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1. Introdnction 

The purpose of the present article is to compare the limit-cycle calcula­
tion methods of relay control systems. Without pretending to completeness 
some analytical methods are treated here. These methods are the classical dif­
ferential equation method, the Laplace-transformation method, the state­
space method, and the variations of the latter such as the canonical forms and 
the phase-space method. For the sake of hriefness only a very simple example 
is examined enahling to illustrate the advantages and disadvantages of the 
various methods. 

2. The statement of the prohlem 

The relav control system [e.g. 1 7] to he invcstigated IS depicted in 
Fig. 1 or in Fig. 2. Here the plant G(s) is linear. The poles and zeros of the 
plant are assumed to he simple, that is of multiplicity one. Furthermore, ideal-

fit) ell! 

Fig. 1 

ized relay with symmetrical characteristic IS assumed, hut the imperfections 
of the relay are taken into consideration by a pure dead time D, where D is 
the time which elapses bet'ween relay excitation e(L) and the actual polarity 
reversal in the actuating variable m(t) (Fig. 3). For the sake of simplicity the 
input reference variable r(t) is assumed to he zero. Thus, both configurations 
lead to the same results, and e(t) = -c(t), where c(!) is the controlled variahle. 

By the way it is mentioned, that the relay with hysteresis sho'ws some­
'what similar effects like the relay with dead time, the only difference being 
that in the first case the time delay D changes with the amplitude of oscilla­
tions, while in the second case D is constant. For the sake of simplicity we shall 
not specially include the dead zone effect, although this also could he done. 

As a consequence of the latter restrictions, the actuating variable m(l) 
can only assume t,vo values, 'which are normalized e.g. to I 1. 
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3. Conditions for limit cycles 

Let us assumc that a limit cyclc of period 2T and of half period T exists. 
Hence the folIo'wing relations must he yalid: 

e(t) = -e(t T) 

met) -m(t T) (1) 

e(t) = e(t ~ T) 

Beside these relation~ also ,re haye 

e(t) = 0 for k = integer (2) 
,i=l:T-D 

~(t) 
it=kT-D 

f< 0 for k odd 
t> 0 for k = eyen 

(3) 

where the dot, as common, means the deriYatiYe according to the time. 

4. The differential-equation method 

The first method to be shown is the differential-equation method [e.g. 
8]. Let us assume the differential equation of the plant in the following form: 

i ai (~',li c(t) 
i=O " dt 

where (d/dt)Oc(t) = c(t), (d/dt)0 met) 

TIl f' cl j Yb i -I m(t) =f(t) 0 0 • I dt ' 

met). 
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First we determine the solution of the homogeneous equation ·withf(t) = 
= 0: 

n 

"'>' K; ""= . (5) 
i~l 

'I"here pili = 1, 2, ... , n) are the roots of the characteristic equation 

n 

.";2ai si =O (6) 
i~O 

and Ki are undetermined constants for the time being. 
Then, wc determine a particular solution of the inhomogeneous (f(t) 0) 

differential equation, assumlllg 

The timc-yariable cocfficients l(;(t) are simple integrals 

of the d('riYatiYes kt(t) calculat('d from th(' (,quation system: 

K2(t) er,: 

i<:.~ (t) P"2 ep
. 

::\o\\"' thi" complete solution is 

Kn (t) el',,! = 0 

i:',(t)p, 

(7) 

I) (9) 

(10) 

Finally, the constant coefficients lC can he deterniincd from the initial 
conditions as the solutions of the follo,,-ing equation system: 

Tl 

.... K· = c(O) 
~ l 

c (0) 
1=1 

n 

:f Pi Kt (;(0) ('p (0) 
i=1 

II 

'"' n-l T( .;;... Pi J.'~i 
i=l 

(11) 
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As we search for periodic quasi-stationary solution the initial conditions 
c(O), c(O) ... C(n- !l(0) must be adjusted in a manner to fullfil the conditions 
1) of the limit cycle: 

c(O) = -c(T) 

c(O) = -c(T) 

4.1 Illustrative example 

Let be the differential equation of the plant: 

·e(t) e(t) = m 

where m = +1 for the first semi-period. 

(12) 

From Eq. (6) the roots (or the poles of the transfer function G(.,») a/l~ 

Pl = 0, P2 = -1, thus according to Eq. (5): 

Then from Eq. (9): 

( ) _ KO I T/, -I 
Ch t - 1 T 1\..2 e 

J(l(t) = 1, k2(t) = _et 

and on the basis of Eq. (8): 

K 1 (t) t, K 2 (t)=1-e l 

Following Eqs (7), (10): 

or taking into consideration Eq. (11): 

e(t) = t + e- I 
- I + c(O) + c(O)(l _ e- I ) 

Finally, on the basis of Eqs (12), we have 

T 
c(O) = -

T 
tallh -

c(O) = 

2 

T 
tanh-

2 

2 
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5. The Laplace-transform method 

Laplace-transforming the differential equation (1) of the plant, and per­
forming some algebraic manipulations, we get C(s) that is the transform of the 

output: 

C(s) = .2'[r(i)] (13) 

and the final solution c(t) can be obtained very quickly after using the inverse 
Laplace transformation technique: 

c(t) = _y-l[C(S)] (14) 

It is worth to mention that the initial conditions are taken into consider­
ation automatically. All these circumstances will be visualized by the same 
example. 

5.1 Illustrative example 

The Laplace transform of Eq. (4) is in our case 

C(s) = M(s) + s c(O) 
S2 

c(O) 

according to Eq. (13). 
It is mentioned that 

2[c(t)] = s~C(s) s c(O) - c(O) 

and 

2"[c(t)] = s C(s) - c(O) 

By the 'Nay, the transfer function of the plant is 

1 
G(s)=---

s(s + 1) 

Taking M(s) = g[m(t)] = l/s, because of m(t) = l(t) for the first half-period. 
(Without any consequence we can assume T ->- = in thi~ step.) Then utilizing 
Eq. (14): 

c(t) = t c(O)e-t + [c(O) + c(O)](1 - e- t) 

which Jeads to the same result as in Example 4.1. 
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6. The state-space method 

Recently the state-space methods came into fashion [4-7 etc.] 
The sYstem equation of the plant is given in the form 

x(t) = Ax(t) hm (IS) 

where x and bare 11 ~< I matrices (column yectors) and A is an n X n matrix. Th 
output yariablc is given by 

e(t) = eT x(t) (16) 

where eT is an 1 X n matrix (a row yector). The solution of Eq. (IS) is 

x(t) = <p(t)x(O) <pet) (17) 

'.dlere <p(t) is the trallsitioll matrix, while <pet) i" the distribution matrix. The for­
mer can he obtained by the SYLVESTER expam:ion theorem 

(18) 

for the case of stationary (time-invariant) system matrix A. 
The latter ean ]J(' obtained from the follo\\ing integral expression 

cp( t) r) h mer) clr (19) 

On the other hand Laplaee-trallsfoTming Eq. (15) the l'('sult is 

sX(s) - x(O) AX(s) h!1J(s) 

After some algehraic manipulations we ohtain 

X(s) = (sI - A)-l x(O) -;... (sI -- A)-l hJI(s) 

Hence the following relations arc valid: 

<p(t) (20) 

(21) 
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The limit-cycle condition can be expressed as 

x(O) = -x(T) = -<p(T)x(O) <peT) (22) 

or 

x(O) = -(I+<p(T)-l<p(T) (23) 

In tbe following chapters we examine some important special ca"es. 

7. The phase-space method 

The first special case of the general state-space method is the phase­
space method. In the latter case the A and h matrices are of a special form: 

- -
0 1 0 0 0 
0 0 1 0 0 

Ao= ho = (24) 

0 0 0 1 0 

- -Xo -Xl -X2 -X,,-lJ l/a" J 

(where Xi = ai/an (i = 0, 1, ... , n - 1). 
The simplest way to obtain the phase-yariable form leads through the 

substitution c = Xl' C = xZ' ••• c<n-l) = XIl into the differential equation (1). 

7.1 Illustrative example 

Performing the substitution c = xl' C = xz, which can be illustrated by 
the block diagram of the plant depicted in Fig. 4, we obtain 

Xz(t) = -xZ{t) met) 

Fig. 4 

6 Periadica Polytecbnica El. 1:;/3. 



325 F. CSAKl 

By the way, these differential equations ofthe first order can be solved directly. 
On the other hand, according to (24) and (16): 

For the case of In = 1 iu the first half-period the transition matrix is 

as obtained from Eq. (18) or Eq. (20). The distrihution matrix (column vector) 
is: 

[ 

1 -t .. 
<p (t) = t- e J 

. 1 e- t 

according to Eq. (19) or (21). Using Eq. (23) the initial condition matrix (column 
vector) is 

x(O) l
--I..- + tanh I..--

2 2 

T 
- tanh 2 J 

while applying Eq. (17) and Eq. (16): 

c(t) = t 1 
I _, T ,e '--

2 

T 
tanh-

2 

T 
(1 - e- I

) tanh - = 
2 

t -1 
T 

2 
-, (1 I h T) e , ,tan -2,. 

which is the same result as ohtained in the previous examples. 

8. Methods hased on canonical forms 

Often are used matrix transformations, 'which result canonical forms. Let 
us introduce a nonsingular matrix transformation by the relations 

x(t) = Ly(t); yet) = L -1 x(t) (25) 
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Thus, Eqs. (15) and (16) can be transformed as 

yet) = I" -1 ALy(t) + L -1 b met) 

e(t) = eT Ly(t) 

The transformation is called canonical if 

L-1 AL= S 

327 

(26) 

(27) 

where S = diag [PI' P2' ... , pn] and Pi (i = 1, 2, ... , n) are the roots of the 
characteristic equation or the poles of the transfer function G(s) of the plant. 

The transformation (25), (28) is not unique. The first possibility is to 

take L = V in case of A=Ao where V is the VANDERl\lO:.-iDE-matrix: 

V= 

giving 

yet) = V-I Aa V yet) V-I bm(t) 

e(t) = c
T 

Vy(t) 

The second possibility is to choose L in a manner that':' 

L-1 h = (1, 1, ... , I)T = eT 

(28) 

(29) 

(30) 

This transformation leads to the canonical form of LUR'E [9, 10] yery often 
utilized in control engineering: 

z(t) = Sz(t) + em 

e(t) = eT Lz (t) 

(31) 

(32) 

,v·here for the sake of distinction instead of y, the new yariable is z. 

It is worth to mention that the canonical forms can also be obtained 
directly from the transfer funetion G(s). Let us write G(s) in a form 

C(S) = G(s) = K --'---_=--:.._--=-_-'----'-'-'-'-

M(s) (s - PI) (s - P2)' .. (s PT!) 
(33) 

'" Vector e has nothing to do wi th error e(t). 

6* 
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where Pi (i = 1, 2, ... , n) are the p01es and Zj (j = 1, 2, ... , m) are the 
zeros (the latter having nothing to do "with the components of vector z). 

Taking the partial fraction expansion of G(s) assuming separate poles 
and expressing the Laplace transform of the controlled variable: 

C(s) 
11 r

l
. 

~-~-M(s) 
i=1 s - PI 

where ri(i = 1, 2, ... , n) are the residues of G(s) 

ri = lim (s - Pi) G(s) 
'-""Pi 

ntroducing the transform of new yaria}; 1e'" by 

Yds) = 1\1(;,} 
s - PI 

or 

sYz (s) = Pi yes) + Tt M(s) 

The inverse Laplace-transformation of the latter gives 

j'i (t) = PiYi (t) Tt met); (i = 1, 2, ... , n) 

'while taking also (34) and (36) into consideration 

11 

e(t) = ",' Yi (t) 
t:i 

(34) 

(35j 

(36) 

(37) 

(38) 

which are the expanded versions of Eqs. (26) and (27). On the other hand defin-

ing the transforms of new variables as Zi (s) Y i (s)jri or 

1 
Zi (s) = -- M(s) (39) 

S-Pi 
the final result IS 

ii (t) = Pi Zi (t) + met); (i = 1,2, ... , n) (40) 

and 
11 

e(t) ;t ri Zi (t) (41) 
i=1 

These equations give the LUR'E canonical form of the state variables that is 

Eqs (31), (32) in expanded form. 
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8.1 Illustrative example 

Starting from the phase-variable form 

X (t) = [ ~ _ ~ ] x (t) + [ ~ ] m (t) 

c(t) = [1, 0] x(t) 

and taking the transformation matrices according to (29): 

v = [ 1 1 ] and V-l = rIll 
0-1 LO-l 

Eqs. (26) and (27) lead with L = V to: 

y(t) = [~ _ ~ ]y(t) [ : lm(t) 

c(t) = [1, 1] y(t) 

The final solution is, of course, the same as previously although the tran­
sition matrix and distribution matrix are different from those of Example 

7.1 being 

<I>(t) = [1 0 ] : o e- I 
cp(t) = [ t ] 

e- I -1 

while the initial conditions are related to each other by 

or 

Applying, on the other hand, the transformation 

y(t) = R~(t) = [ 1 0] z(t) o -1 

and substituting in (25) the transformation matrices becomes 
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Thus, applying Eqs (26) and (27): 

c(t) = [1, -1] z(t) 

m 

Fig. :) 

;7; 

Fig. 6 

The transition matrix is the same as in the first part of the example but the 
distribution matrix is different 

<p(t) = [1 0 ]: o e- t 

while the initial conditions are related as 

or 

The final result is, of course, again the same. 
The previous relations can be obtained by the method outlined in con­

nection with Eqs (37), (38) and Eqs (4.0), (41), respectively. For illustrative 
purpose, in Fig. 5 and Fig. 6 the canonical state variables of the plant G(s) 
are shown in block diagrams. 
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9. The final solntion of the problem 

Now we return to the solution of the problem. First we remark that e(t) = 
-e(t) if T(t) = O. Thus, the periodic solution of the error is 

e( t) 

e (Tn) 

Q5 

] 

-1 

1,5 

T 
1 - ----

. J 
tanh ~) 

:2 . 

iJ3 
Q2 

Qi 

-2 
~ ______________________________________________________________ ~Qa 

Fig:. -

At the instance t = T - D = To the (,lTor iE 

c(T D) = 1 - ~ - D - eD (1 - tanh ~) 

which according to the starting assumptions, must he 

C(TD) = 0 

In Fig. 7 the diagrams of e(T D) are visualized in function of T and taking 
the dead time D as parameter. 

Natmally we are interested only in the solution,;; e(TD) = O. The roots 
.of this equation are summarized in Table 1-. 
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Table I 

0 0.1 0.3 O.,! 0.7 

0 0.0992 0.293 0.666 
----

0 1.076 1.893 2.4-99 2.770 3.028 

0.8 0.9 1.5 

Tl 0.756 0.846 1.371 

Tz 3.276 3.516 4.862 

According to the simplified stability criteria [10] the limit cycle is stable 
(or convergent) if 

de(TD ) ! < 0 

dT !T=T. 

and is unstable (or divergent) if 

de(T D) i. 

---
dT 

5~~-··------·-

(}25 (}5 (}75 1,0, 1,25 1,5 D 

Fig. 8 
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where Ti means a root. Thus, In Table 1 oniy the values T~ give stable limit 
cycles. The latter half-periods T~ are shown in function of the dead time D in 
Fig. 8. From this figure we can conclude that as a rule of thumh 

1 
To ~-(6 

- 4 
9D\; (1.5> D > 0.5) 

can be taken for the particular relay control system investigated. On the 
other hand, for great D values, the asymptotic value of T2 is: 

D); (2<D) 

10. Concluding remarks 

In the previous treatise and examples without pretending to completene:;;s, 
various methods are sho"wn for analysing the limit cycle conditions in relay 
control systems. For the sake of briefness only a very simple example "was 
taken. The main characteristics of the various methods nevertheless are thrown 
into relief. 

We can draw the conclusion that there is no significant difference be­
tween the differential equation, the Laplace-transform, the state-variable, 
the phase-variable and the canonical-variable methods. According to the opi­
nion of the author the Laplace transform method is the most advantageous. 

It is also shown in Chapter 8 that Laplace-transforms can also be utilized 
in deriving canonical forms. In Chapter 6 it was remarked that Laplace-trans­
forms can be applied in determining the transition and distribution matrices. 

The direct time-domain methods are somewhat more complex and cum­
bersome. Perhaps there is a distinct advantage for state-variable methods in 
comparison to the differential-equation method. 

Summary 

In connection with limit-cvcle analySis of relav control svstems the methods of differ­
ential equations, Laplace-transf~rms, sta-te variables, phase ,:ariables, canonical variables 
are compared. The same illustrative example is solved by various methods to show the advan­
tages and disadvantages of each. 
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