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1. Introduetion

The purpose of the present article is to compare the limit-cycle calcula-
tion methods of relay control svstems. Without pretending to completeness
some analytical methods are treated here. These methods are the classical dif-
ferential equation method, the Laplace-transformation method, the state-
space method, and the variations of the latter such as the canonical forms and
the phase-space method. For the sake of briefness only a very simple example
is examined enabling to illustrate the advantages and disadvantages of the
various methods.

2. The statement of the problem

The relay control system [e.g. 1—7] to be investigated is depicted in
Fig. 1 or in Fig. 2. Here the plant G(s) is linear. The poles and zeros of the
plant are assumed to be simple, that is of multiplicity one. Furthermore, ideal-

® elt) I +17 - p: mit) Grsi clt
4

ized relay with symmetrical characteristic is assumed, but the imperfections
of the relay are taken into consideration by a pure dead time D, where D is
the time which elapses between relay excitation e(i) and the actual polarity
reversal in the actuating variable m(z) (Fig. 3). For the sake of simplicity the
input reference variable r(z) is assumed to be zero. Thus, both configurations
lead to the same results, and e(t) = —c(f), where ¢(?) is the controlled variable.

By the way it is mentioned, that the relay with hysteresis shows some-
what similar effects like the relay with dead time, the only difference being
that in the first case the time delay D changes with the amplitude of oscilla-
tions, while in the second case D is constant. For the sake of simplicity we shall
not specially include the dead zone effect, although this also could be done.

As a consequence of the latter restrictions, the actuating variable m(y)
can only assume two values, which are normalized e.g. to 1.
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3. Conditions for Hmit cycles

Let us assume that a limit cycle of period 2T and of half period T exists,
Hence the following relations must be valid:

ety = —e(t + T)
m(t) = —m{t - T) (1)
o(t) = —c(t + 1)

Beside these relations also we have

e(t) = 0 for k = integer (2)
i=kT—-D

1) _ [0 for k= odd
v %fzi{T—{) N l> 0 for k = even

where the dot, as common, means the derivative according to the time.

4. The differential-equation method

The first method to be shown is the differential-equation method [e.g
8]. Let us assume the differential equation of the plant in the following form:

n m (Z )
Na; (—— c(t) = Mo, [— m(t) = f(t) {4
fﬂ.:’fj j,u,—_o i dt !

where (d/dt)%c(t) = c(t), (d/dr)" m(t) = m(2).
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First we determine the solution of the homogeneous equation with f(z) =

= 0

n
. R _— V /—. P
iz
where p.(i = 1, 2, ..., n) are the roots of the characteristic equation
n .
Sas =0 (6)

i=0

and K; are undetermined constants for the time being.
Then, we determine a particular solution of the inhomogeneous (f(t) = 0)

differential equation, assuming

ep(t) = ‘> (1) e (7)

=

The time-variable cocfficients K;(t) are simple integrals

Ki()= { K;(t)di (8)
0
of the derivatives Ki(t) calculated from the equation system:
K (t)erd = K, () e — . . =K, (1)en =0
K (typ, e + K, (1) pye’ - ..~ K, (i) pre’t =10 (9)
K () piter £ Kyln) pittels — . = K, ppteld = fl1)
Now, the complete solution is

c(f) = ex(t) + ¢(0) (10)

Finally, the constant coefficients K; can be determined from the initial
conditions as the solutions of the following equation system:

K= ¢(0) — ¢, (0)
feml

N p Ky =01 — ¢, (0) (11)

Je==1

n
N ptt K, = 0 (0) — {0

=1
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As we search for periodic quasi-stationary solution the initial conditions
c(0), ¢(0) ... ¢"=9(0) must be adjusted in a manner to fullfil the conditions
1) of the limit cycle:

¢(0) = —¢(T)

¢(0) = —¢(T) (12)

C(n—])(o) — _C(n—l)(T)

4.1 Illustrative example
Let be the differential equation of the plant:
of) - c(t) = m
where m = —+1 for the first semi-period.
From Eq. (6) the roots (or the poles of the transfer function G(s)) are
p; = 0, p, = —1, thus according to Eq. (5):
ea(t) = K, + K, e™!

Then from Eq. (9):
K@) =1, K1) = —¢

and on the basis of Eq. (8):
K {t)y=1t K ()=1—¢

Following Eqs (7). (10):
ct)y=t+e'—1+K +K,e™
or taking into consideration Eq. (11):
c) =t+e " — 1+ ¢(0)+ ¢c(0)(1 — e

Finally, on the basis of Egs (12), we have

¢(0) = — —Z— -+ tanh %

P

¢(0) = — tanh—

&
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5. The Laplace-transform method

Laplace-transforming the differential equation (1) of the plant, and per-
forming some algebraic manipulations, we get C(s) that is the transform of the

output:

C(s) = Z[e@] (13)

and the final solution ¢(t) can be obtained very quickly after using the inverse
Laplace transformation technique:

o(t) = ZC(s)] (14)

It is worth to mention that the initial conditions are taken into consider-
ation automatically. All these circumstances will be visualized by the same

example.
5.1 Ilustrative example

The Laplace transform of Eq. (4) is in our case

M(s) + s ¢(0) - ¢(0) + &(0)

s> s

C(s) =

according to Eq. (13).
It is mentioned that
Z[e(t)] = s°C(s)—s ¢(0) — ¢(0)
and
ZT(0)] = s C(s) — <(0)

By the way, the transfer function of the plant is

1
)= ——
s(s + 1)

Taking M(s) = Z[m(t)] = 1/s, because of m(t) = 1(¢) for the first half-period.
(Without any consequence we can assume T’ — oo in this step.) Then utilizing

Eq. (14):
o) =t — 1+ e L e(0)™ 4 [e(0) + §(0)J(L — e~

which Jeads to the same result as in Example 4.1.
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6. The state-space method

Recently the state-space methods came into fashion [4—7 etc.]
The system equation of the plant is given in the form

x(t) = Ax(t) + bm (15)

where x and bare n < 1 matrices (column vectors)and Ais an nXn matrix. Th
output variable is given by

o(t) = ¢’ x() (16)

where e’ is an 1 ¥ n matrix {a row vector). The solution of Eq. (15) is
S(t) = B(0)x(0) ~ () a7)

where @(f) is the transition matrix, while () is the distribution matrix. The for-
mer can be obtained by the SYLVESTER expansion theorem

oy , A _— I
®(1)= N |ert JJ =—LI0 (18)
(=1 ﬂzt Pi—p; )

for the case of stationary (time-invariant) system matrix A.

The latter can be obtained {rom the following integral expression
plt) = &) @(i — 1) bm{r)dr (19)

On the other hand Laplace-transforming Eq. (15) the result is

&

X(s) — x(0) = AX(s) + bM(s)
After some algebraic manipulations we obtain

X(s) = (sI — A)7" x(0) & (sI — A" bM(s)
Hence the following relations are valid:

D) = Z (I — A (20)

@(t) = L [(sT— A)"" bM(s)] 21
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ut

The limit-cycle condition can be expressed as

x(0) = —x(T) = —@(T)x(0) — (T) (22)

x(0) = — ([+&(T)) " (T) (23)

In the following chapters we examine some important special cases.

7. The phase-space method

The first special case of the general state-space method is the phase-
space method. In the latter case the A and b matrices are of a special form:

0 1 0 ... 0 0
0 0 1 ... 0 0 -
A, = by, = (24)
o 0 0 ...1 0
| —ay % —% ... T%poa | Ll/a” .
(where o; = aifan 1 =0,1, ....n —1).

The simplest way to obtain the phase-variable form leads through the
substitution ¢ = x7,¢ = %,, ... Y — 4, into the differential equation (1).
7.1 Illustrative example

Performing the substitution ¢ = x, ¢ = x,, which can be illustrated by
the block diagram of the plant depicted in Fig. 4, we obtain

fy(t) = xa(t)

olt) = —x(t) + m(1)

Fig. 4

6 Periodica Polytechnica EL 12/3.
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By the way, these differential equations of the first order can be solved directly.
On the other hand, according to (24) and (16):

0 1 0
A, = . b, = . T = 1,0
ohmﬂ ([Je [1,0]

For the case of m == 1 in the first half-period the transition matrix is

2=y ']

as obtained from Eq. (18) or Eq. (20). The distribution matrix (column vector)

is:
1 —e

(Pm_[twl—%e"]

according to Eq. (19) or (21). Using Eq. (23) the initial condition matrix (column
vector) is

——T— - tanh——T—

x(0) = T
— tanh——_l

2

while applying Eq. (17) and Eq. (16):

e(t)y=1—1 +e"f—£—§~tanh1-— (1 ——e—’)tanh-—ql:
2 2 2

4 4

e (1 - tanh —T—)
2

&1
/

which is the same result as obtained in the previous examples.

8. Methods based on canenical forms

Often are used matrix transformations, which result canonical forms. Let
us introduce a nonsingular matrix transformation by the relations

x(t) = Ly(es y() = L~ x(¢) (25)
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Thus, Egs. (15) and (16) can be transformed as
§() = L7 ALy(t) + L™ bm(t) (26)
e(t) = ¢’ Ly(r) 27)
The transformation is called canonical if
L'AL=sS
where S = diag [py, pss ...» pn] and p; { = 1, 2, ..., n) are the roots of the
characteristic equation or the poles of the transfer function G(s) of the plant.
The transformation (25), (28) is not unique. The first possibility is to

take L = V in case of A=A, where V is the VANDERMONDE-matrix:

1 1 .1
VY = P P2 P

n-1 n-1
Pl P2 ‘-~Pn -

n-—-1
giving
3(6) = V7 A V() + V' bm(r) (28)
ot) = e’ Vy(t) (29)

The second possibility is to choose L in a manner that*
L7'b=(11,...0)  =¢ (30)

This transformation leads to the canonical form of Lur’e [9, 10] very often
utilized in control engineering:

Z(t) = Sz{t) - em (31}
e(t) = ¢’ Lz (1) (32)

where for the sake of distinction instead of y, the new variable is =z.
1t is worth to mention that the canonical forms can also be obtained
directly from the transfer function G(s). Let us write G(s) in a form

C(s) —G(s) =K (s —2z) (s —zy)...(s —zp) (33)

M(s) (s — p1) (s —pa).-(s— Pr)

* Vector e has nothing to do with error e(t).

6*
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where p; i =1, 2, ..., n) are the poles and z; (j=1, 2, ..., m) are the
zeros (the latter having nothing to do with the components of vector z).

Taking the partial fraction expansion of G(s) assuming separate poles
and expressing the Laplace transform of the controlled variable:

n
r;

Cls)= > M(s) {34;
i=1 §— P
where ri(i = 1, 2, . . ., n) are the residues of G(s)
r; = lim (s — p;) G(s) (35;
=Py

ntroducing the transform of new varialiles by

Ty \

L M(s) (36)

or

sY, (s) = pi Y(s) + r: M(s)
The inverse Laplace-transformation of the latter gives
i(t) = piyi(t) + rim(t); (=1 2,...,n) (37

while taking also (34) and (36) into consideration

e(t) = > x:(1) (38)

f=1

swhich are the expanded versions of Egs. (26) and (27). On the other hand defin-
ing the transforms of new variables as Z; (s) = Y (s)/r; or

Z; (S) =

M(s) (39)
§— pPi
the final result is
2 () = piz (t) + m(t); E=12,...,m) (40)

and

cft) = iri z; (t) (41)

These equations give the LUR'E canonical form of the state variables that is
Eqgs (31), (32) in expanded form.
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8.1 Illustrative example

Starting from the phase-variable form

0=, BRI N

e(r) == [1, 0] x(2)

and taking the transformation matrices according to (29):

V:!:1 ! and V1= 1 1]
0 —1 0 —1

Egs. (26) and (27) lead with L=V to:

&(t)z[g _ﬂym +["Hm<z>
oft) = [L. 1] ¥(0)

The final solution is, of course, the same as previously although the tran-
sition matrix and distribution matrix are different from those of Example

7.1 being
- 10 t
D(f) = : t) —
() [o e_t} () {e_t__l]
while the initial conditions are related to each other by

¥1(0) + x2(0) = %4(0) = ¢(0); %,(0) = — ;,(0) = — &(0)

¥1(0) = %1(0) + £,(0) = ¢(0) + &(0); ¥5(0) = —#,(0) = —&(0)

Applying, on the other hand, the transformation
1 0
t)=R:(t) = z(t
o =R =| |0

and substituting in (25) the transformation matrices becomes

L=VR = L—1 and L-1= 11
0 1 01
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Thus, applying Eqs (26) and (27):

zm:{g _ﬂz(twmrn(z)

e(t) = [1. —17 =(z)

m 7 Yy 4 Y1
3 ! j
- N
m :T/f Lz 1 v ’
a7
Fig. 5
2 _EZ Z; 7 Zr ‘
m [ _77 2z _7' -2 ’T
i S#7 _
Fig. 6

The transition matrix is the same as in the first part of the example but the
distribution matrix is different

@(t)z{lo‘j_f}; cp(t'):ﬁ__e_t}

while the initial conditions are related as
5(0) — 2(0) = x,(0) = e(0); £(0) = &,(0) = &(0)

or

21(0) = x1(0) + £,(0) = ¢(0) + ¢(0); z(0) = %,(0) = ¢(0)

The final result is, of course, again the same.

The previous relations can be obtained by the method outlined in con-
nection with Eqs (37), (38) and Eqs (40), (41), respectively. For illustrative
purpose, in Fig. 5 and Fig. 6 the canonical state variables of the plant G(s)
are shown in block diagrams.
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9. The final solution of the problem

Now we return to the solution of the problem. First we remark that e(t) =
== —¢(t) if r{tf} = 0. Thus, the periodic solution of the error is

’ {
e(t) =1 — }l — e 1 - tanh -T—]
9 | 2]

@

o
Soa

pS e ee]

o

-05

Fig. 7

At the instance t = T — D = T the error is

e(TD):1~—§—~D-—eD

1 — tanh i
5

i

which according to the starting assumptions, must be

In Fig. 7 the diagrams of e(Tp) are visualized in function of T and taking

the dead time D as parameter.
Naturally we are interested only in the selutions e(Tp) = 0. The roots

of this equation are summarized in Table 1.
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Table 1

0574 | 0.666

T, | 0 1 0.0992 | 0.197 0293 | 0388 | 0481 |
1 ? | ‘
T, | 0 | 1076 | 1531 | 1.893 2210 | 2499 | 2770 | 3.028
T~.D 0.8 0.9 1 1 2 3 1 5
T \ J 0 1 : 1.2 ] 1.3 : 1.4 1.5
T, | 0756 | 0846 | 0935 1023 | 111l | 1198 | 1285 | 1371
T, '[ 3.276 l 3516 | 3.750 | 3.979 | 4.204 | 4427 | 4.646 | 4.862
‘ ! f ! i
| | ,

According to the simplified stability criteria [10] the limit cycle is stable
(or convergent) if

<0
T=T,

de(Tp) 5
aT |

and is unstable (or divergent) if

dT §T=Ti

) - .
¢ /
| 5 N Ry
e
s S
7
7 _
/S
e

T
|
|

/ i
/i |
2 - / -
pauunn
i “w; *__N,__g
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where T; means a root. Thus, in Table I oniy the values T, give stable limit
cycles. The latter half-periods T, are shown in function of the dead time D in
Fig. 8. From this figure we can conclude that as a rule of thumb

T, m% (6 +-9D%; (15>D >0.5)

can be taken for the particular relay control system investigated. On the
other hand, for great D values, the asymptotic value of T, is:

10. Concluding remarks

In the previous treatise and examples without pretending to completeness,
various methods are shown for analysing the limit eycle conditions in relay
control systems. For the sake of briefness only a very simple example was
taken. The main characteristics of the various methods nevertheless are thrown
into relief.

We can draw the conclusion that there is no significant difference be-
tween the differential equation, the Laplace-transform, the state-variable.
the phase-variable and the canonical-variable methods. According to the opi-
nion of the author the Laplace transform method is the most advantageous.

It is also shown in Chapter 8 that Laplace-transforms can also be utilized
in deriving canonical forms. In Chapter 6 it was remarked that Laplace-trans-
forms can be applied in determining the transition and distribution matrices.

The direct time-domain methods are somewhat more complex and cum-
bersome. Perhaps there is a distinct advantage for state-variable methods in
comparison to the differential-equation method.

Summary

In connection with limit-cycle analysis of relay control systems the methods of differ-
ential equations, Laplace-transforms, state variables, phase variables, canonical variables
are compared. The same illustrative example is solved by various methods to show the advan-
tages and disadvantages of each.
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