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1. Introduction

In an earlier paper [3] UNGER showed that a normal mode flow table
cannot be realized by an asynchronous sequential circuit without inserted
delay elements if the flow table contains essential hazard.

Even if delay elements are inserted, the synthesis method should attain
as fast network response as possible. For this reason all the transitions should
be completed in one step. Examples of this sort of realizations are the general
state assignment method of HuFFyan [2] which uses single internal variable
changes to realize the transitions and the noncritical race state assignment
methods of Liv [8] and Tracey [9].

This paper gives a general state assignment method for this type of
realization requiring fewer internal variables. Also a new synthesis method is
suggested by using both the delayed and undelayed versions of the internal
variables and this method is shown to be more economical in terms of the num-
ber of internal variables.

1.1. Terminology
$

The internal variables of an asynchronous sequential circuit will be
denoted by y; and the delayed versions of the internal variables will be de-
noted by Y;. x will be written for the vector of the x; input variables,
X = (%q, Xy, o« 0 Xn), similarly y = (v ¥er o v 0 ¥m)s ¥ = (Y1, Y, ..., Yi) and
f=(fi.for -+ fm), where f;=f(x,y,.Y) or fl fi(x.Y) are the “next”
values of y;.

The realization of ¥ig. 1 will be called f(x, ¥) type realization, and the
realization shown in Fig. 2 will be called f(x, y, ¥) type realization.

A cube defined by a = (a;, a5, . . ., an) and b = (b, b,. . . ., by) is the set
of all vectors x = (x;. %y, ..., %) such that min(a; b;) < x; < max(a;, b))
for i =1,2,...,n This cube will be denoted by [a, b].

If A and B are cubes and A N B = @, AxB will be written.

P; denotes statements. e.g. P(a € [b. ¢]) has the truth value: *“true”
(1) if a € [b, ¢] and false (0) otherwise.
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km denotes the minimum number of internal variables necessary for the
coding of an r row flow table (kn is the smallest integer such that 2k, > 1)

1.2. Assumptions

1. The terminal characteristics of the circuit to be designed are described
by a normal mode flow table, i.e. no input change leads to more than one
state change.

2. The flow table will be realized by an asynchronous sequential circuit
operating in fundamental mode [4],i.e. theinputs are never changed unless the
eircuit is stable internally.

3. The combinational networks are built of gate type elements.

4. Both line (wiring) and gate delays are taken into account, since the
input delay model [7] will be used to describe the possible effects of the stray
delays in the network and all the stray delays are assumed to be bounded
(3,' g 2.

5. The inserted delays (D;) are assumed to be intertial delays and D; = 1.

6. The combinational networks are free of logical hazard [6].

2. f (x, y, Y) type realization
2.1. Speed independent state transition

Since in any stable state y; = Y; (i = 1, 2, ..., n) for the (x!, y., ¥!) —
— (%% y?, Y?) state tranmsition (x!, y!) — (x% y?) will be written.
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(x% yY) — (=%, y°) state transition is speed independent, i.e. the ecircuit
reaches the final state independently from the actual values of the stray delays,
if the possible values of f; are restricted the following way (Fig. 3).

To be able to prove the speed independence of this transition, we write
it in a more detailed form. The first row in Fig. 4 represents the initial stable
state, x'y%. In the second and third rows the input variables and the undelayed
versions of the internal variables are changing. In the fourth row y is in the
final and Y in the initial state. In the fifth row the Y; variables are changing
and the sixth row represents the final stable state x%y2

The speed independence of the first part of the transition (rows 1,2, 3
and 4) can be proved by using the analysis procedure for asynchronous circuits
given by Harr [7]. This proof is given in the Appendix.

Because of assumptions 4 and 5, Y starts to change only after the net-
work’s stabilization in x?y?Y!. This part of the transition is obviously speed
independent, for f does not change any more and the combinational networks
are assumed to be free of logical hazard.

This is not the only possible way to define speed independent transitions
between two stable states, but the following results are based on this definition.

2.2. Expanded state table

The expanded state table can be derived by plotting the values of
f(x,y.Y) on a table, the rows of which are defined by y and the columns by x
and Y. As an example the expanded state table is given for a circuit, the ter-
minal characteristics of which are described by the flow table of Fig. 5.
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then the corresponding expanded state table is shown in Fig. 6. The stable
states are encircled on the expanded state table. Obviously in any part of the
map defined by one of the input combinations, any row and any column can

contain at most one stable state.

2.3. Design procedure

The design of the f(x,y,Y) type realization of a given flow table has

two steps:

1. to assign single internal states to the rows of the flow table

2. to specify all the transitions of the flow table according to the defi-

nition of the speed independent transiticn.

00 a1 10

S
oo |or {10 |1 oo or 10 11|00 0 10 11|00 01 10] 71
00 | @9 - - o
7 - , - 77’
0| - -1 = o
| - - @




SYNTHESIS METHOD FOR ASYNCHRONOUS SEQUENTIAL CIRCUITS 339

The first problem is the more serious one. since before making a proper
state assignment we must be able to characterize those ones in which every
specified transition can be made speed independent. This problem will be
attacked in the next few paragraphs.

The second part of the design procedure can be performed on the ex-
panded state tables. As an example, the transition (00, 00) — (11, 11) will be
specified on the expanded state table of Fig. 7.

2.4. Interaction between two transitions

In this section two arbitrary transitions will be considered (Fig. 8)
and conditions will be developed which must be satisfied to be able to specify
both transitions as being speed independent.
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Two transitions cannot be speed independent at the same time if there
is at least one combination defined by x, y, and ¥, where the restrictions on
the values of {(x, y, ¥) cannot be satisfied simultaneously. This situation will
be called interaction between the transitions.

Speed independent state transitions are defined in four parts (four rows
of Fig. 8) and in three of them there are restrictions on the values of f(x, y, ¥),
so there are 9 possibilities of interaction between two transitions. Interaction
can exist between rows 15, 1—7, 1—8, 3—5, 3—7. 3—8, 4—5. 4—7 and
4—8 of Fig. 8.
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Rows 1 and 5 interact if and only if P,(y* == y?) - Py(x! = x3) + Py(y* =
y3) - Py(y! = y*) = 1 but this is impossible, for Pi(y! == y?) - P,(y! = y%) =
= 0 independently from y* and y°.

For similar reasons there can be no interaction between rows 1-—8,
435, and 4—8.

Rows 1 and 7 interact if and only if Pi(y! == y?) « Py(x! = x!) - Py(y! =
= y%) = 1, but this is an impossible situation according to the flow table of
Fig. 9.
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Rows 3 and 5 interact if and only if P,(y? == y%) - Py(x* = x%) + P,(y!t =
== y%) = 1, but this is an impossible situation according to the flow table of
Fig. 10.

Rows 3 and 7 interact if and only if Py(y®> == y?) - Py(x? = x%) + Py(y* =
= y%) = 1, but this is also an impossible situation according to the flow table
of Fig. 11.

Bows 3 and 8 interact if and only if P{y® == y!) + Py(x* = x%) - P,(y' €
elyy]) =1L

Rows 4 and 7 interact if and only if P (y> = y%) - Py(x2 = x) - Py(y® €
vy =1L

Rows 3and 8, and 4 and 7 obviously can interact under certain conditions.
Summarizing these conditions: two transitions x'y!— x%? and x%° — x%?
can interact only if the final internal states belong to the same input combina-
tion (32 = x%), these final internal states are different (y® == y*) and at least
one of the conditions y* € [y%y?*] and y® € [y'y"] is satisfied.

Now an important theorem can be stated:

Theorem 2.1.: Transitions x'y! — x?y” and x%y® — x!y? cannot interact in
case of an f(x, y, Y) type realization, if conditions y'3¢[y®y!] and y**[y'y’] are
satisfied simultaneously.
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Proof: Interaction can exist between rows 3—8 and 4—7 only. Satisfying
conditions Pi(y! € [y®y*])= 0 and Py(y® € [y'y®]) = 0.simultaneously there can

be no interaction between rows 3—8 and 4—7.

2.5. General state assignment scheme

To construct a general state assignment which can be used for the coding
of any flow table, we must consider the realization of a flow table, where all
the possible state transitions occur. Every transition can be made speed inde-
pendent, if there is no interaction between them and this implies that the
conditions of Theorem 2.1. must be satisfied for all the possible pairs of transi-
tions.

If y2, y2 ¥% and y* are codes for arbitrary four states, then any of these
codes must be disjoint to the cubes formed by any pair of the other three
codes. So the coding of ¥y, y%, y* and y* must contain the columns determined
from Fig. 12.

With the notations of ¥ig. 12 for the columns (I, 4, B, AB...) which
are used for later convenience, the conditions of the realizability of any transi-
tion hetween yi, y2, y® and y* are described by the following Boolean expression:
(AB -+ ab +- ABC -+ abe) - (AB 4+ ab+ C +¢) - (AB -+ ab+ B -+ b) -

“(AB + ab + 4 -+ a) - (A4C -+ ac + ABC 4 abc) - (AC 4+ ac + C -+ ¢) -
- (4C 4+ ac+ B+ b) - (AC + ac + 4 + a) - (BC 4 be + ABC -+ abe) -
“(BCH4be+C+4¢) - (BC+bc+ B+0b) - (BCH+be+ 4+ a)=
(A-+a) (B-+b) (C+e¢) (ABC -+ abe) + (4B 4 ab) - (4C + ac) -

- (BC -+ be)

The 16 columns form a 16th order commutative group G, if an operation
is defined between them, the componentwise mod 2 sum. N = {I,i} is a
proper subgroup of G and the quotient group G/N has the elements {I,i}.
{4.a}. {B,b}. {C.c}, {AB. ab}, {AC. ac}, {BC. bc}, and {ABC, abc}. They

represent the following partitions:

i > Y {C. | -yt ¥
4,0} —y'¥2¥, ¥ 14C,ac}  —{y'y% ¥ ¥4
B PR (BCh YL P
|AB, abl— [y y%. ¥ '] {4BC. abe} — [¥ ¥ v, ¥}

Introducing the {I,i} — I
{A,a}— A4
{ABC, abc} — 4 BC notations,

7 Periodica Polytechnica EL 12/3.
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the conditions of the realizability of any transition between y*, y%. y® and y*
has the form

4-B-C-ABC-+ AB - AC - BC (2.5.—1)

If we assign arbltraly but distinct codes to y!, y°, y° and y*, they define

the partition {y y2, ¥, y4} so their coding must contain at least either XY
and YZ, or X, Y and YZ, or X, Y and Z type columns, where X, Y and Z
can be any three of 4, B, C and ABC. For those y', y% y® and y*, the coding of
which contains only the columns defined by one of the complexes {XY, YZ},
{X,Y.YZ}, or {X.Y,Z}. the condition (2.5.—1) cannot he satisfied.
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According to the Lagrange theorem, G/IN can have proper subgroups of
order 2 and 4 only. The 2nd order subgroups are: {I, 4}, {I, B}, {I,C},
{I, AB}, {I, AC}, {I. BC}, {I. ABC}, and the 4th order subgroups are
{I.,A, B. AB}, {I, 4. C. AC}, {I. B. C. BC} {I. 4. BC.ABC} {I. B, AC,4BC}
I.C, 4B, ABC}, {I. AB. AC. BC}. Any of these subgroups have the form
LXY, {LXY} {(ILX,Y, XY} or {I. XY, XZ, YZ}, respectively.

Obviously, none of the complexes mentioned before are subgroups
(i.e. closed under the group operation) so that new elements can be generated
by carrying out all the possible pairwise multiplications between the elements
of the complex under consideration. Since

(XY, YZl % {XY.YZ, = {I,XY,XZ YZ!
(X.Y.YZ} % {X.Y.YZ} = {,X,Y.Z XYZ XY, YZ)
(X.Y.Z} % {X.Y.Z} ={LXY.Z XY,XZ YZ)

the original elements of any of these complexes and the new elements generated
by their pairwise multiplications together are sufficient for the realization of
any transition between them.

Since k;, variables are always enough for a distinet coding of a flow
table and ('2”) is the number of the possible pairs, the proof of the following
theorem is finished:

Theorem 2.2.: k; + (13) variables are always sufficient for the speed in-

dependent f(x,y,Y) type realization of an arbitrary flow table.
As an example a general state assignment for an eight row flow table is

given:
K L M K% L K= M L3 M
0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 1
0 1 1 1 1 0
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 0 0 0

Columns K, L and M represent a distinct coding with the minimum
number of variables, K @ M, L © M and L @ K are the possible mod 2

sums of the original columns.

2.6. State assignment procedure

The general state assignment scheme is very easy to use, since it is com-
pletely independent of the flow table structure, but it has the disadvantage of
requiring more than the necessary number of internal variables in most cases.
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To make a state assignment for the f(x, y, Y) type realization of a given flow
table the following method is suggested.

According to Theorem 2.1. for every pair of transitions x!y! — x%y? and
x%y% —» x%y? such that x2 = x* and y? == y4, y! % [¥%y*] and y® 3 [y'y?] conditions
have to be satisfied. The condition y* 3 [y"y"] can be represented by an in-
completely specified Boolean vector, where arbitrarily yk is coded by 1, [y"{y”]
is coded by 0 and the remaining elements are unspecified (—).

By listing these conditions for all the specified transitions an incompletely
specified Boolean matrix is defined. The problem of reducing these matrices
was considered by Dororra and McCruskey [10] and Tracey [9]. Any of
their methods can be used to find a reduced matrix representing a state assign-
ment, where all the specified transitions can be made speed independent.

An example is given by finding a state assignment for the flow table
of Fig. 13. The incompletely specified Boolean matrix for this case:

a b ¢ d e
I, da, be —_— 0 0 1
o0 1 — 0 —
da, ec —_ = 0 1 0
0 — — 0 1
L cd. ab o o0 1 — —
1 — 0 0 —
cd, eb o 1 — @
— — 0 0 1
I, be, ca o 1 0 — —
— 0 1 — 0
be. da 0 1 — 0 —
— 0 — 1 0
I, ae, be 1 0o 0 — —
0 1 - — ¢
ae, dc¢ 1 — 0 0 —
0 — — 1 0

The “Matrix Reduction Algorithm 27 of [9] results in a state assignment
with the minimum number of internal variables:
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Summary

In this paper a new synthesis method is suggested for asynchronous (fundamental mode)
circuits by using both the delayed and undelayed versions of the internal variables and this
method is shown to be more economical in terms of the number of internal variables than the
existing synthesis methods having the same capabilities.

In the second part of the paper (to be published in the next issue) a new general state
assignment method resulting in a single transition time state assignment is given for asynchro-
nous (fundamental mode) circuits which requires fewer internal variables than the existing
state assignment methods of Huffman, Liu and Friedman.
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