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The main purpose of control 5ystems is to eliminate the effect of the dis
turbances d(t) and to influence the controlled yariable c(t) in such a way that 
the latter should approach or follow the constant or changeable input r(t) with 
the highest possible accuracy (Fig. 1). This general requirement can be decom-
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Fig. 1. Simple control system. Here T(!) is the reference input, e(t) is the error, c(1) is the 
controlled variable, d(t) is the disturbance, Gc(s), Gp(s), Gd(s) are the transfer functions of 

the controller. plant and disturbance, respectively 

pssed to seyeral partial demands. The first of them is the minimization of the 
control deviation or error e(t) under steady state conditions. It is 'well known 
that changes in the reference input r(t) according to unit step-functions can be 
followed by a type-O (so-called static) control system only with an error of 
finite magnitude, while by a type-1 (or astatic) control system it can be fol
lowed without any error in the steady-state. Control systems of type-1 may 
follow the ramp-function input (the constant-velocity input) 'with a finite 
error, but they are unable to follow the parabolic input (the constant-accelera
tion input). Finally, control systems of type-2 follow the ramp-function input 
without any error and the constant-acceleration input 'with a finite error. 

In addition to the so-called steacly~state requirements there are also 
seyeral dynamic requirements playing highly important role5. The first 
dinamic demand relating to control sY5tems is that of stability. When the system 
is deyiatecl from the equilibrulll state it must be restored to it. It is also 'well 
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kno'wn that the increase of the loop gain decreases the steady-state error but at 
the same time the risk of unstable operation becomes more probable. In order 
to meet the conflicting requirements compensating elements must be built 
into the control system. 

In addition to the provisions for stable operation, so-called quality re
quirements also arise, such as e.g. for comparatively small overshoot, short 
settling time, low number of oscillations, etc. It is self-evident that these dynam
ic requirements can be fulfilled only at the expense of compromises, as the 
merit of the control process is generally opposed by the costs of the controller. 

It should also be considered that the development of the most advanta
geous control process depends highly on the means of application. Thus, e.g. 
when the rate of flow of a medium is regulated, even considerable overshoots 
can often be permitted which, in case of voltage regulation are, on the other 
hand, not permissible. In the control process of a copying jig lathe, only aperi
odic positional changes may come into question, even at the expense of the 
increase of settling time. 

The most advantageous setting of the controller greatly depends also 
on whether the effect of the disturbances must be balanced possibly quickly 
or the driving signal (command) must be followed at the highest possihle rate. 
In the latter case, the quality of the disturbance also considerably influences 
the selection of the controller parameters. With short duration disturbances 
e.g. it is the purpose to amplify the proportional (P) effect, with long-duration 
disturbances; on the other hand, the integrating (1) effect. 

In the solution of the optimization problem, it is acl\-isable to set out from 
the transient processes of the control system, i.e. from the time response 
behaviour. The comparatively close relationship between the time domain 
and the frequency domain must, however, be taken into consideration. Thu~. 
the conditions for the optimization can often be determined by the parameters 
of the frequency domain. 

I. Integral criteria of optimization 

The quality requirements for the transient control processes are more or 
less conflicting. Compromises can be made by means of the so-called integral 
criteria. A dynamic control process is called optimal if a certain pre-selected 
integral criterion attains a minimum value. The generalized form of the integral 
criterion is the minimization of the functional: 

1= r F(x(t), t) dt = min 
o 

(1) 

Here F stands for a certain function of two variables at least: of the time t 

and of a suitably selected signal x(t). For the latter, we may select e.g. the 
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weighting function of the closed-loop system: 

x(t) =W(t) (2) 

or the difference between the transient response of unit step function and its 
steady-state value, that is, the transient component of the transient response: 

t ~ 

x(t) = c(t) c(=) J wet) dt - J wet) dt (3) 
o 0 

or the error (being the difference of the reference signal and the controlled 
variable): 

x(t) = e(t) (4 

or when examining the effect of the disturbance the controlled variable it:3elf is: 

x(t) = e(t) (5) 

There are, of course, also further possibilities for selection. 
Note that the integral criterion contains simultaneously also the effect 

of signal x(t) and of time t. The function to be integrated shall be selected 
intentionally to characterize suitably, on one hand, the quality of the transient 
process (e.g. by considering both the overshoot and settling time) and, on the 
other hand, to assume a comparatively simple form to give possibly simple rela
tions with the system parameters. The requirements here mentioned are also 
more or less conflicting. Therefore, it is not surprising that integral criteria of 
the most varied shapes are found in the technical literature. Sovietic workers, 
KHARKEVICH [1], FELDBAu:cYr [2], KRASOVSKY [3] have, in the first place, 
suggested linear integral criteria weighted with certain powers of time: 

110 = r x(t)dt 
o 
= 

III = J tx(t)dt 

11111 

o 

= 

\' tm x(t) dt 
if 

and also the follo·wing generalized quadratic integral criteria: 

= 

I~(o) \'x2 (t)dt 
o 

12(1) = I' [X2 (t) rf;\;2 (t)] dt 
o 

(6) 

(7) 
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Though the linear criteria can be used primarily for the evaluation of 
aperiodic processes, the quadratic integral criteria are suitable for the analysis of 
hoth aperiodic and oscillatory processes. 

In addition to the generalized quadratic integral criteria, the simple 
quadratic criteria are similarly often used; these criteria often occur in their 
shape weighted hy time (time-multiplied criteria) [4,5,6,7,8]: 

I~o = \' x2 (t) dt 
o 

121 = j" t x 2 (t) dt 
o 

122 \' t~ x 2 (t) dt 
o 

(8) 

The most obvious criteria would he the integral criteria for absolute 
values, suitahle for the evaluation of both the aperiodic and overshooting 
processes. Unfortunately, the mathematical treatment of the absolute values is 
difficult and therefore research workers rather use the quadratic criteria in 
mathematical analysis. With analogue computers, it is, however, easy to 
analyze the control system, hased on the absolute value criterion. The form 
of the absolute-value criteria IS: 

loo = \,x(t) dt 
o 

101 = \" {x(t) dt 
o 

Ia~ = \' t2 :x(t). dt 
o 

Many other criteria can, of course, be similarly designed. 

(9) 

In connection with the integral criteria, there are particularly t·wo ques
tions 'which are worthy of attention. The first question is as follows: what kind 
of relationship occurs between a certain integral criterion and the parameters 
of the transfer function (e.g. the coefficients or time constants, gain factors). 
The significance of raising this question is that the relations of the control 

system are usually specified in the complex-frequency (or operator) domain 
and though the return to the time range is theoretically simple, in practice this 
proves to he lahorious and the direct relationship with the system parameters 
often hecomes blurred. The second question, justified by the consideration of 
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the high number of the integral criteria, is, 'whether there exists an optimum 
criterion and if so, which one it is. First, the second question is dealt with by 
limiting this discussion to some of the more important criteria, 

2. The ideal integral criterion 

The integral criterion expressing the requirement for a short settling time 
and small overshoot in the most manageable dimensioning condition must be 
considered as ideal. The comparison could be performed based on the different 
transient processes; it is, however, the most purposeful to select as base the 
second-order control system and to presume a unit-step input and to take the 
control deviation or the error for signal x(t). 

The overall transfer function of the closed-loop system is thus (by select

Ing Wo = 1): 
1 

W(s)=----
S2 2; s + 1 

(10) 

And the transform of the error occurring on the effect of thc unit step: 

X(s) = 1 _ 1 
- s s~ + 2;s + 1 

1 
(11) 

s 

By applying this method, GRAHA2I1 and LATHROP [5] have made compar
isons for the follo'wing eight cases: 

(A) \' x(t) dt 

= 

(B) (' x(t)dt 
.' 
0 

= 

(C) \' tx(t)dt 

= 

(D) \' tx(t) dt (12) 
0 

= 

(E) r x2 (t) dt 
0 

= 
(F) J t x2 (t) dt 

0 

= 

(G) J t2 x2 (t) dt 
0 

(H) .1 t2 x(t) dt 
0 
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The values of each of the integral criteria as functions of the damping 
factor ~ of the second-order systcm are demonstrated in Fig. 2. 

Criteria A [9] and C [7] are unsuitable as both yield minima for ease 
, = 0 which would correspond to undamped oscillation. Particuarly criteria 
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Fig. 2. The values of integral criteria in function of the damping factor: of the second-order 
control system 

(A) .\·x(t)dt; (C).\'t x(t) dt; (E)·.\'x~(t)dt: (G) 11u Jt~x"(t)dl 

(B) fx(t) dt: (D) .I't x(t):dt: (F) 110 J t x" (t) dt: (H) 110 f t"lx(t)dt 

D [5] and G [5] seem to be suitable, both assuming sharp minima for the value 
(, 0.7 considered to be the most advantageous for second-order systems. 
Criterion H has alreadv shown a flatter minimum around ~ = 0.7 and criteria 
B, E and F [10] assume flatter minima for a value of ~ smaller than 0.7. 
Criteria F, G and H being comparatively complicated were left out of further 
investigations and criteria B, D and E were subjected to further comparisons 
based on the third-order system. Criterion D proved to be the most advanta
geous. In technical literature, this criteria is usually called criterion "ITAE" 
(integral of time-multiplied absolute value of error). Based on the foremen
tioned criterion, GRAHA}I and LATHROP [5] specified the coefficients of 
the optimum system, up to the 8th order systems. These coefficients are 

summed up in Table 1. 
\Vithout aiming at completeness, in the following the relations between 

a few intf'graJ criteria and the system parameters are examined, thus the first 

subject-matter raised at the end of the preceeding paragraph is dealt with. 
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Table I 

Coefficients of optimal SYstenlS based on the time-weighted absolute 

1 

2 

3 

4· 

5 

6 

7 

8 

2 

3 

4 

5 

6 

3 

4 

.J 

6 

(Integral of time-multiplied absolute value of error) 

as a, as a, a, a, 

W(s) = 
a o w~ 

I all sn + an-l OSIl-l ..:.. .•. -'-- al g-ls + ao 
n 
0 

i 

1.00 

1.00 1.75 

1.00 ! 2.10 3.40 

1.00 2.80 5.00 5.50 

1.00 3.25 6.60 8.60 7.45 

1.00 4,475 10,42 15.08 15.54 10.64 

1 5.20 12.80 21.60 25.75 22.20 13.30 

W(s) = 
a o W6 

1.00 

1.00 1.75 

1.00 2.41 4.93 

1.00 2.19 6.50 6.30 

1.00 6.12 13.42 17.16 14.14 

-~~---

W(s) = 
Q:! w;;-:! s:! a l (!)~-1 s a o (!)~IZ 

all S 
11 

G n- l (UI) Sfl-l ~ ..• -;- a1 wg-1 s""':'- a o w~ 
------.-.-~-

1.00 ~.97 

1.00 3.71 7.88 

1.00 3.81 9.% 13.:14 

1.00 3.93 11.68 18.56 19.30 

3. Eyalution of integral criterion 110 

The linear integral criterion: 

\. x(t) dt = min 
o 

7 

value criterion 

a 1 a, 

1.00 1.00 

1.40 1.00 

2.15 1.00 

2.70 1.00 

3.40 1.00 

3.95 1.00 

4.58 1.00 

5.1.5 1.00 

3.20 1.00 

3.25 1.00 

5.14 1.00 

5.24 1.00 

6.76 1.00 

4.94 1.00 

5.93 1.00 

7.36 1.00 

8.06 1.00 

(13) 

is the most simple criterion. "Unfortunately, this criterion is not suitable for the 
eyaluation of oscillating processes hecause the positiye and negatiye area 
(Fig. 3) are suhtracted from each other. 
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x 

Fig. 3. Linear integral criterion. If oscillations arriYe. positive and negative area are subtracted 
from each other 

Obviouslv, the integral criterion can also be expressed in the following 

form: 

IlO = lim I" x(t) e- st dt 
s-;-O b 

linLY(s) 
s-·o 

'which 'will considerably simplify the eyaluation. 

Example 1 

If 

W(s) 

and 

R(s) 
I 

s 

X(O) 

then the transform of the change in the controlled yariable caused by the unit 

step reference input change r(t) = l(t) IS 

C(s) 
I 

s 

and the transform of the error signal: 

X(s) E(s) = R(s) C(s) 

The yalue of the linear integral will he 

.., '-

X(O) 



DETERJIl.YISTIC OPTIJIIZATIOX TECHSIQCES 

This will assume the minimum value X(O) = 0 if: ->- O. Thus, according 
to this criterion the oscillatory system without damping would he optimal 
which, from the physical point of view, is nonsense. 

Example 2 

Let the transfer function of the closed-loop system he of the folIo-wing 

shape: 

W(s) = (11 > m) 

The transform of the error occurring on the effect of unit step can he conyey

ed into the following shape: 

X(s) = 

If a o ,= bo' then I lo 
of view as in this case 

and, at the same time, 

c( co) 

thus 

x(co) 

1 

s 

Xl which is understandahk from a physical point 

r(co) = lim s R(s) = 1 
s-o 

lim s C(s) = lim W(s) 
s--o 5_0 

r( co) c( co) 

would exist. The condition for the application of criterion I10 i5 thus that th,> 
controlled variable -would comply -with the reference input and the contr-,)i 

deviation he consequently equal to zero in the steady-state. This condition i~ 

fulfilled if ao = boo in this case 

X(s) 

and 

X(O) = ~ = 
ao 

This assumes mlIlllllUlll value if 
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4. Evaluation of integral criterion I lln 

The integral criterion weighted with a certain power of time is 

= 

I 1m = J tm x(t) dt = min 
o 

According to a rule of the Laplace transforms: 

= dm r tm x(t) e- st dt = (- l)m -- X(s) 
6 dsm 

(14) 

(15) 

and thus the integral in question can be evaluated on base of the follo,ving 
formula: 

11111 = lim l( _1)m ~ X(S)l 
s~·O dsm 

(16) 

It is also mentioned here that the integral weighted with a power of 
time is suitable for the calculation of the so-called equivalent time-constants: 

m, ______ _ 
= J f71 x(t) dt 

o 
= 

\. x(t) dt 
o 

m 

1, 

r (- l)m d
m 

X(s) 
, dsm 

, 
, X(s) 
r 

provided that there is a positive quantity below the root-sign. 

Example 3 

In Example 1 it could be seen that 

therefore, 

X(s) = -----"--
s~ (U~ 

In \. t x(t) dt 
o 

(17) 

attaining its minimum of ,-alue - l/cog when: = O. (On the other hand, when 
:: = 0.5, then III = 0.) 
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Example 4 

Based on the results of Examples 1 and 3 the equivalent time constant is 

Physical interpretation can be given only if ; > 0.5. 

5. The generalized quadratic integral criterion 

The most simple form of the generalized quadratic integral criterion [13] is 

'" . 

I r ( 0, 2· .') d 
2(1) = J X- T '1 X- t 

o 
(18) 

By completing this term to full quadratic expression and by partial 
integration, the following form can be obtained: 

= = = 

J 2(1) = J (x + T1X)2 dt J 2'l xxdt = J (X+T1X)2 dt 7"lX2(0) (19) 
o o 0 

provided that x( =) 
form: 

O. The integral can also be expressed in the following 

= 

I 2(1) = J (x (20) 
o 

This obviouslv attains its minimulU if the transient process x(t) comes 
the closest to the solution 

x(t) = Xo e 

of the differential equation 

determined by the initial condition 

x(O) Xf) 

In case of complete equality, 

t 
Tj 



12 F. CSAKI 

The generalized n-order quadratic integral criterion [13, 14, 15] IS: 

= 
I - r (>.2 ,'.2 I 

2(n) - I x I T 1 X I'" 
iJ 

(n) 

T~n (x r) dt (~I) 

By completing it to full quadratic term and by subsequent partial inte
gration and considering the initial conditions 

(n) 
x(O) = xO; :\:(0) X (0) = 0 

and the end-yalues 
(n) 

x( co) = x( co) ... = x( co ) 0 

it can generally be conyeyed to the following form: 

= (n) 

12(,,) = r (x 7.1 X 

o 
7." x)2 dt C o 

,,-here 

(~3 ) 

The correctness of these relations which exist between the constants 7-

and the weights Tare proyed hy elementary methods in reference [ll], and J)y 
,-ariational calculus in reference [12], therefore, here ,~-e will not go into details. 

Everywhere in these terms, 7-0 1 and 7.0 is figuring only in order to 
make the relationships symmetrical. 

The lowest value of 12(11) is Co- This occurs when x(t) is just equal to the 
solution of the differential equation 

(n) (n-I) 

'Xn X + xn- 1 X (:24) 

with the forementioned initial conditions. 
From the coefficients 7.n, •• , 7.0 of the differential equation predefined as 

the aim of the approximation, the coefficients T l' .. , Tn of the integral criterion 
can be determined by means of the aforedescribed formulae (23). 
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The integral criterion proper can be computed purposefully III the fol

lowing form: 

'where 

11 

12(11) =:1 T[i 120u); (To = 1) 
i=O 

= (i) 

120U) = I' (x f dt 
o 

(25) 

(26) 

Thus, the calculation oft11e generalized quadratic integral criterion can be 
traced back to the evaluation of the un'weighted, simple quadratic integrals. 

Example .5 

Tt is not difficult to demonstrate [11], that with preselected weights T)' T2, 

the most acl"vantageous transient process is the solution of differential equation 

. ) .. 
T~X 

Example 6 

jf ., I ~ ., • 
,Ti.., ::':T2 x 

Let us determine the damping factor : of the second-order control 
system 10 enable that the error as response on the unit step-function input may 
approximate to the closest possible extent the transient process defined by the 
exponent ial function e -wo!. 

Tr"nsform of the error is 

.q[x(t)] = X(s) = _______ ---'c __ _ 

s:! 

and the transform of its differential quotient: 

,Y[x(t)] = s X(s) - xo 

because 

xo = x(O) = s X(s) ,5=0 = 1 

The simple quadratic integral values are, in the given case, 
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which can be obtained, for example, by the theorem of residues or hy evaluat

ing tahles [see e.g. 16] based on PARSEVAL'S theorem. 

As presently "1 Ijwo' therefore, according to Eq. (25), 

2 

The mllllmurn IS attained if 

2~~ -1 
=0 

that IS 

0.707 

Summary 

The paper gives a short survey on the optimization techniques based on integral criteria. 
First, the integral criteria are classified and compared to one another. Then the evaluation 
methods relating to the connection between the frequency domain and time domain are 
shown. Some results are illustrated by simple examples. 
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