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1. Iniroduction

For focusing of charged particles quadrupole lenses are commonly used.
Quadrupole lenses form transverse fields, i.e. their fields are roughly perpen-
dicular to the direction of motion of the charged particle beam. Thus, their
convergence is much stronger than that of axially symmetric lenses. A system
of quadrupole lenses may be fully equivalent to a lens of revolution [1].
It is also possible to accomplish an achromatic compound quadrupole lens
formed by electrostatic and magnetic fields imposed on each other [2]. (As well
known, it is impossible to construct achromatic lenses with rotational sym-
metry.) Compensation of spherical aberration is also possible in quadrupole
lenses. These advantages open up new vistas for increasing the resolving power
of electron-optical devices by using quadrupole lenses.

An ideal electrostatic quadrupole lens consists of four identical infinitely
long hyperbolic electrodes placed at equal distances from the axis of the system,
which coincides with the beam axis. Oppositely placed electrodes are connected
with each other, while neighbouring ones have different voltages. Thus the
whole lens has two planes of symmetry and two planes of antisymmetry.*

It is impossible, however, to put such an ideal lens into practice. Com-
monly used electrodes are of nearly hyperbolic form, but quadrupole lenses
with cylindrical or planar electrodes are also used because of their simpler
construction.

2. Short description of the lenses examined

One of the simplest quadrupole lens types consists of two coaxial cylin-
ders, the internal cylinder being partly cut out. In this work the electrostatic
field distribution of such quadrupole lenses is examined by means of a two-

* A plane, with regard to which the field pattern is geometrically symmetrical but at
whose both sides the fiel | strengths are of opposite direction with respect to the plane, is called
aplaneof antisymmetry.
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dimensional resistance network analogue. Some results presented here had been
published previously in the authors” short communications [3, 4].

Two types of lenses have been studied. In case of the first one four iden-
tical parts are symmetrically cut out from the internal cylinder. The remaining
four parts form a concave cylindrical quadrupole lens. The external cylinder

symmetry planes as well as two planes of symmetry. In case of a long
lens the influence of the ends is not to be considered and the field distribution
practically does not depend on z-coordinate (two-dimensional model). The
whole system may be characterized by its cross section shown in Fig. 1.

iz held at an average potential 7; so the whole system possesses two anti-
v
ns

The second lens type may be derived from the first one by removing an
oppositely placed pair of internal electrodes (Fig. 2). The remaining internal
electrodes are connected and a potential difference is applied between these
electrodes and the external cylinder. This system in general case possesses only
two planes of symmetry (x0z and y0z) and no plane of antisymmetry.
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3. The experimental methed

For measuring the elecirostatic potential distributions of the lenses a
two-dimensional resistance network was used. The network’s linear dimensions
are 120 cm and 200 c¢m in directions x and y, respectively. It has got 44 x 76
intersection points and contains 6568 resistances of 1 4 0.005 k. Values
of the resistances had been doubled on one of the network’s boundaries, which
is coincident with the y-axis (Fig. 1 and 2). It makes possible to use this
boundary as an axis of symmetry and simulate only a half of the system.
(The network analogue belongs to the Department of Theoretical Electricity,
Budapest Polytechnical University.)

Accuracy of data obtainable by measurements on the network has been
established by simulating potential distribution of plane condensers. It is
proved to be better than 0.19,.

Cylindrical electrode surfaces may be represented by parts of circles
in a two-dimensional model. They were approximated by broken lines, connect-
ing every neighbouring intersection point situated near to the electrode’s
contour. The difference between these broken lines and the exact circles, being
about 29; in average, did not exceed 3.8%,. The error arising from this dif-
ference was estimated by measuring the potential distribution of a cylindrical
condenser formed by the electrodes in case of 2 = 0, R/R, = 0.8 (Fig. 2).
The greatest deviation of the potential from the calculated value was found
in the vicinity of the electrodes. The error did not exceed 4°;. (There is a possi-
bility to approximate the electrode contours better by passing over some inter-
section points so that the maximum difference may be less than 19,. But in
this case an additional error arises from the field penetration through the
omitted points. This error exceeds the error arising from the rougher approxi-
mation of the electrode contours. This was the reason why the method of
connecting every neighbouring intersection point was used in our experiments.)

All the distances were expressed in “‘network units”. A network unitis
equal to the distance between two neighbouring intersection points.

4. An elecirostatic quadrupole lens composed of four comncave
cylindrical electrodes and an external ecylindrical chamber

As we have shown in Fig. 1, the internal electrodes of our first lens are
formed by four identical parts of a cylinder with radius R. These electrodes
are held at potentials ') = 2F and }, = 0, respectively. The gaps between
the electrodes are measured by their angular distance 2¢. These internal
electrodes are surrounded by a coaxial external cylindrical chamber with
radius R,, held at the average potential I, which is equal to the potential on
the axis (z) of the system [4].
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In a two-dimensional approximation the potential distribution of this
lens on the x-axis may be expressed by the following series:

NG R Y L R i (1)
RS

where the coefficients K, are constants which depend on the values of 2¢

and R,/R. The symmetry properties are taken into account by the fact that

n=2-+4(1=0,1,2,...).

Coefficients K, had been calculated by BErRNARD [5] for the case when
the external chamber is removed and the potential distribution in the gaps
between the electrodes is assumed to be linear. These assumptions are accept-
able only for small values of the angle 2¢. Using the method of calculation
given in [5] one can obtain the coefficients as functions of 2&:

K, :i sin 2¢ (2)
a 2e
and
4 sinbe
Ki=——r—r—"— 3
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(We note that in [5] the value of K is wrong.)

When the gaps between the internal electrodes are not very small, the
potential distribution of the lens is sufficiently effected by the boundary con-
ditions outside the electrode system. Practically these conditions are deter-
mined by the geometry and potential of the vacuum chamber in which the
lens is arranged. In case of a metallic coaxial eylindrical chamber, held at the
average potential ¥, no change will occur in conditions of symmetry.

Thus, the external boundary of the system was simulated on the resist-
ance network analogue by a circle with radius R, = 35 network units. This is
near to the greatest possible radius on this network. The value of this radius
was constant during the whole experiment.

Radius R of the internal electrodes was altered so that the value of
R,/R varied in the interval 1 < R,/’R <(3.5. The value of the angle 2¢ varied
in the interval 2°20" < 2 < 90°.

The potential was measured at every intersection point on the x- and
y-axes, and also along the straight lines linking the ends of neighbouring elec-
trodes. Potential along thelines at 45° angles to both x and y axes was measured
for checking the symmetry properties and was found equal to the potential
¥ of the lens centre.



FIELD INVESTIGATION OF ELECTROSTATIC QUADRUPOLE LENSES 303

Plots of the potential distribution in the gaps between the electrodes
are given in Fig. 3 in case of R,/R = 1.25. (Here w is the distance from the end
of the electrode held at zero potential.) Curve 1 refers to 2e = 26°, curve
2to 2¢ = 48°, curve 3 to 2¢ = 86°. As it is obvious from Fig. 3, the potential
distribution is quite different from linear (dotted line) and this difference is
growing with the increase of the angular distance between the electrodes.
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Fig. 3
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Coefficients K,, K;, and K,;, were calculated on the basis of potential
measurements along the axis in the interval 0 < x/R < 0.8. For this interval
terms of higher than 10th order were neglected in series (1). The calculations
of the coefficients at each value of R)/R and ¢ were carried out by solving a
system of 3 linear algebraic equations obtained from (1) at three different
values of /R and ¢/V, and also by using the method of least squares for systems
of equations containing all measured values of /R and ¢/V. The results are pre-
sented in Figs 4 and 5.

In Fig. 4 coefficient K, versus 2¢ is plotted for several values of R,/R
{curves 2, 3 and 4referto R,/R = 3.5; R,/R = 1.95; and R,/R = 1.25, resp.)
Curve 1 is calculated from (2). It can be seen that for low values of the angle
2¢ all the curves coincide with each other. When the angular distance 2¢ be-
tween electrodes increases the experimental curves are significantly different
from the curve 1, even if Ry/R == 3.5. As the value of Ry/R tends to 1, this dif-
ference increases and the values of K, decrease.

In Fig. 5 KK, is given as a function of 2¢, for the same values of R,/R
as in Fig. 4. (Notations are the same as in Fig.4.) Curve 1 is plotted on the basis
of formulae (2) and (3). As we can see, for low values of 2¢ the experimental
curves are close to the calculated one. When the value of 2¢ increases, K;/K,
is significantly greater than its calculated value. The difference between them
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rapidly increases as R comes closer to R, bécause of the greater influence of
the external cylinder.

In the limiting case of R = R, the possible minimum angular distance
between two neighbouring elecirodes on the network was 2¢ = 2°20’. That is
a lens composed of a single cylinder which is cut in four identical parts. In this

2&°

case expressions (2) and (3) may be considered as exact formulae and we
obtain: K, = 1.273; K; = —0.423. On the basis of our measurements we
found these coefficients to be K, = 1.27; K; = —0.43. As we can see, experi-
mental data are in very good agreement with the calculated ones.

From the point of view of compensating lens aberrations the case of
K; = 0 is specially important. This case occurs, as it follows from (3), for
2¢ = 60°. But we can see from Fig. 5 that the value of 2¢ at which the coeffi-
cient K is actually cancelled depends on R,/R and for R,/R <{ 3.5 we have:
2¢ == 45°— 50°. In this case the value of the coefficient K varies in the inter-
val —0.2 < K;, < —0.1.
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Al these experimental results were obtained in case of highly thin elec-
trodes. It is obvious that the greater the value of 2¢ the more effective must be
the influence of electrode thickness on the potential distribution. We have
measured the potential distribution of a lens with electrode thickness equal
to 0.1 R. As a result of finite thickness the values of K, increased a little while
the curve of K /K, was displaced in the direction of higher values of . Con-
sequently, we found K; = 0 for 2¢ = 52°—53°.

5. An electrostatic quadrupole lens composed of two paris of a cylinder and an
external cylindrical chamber

If we remove the two oppositely placed internal electrodes held at zero
potential and apply this potential to the external eylinder, we get the second
lens type. So. the two identical parts of an internal cylinder with radius R, are
held at a potential 7, == 2V while the potential of the coaxial external cylin-
drical chamber with radius R, is V, = 0. (From practical point of view it is
convenient to place the chamber at ground potential.) The dimensions of
the two symmetrically placed parallel slits are measured by the angle 22
(Fig. 2). This system had been partly studied in [3] and {6].

In a two-dimensional approximation the potential distribution of this
lens in the xy-plane may be expressed as follows:

— 2 2 a2y TS (A 242 L Ay L
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where R = =3 K, are constants characterizing a lens and depending on

2
geometrical factors R,/R; and 2 «. In general case of arbitrary values of R,/R,
and 2 o the electrostatic field of this lens possesses only two symmetry planes
and no plane of antisymmetry. As it is seen from expression (1), in case of
quadrupole lenses possessing also two planes of antisymmetry the series expan-
sion of the potential distribution does not contain any terms with exponents
divisible by four.

Our main problem was to find for every value of R,/R, such an optimum
value of the angle o« = 2, at which the coefficient K, in (4) vanished. In this
case the potential distribution of the lens considered must be clese to the
potential distribution of a usual quadrupole lens in a wide interval.

The method of investigation has been described in parts 3 and 4 of this
paper. The values of R,/R, and « varied in very wide ranges. The possible mini-



oy

308 T. Ya. FISHKOVA et al.

mum difference between two values of 2 on the network was: donin = 57.3°/R, .
The potential was measured along the axes of symmetry and along the diagonal
lines at 45° angles to both axes (x = y). The coefficients were calculated from
the results of measurements.

We found K, as a function of « for every value of R,/R,. In the vicinity
of the optimum angle x, this function was practically linear and passed through
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zero. The resulting plot of «, versus R,/R, is presented in Fig. 6. In the limiting
case of R, = R, = R (it is the well-known symmetrical lens, described in
part 4) xy = 45° + & = 46° 10'. The value of =, increases as the ratio R,/R,
becomes smaller. The circle indicates the value of «, given by [6].

The potential at the centre of the lensis determined by the coefficientK
9(0,0) = K, V. In the limiting symmetrical case Kj = 1. In Fig. 7 K, is pre-
sented as a function of R,/R, for the case K; = 0 (x = ). As it is seen, the
potential at the centre of the lens increases as the internal electrodes are placed
closer to the z axis.
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It follows from (4) that in case of K| = 0 (z = z,) the potential along
the diagonal line ¥ = ¥ in the paraxial region must be equal to the potential
at the centre. We found that this condition was really satisfied for the region
0 <<r < 0.7 R, where r is the distance of an arbitrary point on the diagonal
line from the centre. We may say that in this region the lens has two planes of
antisymmetry, in addition to its two symmetry planes.

The advantage of this construction is its simpler adjustmentin compar-
ison with quadrupole lenses composed of four electrodes. For this lens it is
also possible to compensate the spherical aberration of the width of a linear
image at several points [7]. This may be achieved for a given ratio of R,/R;
by choosing a suitable value of « different from =,

Sumimary

The electrostatic field distributions of two quadrupole lens types composed of eylindri-
cal surfaces are examined by means of a two-dimensional resistance network analogue. The
coefficients of the series expansions of the potential are determined as functions of the lens geo-
metry. Special cases when some ccefficients are equal to zero are thoroughly investigated.
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