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BYCHOVSKY [1, 2] determined the element sensitivity of linear systems 
as the product of t"WO transfer functions. 

In the foUo"wing, a generalisation of Bychovsky's method "will be given 

for active networks, parasitic elements and any kind of transfer quantities. 
With slight modifications, the results can be compared to the formulas obtained 
by LEEDS and UGRON [3,4] deriyed for node analysis. 

On account of its general character, the method to be described offers 
seYeral alternatins of simplification. They can be utilized with high efficiency 
in state-variable analysis. 

1. Generalisation of Bychovsky's method 

Be Q (without discrimination) the Laplace transform of the branch 
current or yoltage of a network. Similarly, independent current or voltage 
sources are marked W" without discrimination. Let us consider no"w a branch 
marked i incorporating the particular element whose parameter is x. The deri­
vation of the transfer function is to be performed with respect to x. The para­
meter;); may be an impedance, admittance, an R, L or C element or the control­
lIlg constant of any type of source. 

Theorem: if the element in the branch i fulfils the relationship 

(1) 

where Qz is the current or voltage in any branch of the network and Ci is a con­
stant independent of current and voltage (it may be dependent on frequency!), 
then the sensitivity with respect to x or the transfer function Q,,/Wj can be 
obtained from the product of two other functions, using the relationship 

(Fig. 1) 

(2) 
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Transfer function 

(3) 

can he measured at i-port with input excitation assum(~d. 

Fig. 1 

Transfer function 

(4) 

can he measured with the input excitation cancelled (Wj 0) - by insert­
ing in i-port a generator of Wi in such a way that its value is added to electric­
al quantity Qi. If Qi is a voltage, Wi will be a voltage source connected in 
series with element i. If Qi is a current, Wi 'will he a current source connected 

in parallel with element i. 
Relationship (2) can he confirmed in the following manner. 
Let parameter x in relationship (1) he varicd hy a value of .d x. As a 

result, each current and voltage of the network will vary hy a .d Q quantity 
(Fig. 1). Variations of quantities Q in the network will he related with those in 
quantities 

(5) 

associated with the variation .d x. The value of .d Qx is part of the total varia­
tion 

(6) 

occurring in element i, whereas the second component is produced hy the former 

(Fig. 2). 
The variation at the output produced by .d Qx will he, on account of the 

superposition principle, 

(7) 

where QIJWi is a transfer function hetween i as an input port and the output. 
Owing to the linearity involved, this can be measured hy means of a source 
Wi (of any arhitrary rating) inserting in place of .d Qx. 
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It is evident from (5) and (6) that, since .c1 Qx is part of the total variation 

.J Qi' Wi will be added to the quantity Q i measured on element i. Consequently, 
if Qi is a voltage, then W"i ·will be a voltage source connected in series, if Qi 

1ft; branch 

Fig. 2 

is a current, then W i will be a current source in parallel connection. Using (1) 

and (5L the formula of 

(8) 

\I·ill be ohtained from (7). Dividing (8) by input excitation W" .. and transposing, 
the relationship 

(91 
w w 

j 1 

will be obtained. 
Also, owing to the linearity involved, the quantity Q;JW"j will he a trans­

fer function independent of the degree of excitation. Finally, performing 
the transition L1 x -r 0, expressions (5), (8), (9) will be turned into equalitie,:;, 
leading to relationship (2) to })(' proved hy (9). 

2. Location of excitation:'; and Gntlmts 

Assume that the sensitiyitie's are to he computed with respect to R, C 
and to parameters cc, f3 of the controlled sources. 

In the case of a controlled voltage source, relationship (1) will take til,' 
form of 

o 

Fig. ,3 
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and, in the case of current source, 

(11) 

(The branch voltages and currents are marked U and I, respectively, together 
with the controlled sources. The independent sources are distinguished by E 
and J. Furthermore, the external sources initially not included in the network 

are placed between marks -fi'O-n'-.) 
The externally connected sources are shown in Fig. 3. It may be noted 

that, as is evident from relationships (10) and (11), the type of source control 
is entirely irrelevant. Components R, L, C may be equally used in conjunction 
with voltage and current sources. 

Studying the conditions from the 'dewpoint of capacitance, with a series 
voltage source applied, requirement (1) will take the form of 

_ 1 
Vc=-Ic 

pC 

and, in the case of a current source, 

lc = pCUc · 

1 
Deriving by x = C in Eq. (12), relationship (2) 'will be turned into 

On the other hand, in accordance with the rule of indirect derivation, 

1 a Qk 
--- -----

8IiC W 
J 

Replacing (14) III (15), the expression 

_8_ Q,,_ = __ 1_ Rc Q/r 
8C Wj C Wj Ec 

(12) 

(13) 

(14) 

(15) 

(16 ) 

will be obtained. Accordingly, derivation by the reciprocal quantity 'will cause 
only a sign change. That negative sign is taken into account by connecting 
80urce Ec with opposite polarity relative to Uc. 

Fig. 4 shows the arrangements necessary for calculating derivatives with 
respect to three elements. Observing the rules of signs given iu Figs 3 aud 4 
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the sensitivities with respect to x = ::c, (3, R, L, C will be given uniformly by 
Eq. (2). 

~ ~ d 0 , i 18 1 0 C 0 

UR=RI fR = Ir V 

-!:L. ~ d ~ 0 0 

VL = pLJ 1 
h = pL V 

-.!:L- ~ d c 11 8 0 0 0 

1 
Vc = PE f fc = pCU 

Fig. 4 

Example 1 

Let us determine sensitivity with respect to C of a two-port transfer 
function shown in Fig. ;). 

:! _f1"'L __ 
~ 

:: - ;)01"/ I Jour 
T 

Fig. 5 

Condition (1) IS fulfilled by the relationship 

(17) 

which means that the W i inserted is a current source le connected in parallel 
with the capacitance. From Eq. (2), the sensitivity is 

Se = _8_ Uout = _1_ ~ Uout 

8C lin C lin le 
(18) 
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Example 2 

Let us determine sensitivity 'with respect to R of the one-port impedance 
shown in Fig. 6. 

Condition (1) is fulfilled by 

(19) 

lout 

Fig. 6 Fig. 7 

Accordingly, the source to he connected is a yoltage source. According 
to (2), the sensitivity is 

SR 
a u 1 UR U 

- ---- (20) 
aR J R J ER 

Example 3 

Let us determine the sensitiyity of the two-port transfer function sho\\ 11 

in Fig. 7 with respect to parameter 7. of the Call trolled yolt age source. 
Relationship 

u~ = 7. "Cl 

fulfils the condition of (1), so that 

a lout ----

(21 ) 

It should be noted here that the determination of each transfer function 
presupposes the "cut-out" of all other sources not iuyoh-ed in the meaSlue­
ment (short-circuited or open-circuited in the case of a yoltage or current sourcl', 
respeetiYCly) . 

3. Determination of sensithities from the transfer matrix of the network 

An analysis of relationship (2) 'will sho,,' that the determination of a 
component sensitivity requires the product of two transfer functions, i.e. one 
from the input to the component being tested, and the other hetween the eOIll-
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ponent and the output. It appears to be convenient to construct a network in 
which the outputs represent just the electrical quantities Q developing at the 
elements (provided with tolerances) - be voltages or currents - and each 
element incorporates an excitation corresponding to Qi (current or voltage 

source ). 
This may be "written in matrix form as 

q=Tw (23) 

where q and ware column vectors obtained from Qi and Tfii, respectively; 
T is a matrix with dimensions corresponding to the number of elements provided 
with tolerances. Its components are rational fractional functions of complex 

frequency p. 

Written in details, 

r Ql l r l r JT~ l 
Q, Tii }17 

I 
1 

Qj Tf( 

Qk - -- Tu I Tie} I If";: 

L Q .. \ J 
I 

L J L TV" ' \ (24) 

AS:3ume that the principal transmission is a transfer fUllction 

(2;)) 

in the jth column of the kth row. NO"lnyithreference to (2), the sensitivity related 
to parameter x" fulfilling condition (1), will be obtained from the relationship 

(26 ) 
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which is the product of two transfer functions 

(27) 

in the kth line and in the jth column. 
Obviously, in a generalized form, transfer matrix T will include assum-

ing the above excitations and outputs - all sensitivities of any transfer func­
tion in the network related to any element. 

2 

2 

Fig. 8 

UcJ 

URI! 
tUCI uC2 t 

~ UR2 

[RII t [Cl £C2t I [R2 

Fig. 9 

In general, the method illustrated in (24) is particularly useful when the 
method of analysis is likely to produce, beside the principal transmission, the 
side transmission as a "byproduct". 

Example 4 

Let us determine the sensitivities of the circuit arrangement sho'Nn III 

Fig. 8 with different ty-pes of sources. 
a) A possible generator circuit arrangement is shown in Fig. 9. 
The pertaining transfer matrix is 
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ERl 

4p~+p+l 

419 

Ec, 

--------------~ 
__________ .J 

(28) 

Hence, for example, the sensitivity by C3 is 

(29) 

b) An alternative circuit arrangement is shown in Fig. 10. 
The number of sources can be reduced by taking into account that, from 

Figs 8 and 9, 

(30) 

so that the current transmission of Fig. 10 equals the voltage transmission of 
Fig. 8. Accordingly, a single source can be used for the "excitation" of several 
components. 

T= 

Thc transfer matrix for Fig. 10 is 

Ic~ -4p3-2p 

IL 
1 

8p 3+7p2+4p+2 
IRl 

-2p-l 

(31) 

-!-
_______ .J 
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The rest of sensitivities by C3 of this circuit arrangement are 

(32) 

identical "with (29). 

Fig. 10 

Note. It follows from Fig. 4 that, "with several components parallelly con­
nected, a single current source can be used for the excitation of each component. 
On the other hand, with voltage sources connected in the parallel branches, 
the number of outputs can be reduced (the output will be the common "voltage). 

In the case of serics components, the opposite of the ahove statement "will 
apply. 

4. Extreme sensitivities 

The method here descrihed can be applied for deu'rmining the sensitivi­
ties hy measurement as "well. For accuracy reasons, it is impractical to apply 

relationship (2) "whenever the tested component assumes an extremely lo"w or 
extremely high value. It is evident from Fig. 4 that, under extreme conditions 
the currents or volt ages to he measurcdmay he extremely lo"w or suitahle source's 
may he difficult to bc connected (e.g. in the case of stray capacitance). 

Relationship (2) may be modified - for applications hy Fig. 4 - in 
such a way that the quantity to be measured on the circuit component is 
replaced hy another quantity (in accol'dance with Ohm's law). A reduction hy 
circuit component Xi can be ohtaincd through a proper selection of source's 

connccted into the net"work. 
The modified circuit arrangement is sho"wn in Fig. 1l. 
In Fig. 11, the sensitivities are' ohtained from l'("lationship 

Qout (33) 
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x=R z =1 

x=L Z=p 

x = C Z= P 

0 

Fig. 11 

GJ 
X= ir 

Ur 

x={ 

1 
x=C 

z = 1 

z =-1 
p 

421 

0 

In case ot lo'w component values, it is advisable to use the left-hand side 
of Fig. 11, in the case of high values - the right-hand side. 

5. Parasitic sensitivity 

In the foregoing it has been assumed that th" circuit components never 
get zeroed. At a zero component value, the d.:gree of a network may decrease. 
Accordingly, parasitic sensitivity 

s~ = SF(p) 
Sx 

~ Qoutl 

Sx Win ix=o 
(34) 

is not expressed correctly by relationships (2) or (33). 
To solve the problem, let us consider the so-called bilinear relationship. 

As it is familiar, any network function is a bilinear function of its one-port 
components: 

F(p,x) = u(p)_7- xb(p)_ 
e(p) + xd(p) 

where functions u, b, e, dare polynoms of c)mpl 'x variable p. 
L ~t us form now the partial cbrivativ ~ of F: 

sF 
Sx 

be - ad 

(e + xaf 

(35) 

(36) 



422 D. ;':1.5.5 

.J rcording to relationship (36): 
a) a sensitivity function with respect to a one-port component includcs 

that component only in the dcnominator; 
b) the denominator of the sensitivity function is the squarc of the natur­

al frequencies of the nct'work. 
From the fm"egoing it follows that the transition x -, 0 does not affect 

the numerator of the sensitivity function. It reduces only the denominator to 
the square of polynom c(p) corresponding to the network not containing the 
component "x". 

If that denominator were calculated directly from a network not con­
taining x, difficulties might be encountered in determining the constant. Under 
such conditions, it is more practical to determine c(p) in (36) by calculating 
the polynom of the denominator at t,\-O different values of x. Now 

and 

Soh-ing the equations for c(p) 

Choose X 2 to be equal to 2x1, then 

will be obtained. 

6. Applications of state-variable analysis 

As it is familiar, state-yariable equations take the forms of 

x(t) = Ax(t) + Bw(t) 

y(t) = Cx(t) :- Dw(t) 

(37) 

(38) 

(39) 

( 40) 

(41 ) 

Hence the transfer matrix connecting the inputs with the outputs can 
be giyen by the expression 

T(p) = C(pI - A)-lB -l- D. (42) 

EYen a simple analysis requires matrix A to be written and inyerted. 
The surplus work involyed in sensitiyity determination consists in writing 
and multiplication of matrices B, C and D. 

However, in special cases, simplifications can be made. 
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Employ a voltage source for excitation of capacitances and a current 
source for inductances. It is evident from Fig. 4 that under such conditions 
the pertaining outputs 'will be just the state variables (capacitive voltage and 

inductive current). 
Of those excitations, the ones resulting in other than improper systems 

are marked Ws (located outside of a capacitive loop or inductive cut set). 
All the rest of excitations are marked w" including the excitations of controled 
sources, resistances, capacitive loops and inductive cut sets. 

This distinction will split the state variables as well. The excitations 
pertaining to those marked Xs 'willnot result in improper systems, whereas those 
pertaining to Xi will result in improper systems. 

No'w let us 'write state-variable equations as 

(43) 

(44) 

As has been mentioned above, the outputs Ys are just the state variables 

Xs; hence 

and (4,5) 

will be obtained. 
Furthermore, it can be proved (see Appendix) that 

(46) 

Using (43) and (44) and carrying out the multiplication of (42), the trans­
fer matrix ,\-ill take the form of 

(47) 

where cP IS used for denoting the relationship 

cP = (pI - A)-I. (48) 

It follows from relationship (47) that no outputs and inputs have to he 
defined specially for the state variables Xs. 

Relative to a state-variable analysis with the assumption of a single 
input and output, the sensitivity calculations involve the only complication 
by the introduction of new inputs Wr and outputs Yr. 
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Accordingly, the method is applied in the following manner. 
1. Find the particular state variables belonging to Xs (at which the volt­

age source connected in series with the capacitance and the current source 
connected in parallel with the inductance will not produce an improper system). 

2. Select suitable excitations for all the rest of components by consulting 

Fig. 4. 
3. Afterwards, take into account only the excitations defined in the pre­

ceding clause (together with the pertaining outputs). Thus coefficient matrixes 
B" Cr, Dr have to be written. 

4. Matrix A is independent of the numbers of outputs and inputs. The 
respective line and column of matrix T can be calculated with reference to 
l'ealtionship (4.7). 

7. Appendix 

Theorem: if a linear system can be written as 

x (49) 

where Ws are voltage sources (connected in series with the capacitances) or 
current sources connected in parallel with the inductances, then 

(50) 

Proof 

The unique solution gives evidence of the fact that a given arrangement 

may be associated 'with a single matrix B only. The investigation is carried 
out for capacitanc~s only and, on account of the superposition principle, for 
the case of Wr = O. For inductanc:'s, the theorem can be proved in a similar 

nlanner. 
Evidently, a capacitance charged to a voltage U 0 is equivalent to an 

uncharged capacitance cOllnf'cted in s-:ries 'with a voltage source of Eo = Uf)' 
Be initial value of no assigned to the capacitors invoh-ed in Xs; determine 

the output at an excitation of w = O. 
Thc state variables 'will be 

No'w establish the same conditions but with uncharged capacitors c~m­
nected in series with voltage SGUrC2S Ws = lio' 
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Of course, the potential difference developing across the poles of the 

initial capacitor will be (Fig. 12) 

where 
X,(t) x:;( t) 

t 
Xj(t) = \' eA(i-c! B, 'W, dT • 

o 

UIO} = Uo U(O)=] [0 =Uo 

0----11------0 - 0---11 0 0 

~ ~~ 
Xslt) =X,if}-f-WS 

Fig. 12 

(52) 

(53 ) 

The value of Bs can he determined hy equalizing equations (51) and (52). 
Namely: 

i 

Ws -'-- J eA(I-T). Bs Ws dT. 
o 

After integration (Bs and Ws U o are constant), 

Rearranging, 
(eAt I) - At [ ,4 -1 At , .A -1] B 11u - e -."'!, • e -,-.'1 s lIlt . 

(54) 

(55) 

(56) 

On account of the definition of matrix functions in terms of infinite 
spries, the product in hrackets on the right side can he interchanged. Accord­
ingly 

(57) 

The term (57) will oni>' be valid if 

[As A,J-l. [Bs Ri] = [Is Md (58) 
"-,-- '-,--' 

where Is is a unit matrix, and M;, Bi are omitted. Hence 

(59) 

Thanks are due Dr. K. Geh<?r for his valuable comments and suggestions. 

4 Periodica Polytechnica El. XII/c!. 
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Summary 

The method here described can be applied for the determination of circuit component 
sensitivities without the need of derivation. Bychovsky's theorem has been generalized to 
active networks, parasitic components and any kind of transfer function. 

It has been pointed out that-with the excitations and outputs suitably selected the 
sensitivity of the network with respect to any component can be determined from a row and 
a column of the transfer matrix. 

Adopting this method to state-variable analysis, it has been pointed out that with 
some limitations - it is not necessary to define special inputs and outputs for the state-variable 
components. Thus the calculation of coefficients of matrices E, C and D as ,,,ell as transfer 
matrix T has been largely simplified. Accordingly, the sensitivities can be determined in a 
single step of analy;:is, invol'l"ing a slight snrplus ,,·ork. 
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