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The relation between the input and output variables of control systems
with finite delay may be characterized by the differential equation
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where 7 is the dead time characterizing the finite delay. In the case of such sys-
tems the number of roots determining stability is infinite in consequence of
the exponential function appearing in the characteristic equation. A condition
for the system stability is that all of these roots fall to the left side of the com-
plex plane. As the direct determination of this criterion is not possible, differ-
ent approximating methods have been worked out for testing the stability
of control systems with dead time.

SorimMaN and SmAIKE [3, 4] applied PONTRYAGIN's method (see Appen-
dix) for the stability test of a control system with first-order lag and finite
delay, compensated by P, I, PI, PD and PID components.

The present paper investigates — as a generalization of the results ob-
tained by [3] and [4] — the stability of the linear control systems with second-
order lag and finite delay shown in Fig. 1 with a unit feedback, compensated
generally speaking by a PID controller. First the PoNTRYAGIN method is
used, then the NyQuist stability criterion is applied.

The transfer function of the plant is:

where 7 is the finite delay or dead time, T is the time constant of the second-
order lag, { is the so-called damping factor, which is an arbitrary positive con-
stant.

The transfer function of the PID controller is:
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where K is the loop gain, T} is the integral time constant and Tyis the deriv-
ative time constant.

In a further paper diagrams computed by a digital computer are plotted,
showing the critical loop gain versus the dead time for the values 0 < 7 < 10
in the case of a proportional acting controller and for 0 < v < =< in the case
of an integral acting controller.
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Fig. 1

i. AppHlcation of the state-space method for the stability test of conirol
systems with dead time

The behaviour of any linear, time invariant continuous system with dead
time may be described by the following first order difference-differential equa-
tion system:

x(t) + €x(t — 7) = Ax(t) + Bx(t — 7) + () L
and

x,(t) = Dx(?)

where 4. B, € and D are stationary matrices containing constant elements,
x(1) is the state vector, £{¢) = x;(f) is the vector of the input signal, 7 is the
dead time.

The stability condition of the homogenecus systems, i.e. for a system

without external excitation, in the case £(t) = 0 is the following: when t — =
we must have x(f) — 0. This cendition is relatively easy to determine. By
taking the Laplace transforms of both sides of the homogeneous equation we
obtain

X(s) = —[S{s)] ~* X(0).

By the way the inverse Laplace transform of — [S(s)] =1 is the so-called transi-
tion matrix. The condition of the stability is that all eigenvalues of the equation

det S(s) = 0 (2)

should have negative real parts. Here

[S(s)] - = [A + Bexp (— st) — sCexp (— s7) — sI] 71 [ Cexp (— s7) + 1} (3}

where I is the unit matrix.
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In the case of systems with dead time det S is an exponential polynomial
having an infinite number of roots. With the help of the PoNTrRYAGIN method
the critical loop gain and thus the region of stability may be determined ~with-
out the knowledge of the roots® positions in the complex plane. The method
and the criteria are deseribed in the Appendix.

2. A general stability test of a linear unit feedback conirol system with
second-order lag and dead time compensated by a PID econivoller

2.1 Pontryagin’s method

From the resultant transfer function of the open loop control system

shown in Fig. 1 the relation between the Laplace transforms of the output

variable x (t) and the input variable x;(f) — if the dead time lag is considered
separately — is:
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With this we can determine the state equation of the system on the hasis of
the analogue model shown in Fig. 2. The sign reversion of the integrators to
the contrary of the usual practice is disregarded. Taking the dead time also

into account the state-space equations will be:
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; K K
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In the case of a system without external excitation corresponding to equation
system (1) is:

B I7 2 a7 ... 17 K ] ,
xy (£) — ? 1041 =, () — ,%_ T, ¢ 0|~ 0—7)
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With the use of matrices A, B, € and utilizing equations (3) and (2), we have:

2L K s K
-3 2 1 2 a~e | -
det S = s + —- 52 T T,;s?exp (—s7) - s ! T sexp (— s7) +
K 1
- ——exp {— s7) = 0. (5)
™ T P ) )
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L

This is evidently a polynomial of the form
det 8§ = F[s, exp (~—s1)]

On applying the PoNTRYAGIN method let us multiply the equations by the
expression (exp st7). After algebraic arrangements we have:
F(s,expst)=TT;sexp(st) L 2L T T;s* exp(st) + KTaT;s* -+ T s exp (st) -+
+ KT; s + K. (6)
The principal term T2 T'; s exp (s7) does exist, therefore the necessary condition

of the system stability is fulfilled.
Performing the substitution s = j® we have:

Fljo.exp jor)l = — 2L TT;e? cos 0wt + (T* T 0° — w T;)sin wt —
7
—~ Ko*TeT; + K4+ jlloTi— T Tiw¥) coswr — 2L TT; w?sinwr + o KT;]. @)

From this form of
Fljo, exp (jor)] = P (o) + jO(o) (8)

the stability region may be determined with the help of any criterion of
PoNTRYAGIN (see Appendix). With the application of criterion 3 — which is
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generally the most easily evaluable — by using Eq. (8) the smallest critical loop
gain K;- may be obtained. The critical loop gair — after the evaluation with
an arbitrary accuracy by iteration of the corresponding angular frequency
wyr in radians — may be determined from the transcendental equation system of

Q@) = 0
P()0(w) = 0.
In the case of Q(w) = 0 the equation system reduces to
Q@) = 0
P(w) = 0.
With the application of (7) and (8) to the considered system we have:
P(w) = —2{ TT;w? cos ot + (T*°T; w® — wTY) sin wr —
— K TgT; - K =0 9)
Q(w) = (oT; — T?T; w®)cos wt — 2 { TT; w* sin wt + w0 KT; = 0. (10)

From equation system (9), (10) the transcendent equation to be solved for w,
after the elimination of K, will be:

(T2Ti0® —oT; 4+ 20To — 2L Tw*TeT)tg 0wz =
=2LTTi0? — T2 =1L 3 TyT; T2 — 2Ty T (11)

In the knowledge of @ = oy, obtained from (11) by iteration the loop gain
K = Ky is easily evaluated.

2.2 The application of the Nyquist stability criterion

Let us examine the method of determination of the ecritical loop gain
concerning the control shown in Fig. 1 with the help of the better known
NygQuisT stability criterion.

The loop transfer function of the open loop system shown in Fig. 1, taking
the dead time lag also into account, is:

Y(s) = KY, (5) = K [1 = -1 17, <P (=57)
T;s | 14+20Ts+T2s?
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After performing the substitution s = jo and after algebraic arrangements
we have the following frequency function:

1 T, T+ jol,;

1—T*ew 20 Tw

Y(jo) = — 2 exp (— jor) — K1Y, (joo)l expje(®)].
jo T '

(12)
With the critical loop gain the resultant phase angle must be ¢(w) = —=.
Thus,
7z oT; 20Tw
—n=———0t +tan ! ——--—— —tan" ! —— (13)
2 1—-7,7T; " 1 —T2e?
ie.
_ 20Tow . T, o
tan™! ——— — fan! ———— = — — T,
1 -T2 1—-7,T; * 2

Taking the tangents of both sides and utilizing the well known trigonometris
formula

tan o — tan fi

tan(z — /‘]) = - .
I+ tanxtanp

we have:

20T T, o
1—"T2w 1—-T,T; 07
- S = cotan @ T== .
20 Tw T,o tan T

1 -T2 1-—-T,T;w*
From this we obtain for w;, a transcendent equation identical with (11). In the
knowledge of the latter the critical loop gain

K, = —f]‘m— (14)
Y, (o),
may be evaluated.

So with the use of the NyQuisT stability criterion we obtained the same
result in a much shorter way. Consequently it has no reason to extend the
state-space method to the stability tests of linear, constant parameter controls
in the case of systems with a dead time either.

A further advantage of the use of the NYQUIST stability criterion is
that with its help a transcendent equation for the determination of the fre-
quency corresponding to an arbitrary phase margin may be easily derived
from (13).

Other methods for the stability test of control systems with dead time
are also known [5], [6]. But this paper does not wish to describe these different



w
fub
~1

STABILITY TEST OF LINEAR CONTROL SYSTEMS

methods or to compare them, rather in the continuation it will examine alse
numerically — by utilizing the above said and with the help of data obtained
by a digital computer — the stability regions in function of the dead time and
the system time constants. of the control system shown in Fig. 1.

Appendix

Stability test of linear, constant coefficient difference-differential equation by
Pontryagin’s methed

a) Let us multiply the polynomial of form detS = F[s, exp (—s7)]:
derived from equation (1) by such a high power of (exp s1). that only positive
powers of (exp st) should stay in the polynomial.

b) Let us find the term in which the highest powers of s and of (exp s7)
appear. This term will be called the principal term. '

The first result of PoNTRYAGIN's method istheinstability eriterion. Accord-
ing to this criterion, if a polynomial of form F(s, exp st) does not contain a prin-
cipal term, then the system is unstable, whatever the values of its coefficients,

Yet the presence of a principal term is only a necessary, but not a suffi-
cient condition of the stability.

¢) In order to test, whether the real parts of all the cigenvalues of the
polynomial F'[s, exp(—s7)] are negative, let us perform the substitution s = jo

[F(s, exp st)]smjo = F[jo. exp (jor)] = Plo) - j}{w) {15}

where P(w) and Qo) are the real and imaginary parts of F[jo. exp (jor)].
With this the stability theorem of PONTRYAGIN is as follows:

A system described by equation (1) is stable then and only then, when the
polynomial F(s, exp s7) contains a principal term and one of the following
statements holds:

1. All roots of P(w) and Q(w). respectively, are real, single, alternative
to each other and at least one value of o satisfies the inequality:

P(0)Q(») — P(0)Q(w) > 0. (16)

2. All &, roots of P(w) are real, single and all of these roots satisfy the
inequality:

P(0,)0(w,) < 0. (17)
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3. All w, roots of Q(w) are real, single and all of these roots satisfy the
inequality:
P(wq)Q(wq) > 0. (18)

The stability boundaries may be determined by any of the conditions
(16)—(18), if we change the symbol of inequality to that of equality.

Summary

This paper wishes to give an insight into the stability test of linear control systems with
dead time. First PONTRYAGIN’s method is used then the NyQuIST stability criterion is applied
for a system with second-order lag and dead time with a unit feedback, compensated by a
PID controller. It is shown also that the NyYQuisT stability criterion gives the same result as
PONTRYAGIN's method but in a much shorter way.
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