions with the system parameters. The requirements here mentioned are also
more or less conflicting. Therefore, it is not surprising that integral criteria of
the most varied shapes are found in the technical literature. Sovietic workers,
Kaarxevice [1], FErpBaum [2], Krasovsky [3] have, in the {irst place,
suggested linear integral criteria weighted with certain powers of time:

1, = bg' x(r) dt

I, = tx(i)di (6)

I = | t"x(t) dt

0

and also the following generalized quadratic integral criteria:

210

I = [ #(1)dt
0

o

Loy = | [0+ &2 (0)]de (7)

0

oa (n)

Ly = [ [ () + 1522 (1) + ..+ 7 (2(1))

0

[E)

]dt



Though the linear criteria can be used primarily for the evaluation of
aperiodic processes, the quadratic integral criteria are suitable for the analysis of
both aperiodic and oscillatory processes.

In addition to the generalized quadratic integral criteria, the simple
quadratic criteria are similarly often used; these criteria often occur in their
shape weighted by time (time-multiplied criteria) [4, 5, 6, 7, 8]:

Iy = { 2(t) dt
0

Ly= | ta*(t)dt (8)

I, = ( £22()dt

0

The most obvious criteria would be the integral criteria for absolute
values, suitable for the evaluation of both the aperiodic and overshooting
processes. Unfortunately, the mathematical treatment of the absolute values is
difficult and therefore research workers rather use the quadratic criteria in
mathematical analysis. With analogue computers, it is, however, easy to
analyze the control system, based on the absolute value criterion. The form
of the absolute-value criteria is:

o

g x(t) dt

[
2
I

Many other criteria can, of course, be similarly designed.

In connection with the integral criteria, there are particularly two ques-
tions which are worthy of attention. The first question is as follows: what kind
of relationship occurs between a certain integral criterion and the parameters
of the transfer function (e.g. the coefficients or time constants, gain factors).
The significance of raising this question is that the relations of the control
system are usually specified in the complex-frequency (or operator) domain
and though the return to the time range is theoretically simple, in practice this
proves to be laborious and the direct relationship with the system parameters
often becomes bhlurred. The second question, justified by the consideration of
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the high number of the integral criteria, is, whether there exists an optimum
criterion and if so, which one it is. First, the second question is dealt with by
limiting this discussion to some of the more important criteria,

2. The ideal integral criterion

The integral criterion expressing the requirement for a short settling time
and small overshoot in the most manageable dimensioning condition must be
considered as ideal. The comparison could be performed based on the different
transient processes; it is, however, the most purposeful to select as base the
second-order control system and to presume a unit-step input and to take the
control deviation or the error for signal x(z).

The overall transfer function of the closed-loop system is thus (by select-
ing o, = 1)

W(s) = _ (10)

2420511

And the transform of the error occurring on the effect of the unit step:

Xe)=——=—ror—r — = = (11)

By applying this method, Gramanm and Latarop [5] have made compar-
isons for the following eight cases:
(4) | x()dt
)

oo

(B) { x(t) dr
(€ { tx(o)de
(D) | () di (12)
(B) [ x2() de

(F) g tx>(t) dt

o

(G) | ex2(t)drt

(H) (1) di
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The values of each of the integral criteria as functions of the damping
factor { of the second-order system are demonstrated in Fig. 2.

Criteria 4 [9] and C [7] are unsuitable as both yield minima for case
{ = 0 which would correspond to undamped oscillation. Particuarly criteria
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Fig. 2. The values of integral criteria in function of the damping factor £ of the second-order
g
control system

(A) [x@ydes (©) [t x(t) d:  (E) {«* () dts (G)%J}2 22 (1) di

(B)j'fx(r)jdt: (D) \t x(0) de; (F)T10~ lm (t) dt; (H)f—ojze}x(tﬁdt

D [5] and G [5] seem to be suitable, both assuming sharp minima for the value
{ = 0.7 considered to be the most advantageous for second-order systems.
Criterion H has already shown a flatter minimum around { = 0.7 and criteria
B, E and F [10] assume flatter minima for a value of { smaller than 0.7.
Criteria F, G and H being comparatively complicated were left out of further
investigations and criteria B, D and E were subjected to further comparisons
based on the third-order system. Criterion D proved to be the most advanta-
geous, In technical literature, this criteria is usually called criterion “ITAE"
(integral of time-multiplied absolute value of error). Based on the foremen-
tioned eriterion. GramaM and Latmrop [5] specified the coefficients of
the optimum system, up to the 8th order systems. These coefficients are
summed up in Table 1.

Without aiming at completeness, in the following the relations between
a few integral criteria and the system parameters are examined. thus the first
subject-matter raised at the end of the preceeding paragraph is dealt with.
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Table 1
Coefficients of optimal systems based on the time-weighted absolute value criterion
(Integral of time-multiplied absolute value of error)
n ; ag ag a, a; ! a, a, a, a; ; a,
n
. Gy Wy
W(s) =
) ags” g o8N ey Fls day g
1 1.00 1.00
2 1.00 1.40 1.00
3 1.00 1.75 2.15 1.00
4 1.00 2.10 3.40 2.70 1.00
3 » 1.00 2.80 5.00 5.50 3.40 1.00
6 1.00 3.25 6.60 8.60 7.45 3.95 1.00
7 1.00 | 4,475 10.42 15.08 15.54 10.64 4.58 1.00
8 1 5.20 ¢ 12.80 21.60 25.75 22.20 13.30 5.15 1.00
ney | n
) a; wel's + ag oy
W(s) = . 1 ; . n
S - Speg WS L a7 s 4 ag g
2 i 1.00 | 3.20 1.00
3 1.00 | 1.75 3.25 1.00
4 1.00 2.41 . 4.93 3 1.00
5 1.00 2,19 6.30 | 6.30 5.24 1.00
6 1.0 | 6.12 13.42 17.16  14.14 6.76 1.00
) a, w2t st - ay o s ay off
W(s) = o oy . n—y . n
Ap§ — Ap3 Wy S IR Rl ST £ P T el ¢ F £ P
3 100 297 494 1.00
4 100 371 0 7.88 593 1.00
5 1.0 381 9.94 1344 T.36 100
6 100 393 1168 1856 & 19.30 | 8.06  1.00
3. Evalution of integral criterion I
g 10
The linear integral criterion:
1= S x(t) dt = min 13)

0

is the most simple criterion. Unfortunately, this criterion is not suitable for the
evaluation of oscillating processes because the positive and negative area
(Fig. 3) are subtracted from each other.
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Fig. 3. Linear integral criterion. If oscillations arrive. positive and negative area are subtracted
from each other

Obviously, the integral criterion can also be expressed in the following
form:

Iy =lim F x(t) e~ dt = lim X(s) = X(0)
5—0 5 o0

0

which will considerably simplify the evaluation.

Example 1
If
T (s) — — 0—(')6 —
2+ 2: 0,8 - 0
and
R(s) =
s

then the transform of the change in the controlled variable caused by the unit
step reference input change r(r) = I{z) is

C(S) R p (O:; —-1-

2L e
87 = 25 (g w; S

and the transform of the error signal:
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This will assume the minimum value X(0) = 0 if { — 0. Thus, according
to this criterion the oscillatory system without damping would be optimal
which, from the physical point of view, is nonsense,

Example 2

Let the transfer function of the closed-loop system be of the following
shape:
bys™—+ ... +bys—+ b

n i i
S ... T ;8 Qg

W(s) = (n > m)

The transform of the error occurring on the effect of unit step can be convey-
ed into the following shape:

X(s) = a,s"+... 4+ (a, —b)s+a,—b, 1

a,s" ... +a, s+ a, s

If ay 5 by, then I, = =c which is understandable from a physical point
of view as in this case
r(ec) = lim s R(s) =1

=0

and, at the same time,

¢(cc) == lim s C(s) = lim W(s) = bo =+1
s0 §=0 @y
thus
’ b() /
x(o0) = r(oo) — C(oo) =1—-—2=L0
ag

would exist. The condition for the application of criterion I,;is thus that the
controlled variable would comply with the reference input and the contrsl
deviation be consequently equal to zero in the steady-state. This condition is
fulfilled if @, = b,. in this case

n-—1 _i

! 1
Y(s): Choq S T ... 6y S Gy
a,s" 4+ ...+ a, s+ q,
and
B ¢ a, — b
e o % 1
Ly=X(0) = = S0
a, a,

This assumes minimum value if
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4. Evaluation of integral criterion I,

The integral criterion weighted with a certain power of time is
I,= j t" x(t) dt = min (14)
0

Aceording to a rule of the Laplace transforms:

m

ds™

[ x(t) e~ dt = (— 1)

0

X(s) (15)

and thus the integral in question can be evaluated on base of the following

formula:

Ilm = lim [(_ 1)m d X(S)] (16}
P ds™

It is also mentioned here that the integral weighted with a power of
time is suitable for the caleulation of the so-called equivalent time-constants:

m m
[ fesga |y X
T 1/ as™ (17)
erm T 4 > - / g g
; { x(0) di I X(s)
0 1§=0

provided that there is a positive quantity below the root-sign.

Example 3

In Example 1 it could be seen that

@

X(s) = s = 28 m,
- - S:_!_Of'c) . 2
e (g8 T Uy
As
(— 1),£l~ X(s) = s* -4l wys + (480 — 1) v}
ds (52 4+ 2wy s + ;)2
therefore,
21

B o

.. . .. 2 -
attaining its minimum of value — 1jwg when { = 0. (On the other hand, when

2 =10.5, then I; =0.)
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Example 4

Based on the results of Examples 1 and 3 the equivalent time constant is

T 41 20 421
elm = B . o R
; ON 20w,

Physical interpretation can be given only if { > 0.5.

5. The generalized quadratic integral criterion

The most simple form of the generalized quadratic integral criterion [13] is
Iy = | (2 7i4%) dt (18)
0

By completing this term to full quadratic expression and by partial
integration, the following form can be obtained:

o

Ly = [ (v 1@ dt — ( 2ryxidt = [ (x5, 42 di+7,22(0) (19)
0 0 0

provided that x(>c) = 0. The integral can also be expressed in the following
form:

=

0

This obviously attains its minimum if the transient process x(¢) comes
the closest to the solution
:

71

=x, €
of the differential equation

% +x=0
determined by the initial condition

x(0) = x,
In case of complete equality,

Loy = €y = 7,27 (0)
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The generalized n-order quadratic integral criterion [13. 14, 15] is:
e . o A
Iy = ((x'3+‘clx'3-}—...—{—T,—{’(x)")dt (21)
0

By completing it to full quadratic term and by subsequent partial inte-
gration and considering the initial conditions

. (m
2x(0) =2p; 2(0)=...=2xa(g) =0
and the end-values
()
x(oo) = aoo) = .. .= x(cc) =0

it can generally be conveyed to the following form:

= . () , -
Ig(n):j (x +opa .. Fa,x)dt -+ G (22)

<

where

4= g2 — 2, 9y )
T3 = o5 — 2oty 2y -+ 2252y (23)
7§ = af — 2oty g -+ oty oty — o2t
ied ¢ B

th = %y

The correctness of these relations which exist between the constants x
and the weights 7 are proved by elementary methods in reference [11], and by
variational calculus in reference [12], therefore, here we will not go into details.

Everywhere in these terms, x, = 1 and «, is figuring only in order to
make the relationships symmetrical.

The lowest value of I, is C. This occurs when x(t) is just equal to the
solution of the differential equation

(1) (n—1)
Iy X Uy X =y X0y ==0 (24)

with the forementioned initial conditions.

From the coefficients x, . . , %, of the differential equation predefined as
the aim of the approximation, the coefficients 7., . . , 7, of the integral criterion
can be determined by means of the aforedescribed formulae (23).
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The integral criterion proper can be computed purposefully in the fol-
lowing form:

n . _
I-z(n) = 2 73! Togsy s (to=1) (25)
i=0
where
= (i) .
Tygiy = S (x)dt (26)
)

Thus, the calculation of the generalized quadratic integral criterion can be
traced back to the evaluation of the unweighted, simple quadratic integrals.

Example 5

Tt is not difficult to demonstrate [11], that with preselected weights 7, 7,.
the most advantageous transient process is the solution of differential equation

3% i+ 2tia =0

Example 6

Let us determine the damping factor { of the second-order control
system 7o enable that the error as response on the unit step-function input may
approximate to the closest possible extent the transient process defined by the
wol

exponential function e
Transform of the error is

Lo~
S &0 (g

Fx(n)] = X(s) =

a

§* 20 oy s + of

and the transform of its differential quotient:

2
— My

()] =s X(s) — x, = R
Rk Acd1] | 0

bhecause

xg = x(0) = s X(s) o =1

The simple quadratic integral values are, in the given case,
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which can be obtained, for example, by the theorem of residues or by evaluat-
ing tables [see e.g. 16] based on PARSEVAL’s theorem.

As presently 7, = 1/w,, therefore, according to Eq. (25),

o 402 - 2
Loy = ooy + 71 Logy = ———
4{w,
The minimum is attained if
BIy) 200 —1 —0

that is

Summary

The paper gives a short survey on the optimization techniques based on integral criteria.

First, the integral criteria are classified and compared to one anether. Then the evaluation
methods relating to the connection between the frequency domain and time domain are
shown. Some results are illustrated by simple examples.
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