NONLINEAR CONTROL SYSTEM DYNAMICS
CHARACTERIZATION BY ROOT-LOCUS CURVE

By
B. Szirnicyi

Department of Process Control. Technical University, Budapest

(Received April 16, 1968)
Presented by Prof. dr. A. FRIGYEs

Notations

For the notation of the functions the system of symbols used in mathe-
matics is applied: generally capital letters for time functions of the physical
variables and small letters for those of the variations at the workpoint. For
example S(z) denotes the time function of the controlled variable, s(¢) =
= 5(t) — S, is the same with respect to S,,.

The subscript o with some variables refers to the value at the workpoint
0. where the system is in stationary equilibrium,

¢ time
s Laplace operator
. d . .
L= differential operator
L
G(s)

W(s) =

He) open-loop transfer function of linear control system
s

nooL . 3 .
H(s) = X' Tisi denominator of W(s). a polynomial of nth order

1}

m .
G(s) = K X' 7is! numerator of W(s), a polynomial of mth order
0

i the number of order of the differentiation with respect to time
S() controlled variable
M () modified variable
Z,t) gth disturbing variable
Sy(t) basic value, the required value of S()
#  number of the disturbing variables
s(2) = S(t) — S, l variations relative l I
of

) . -orkpoints S controlled variable
m(t) = M(t) — M, to workpoints .5,

M7 8 modified variable
5y{t) = Zy(t) — Zy, TR0 Gor g the disturbing variable
sg() = Sa(t) — Sg, basic value

AT

Ji-1

A= differential operator vector
A
1
S,(t) = ;- Sit)  controlled variable vector
(ing:i=0,.... kyinfri=0, ..., m)
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basic value vector

i=0,..., ¢

gth disturbing variable vector
(i=0....., Zy

modified variable vector
(ingii=10,..., rinfii=0,..., m)

controller function
plant function

5Z )
5 | ]
..... S7al

torque relative value

angular velocity relative value
armature current relative value
terminal voltage relative walue
basic voltage relative value
relative feedback index

relative internal voltage drop
in the armature

motor electrical time constant (sec)

motor electromechanical time constant (sec)
gain factor of the integral controller (sec™!)

relative load torque value 1/T. > /T,
relative load torque at the stability limit
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introduciion

The linear control system dynamics is a well delimited and almost com-
pletely elaborated field in the control theory. When the mathematical model
of a real system is represented by a linear, constant coefficient differential
equation of arbitrary order, the system analysis and synthesis can be performed
without any special difficulties. Due to its properties the mathematical model
can be reduced to algebraic system of equations by various integral transfor-
matiens (Laplace, Fourier) and the principle of superposition helds [1].

The practical design by these methods is in fact an application of
Bode’s theorems for contrel syvstems and presently it is the most common
method [2].

This advaneed state of the lincar control theory is probably due to the
fact that even before the emergence of control science the Kircheoff equations
fer lumped parameter electrotechnical and electromic cireuits led to linear
differential equations so that the theoretical methods developed here were
applicable for the analysis and synthesis of control svstems. Until quite recently
thetheory of thesefields differed only in terminclogy[3].

In many cases the phenomena arising in real physical systems cannot be
described by linear mathematical models. The mathematical models describ-
ing the signal transmission in the svstems often lead to noenlinear differential
equations. No uniform theoretical test method can be used in these cases.

here are, however, test methods for some types of nonlinearity and
system structure, moreover these methods can be generalized for generallv

stabi-

i

g
developing static characteristics with discontinuities [4]. By these test
lity preblems as “limit cyele” problem can be solved in the first place. and they
are usually suitable for systems which can be divided to strictly linear and non-
linear parts. Here the linear and nenlincar parts of the intluence diagram azve
connected in series, in parallel or via a feedback, and so the mathematical
operation of summation, subtraction is permiited among the parts beside
the series connection. If other operations are used (multiplication, raising to
a power division of variables, etc.) these methods prove te be tedious or even
unusable,

In these cases one ean have resort only to the computer analysis by digi-
tal or analog computers. The analog computer is highly preferable for this pur-
pose as compared to the digital machine, because it works in parallel mode at
a very high speed, and the runs for various parameters give immediate results
as characteristic curves in diagram form.

This paper endeavours to give an examination method for a general con-
trol system, and taking into account a properiy of nonlinearities going bevond
the nonlinearity of the static curve syvstem. Essentially it is recognized that
given types of nonlinear systems can be described by characteristic equation
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linearizing about the workpoints of the functions governing the system be-
haviour, and the root-array of these characteristic equations which depends
on the workpoint can constitute a “map” for the nonlinear system.

1. The struecture of the system under study

The control systems based on the principle of negative feedback can be
fundamentally characterized by the influence scheme of Fig. 1.

Sq

T

Fig. 1. Influence scheme of the control svstem

Ml50iS) L spiz2,)

In this scheme the control device (comprising the basic and error forming,
sensing, amplifying, actuating and intervening function and their internal
feedbacks) can be described by a functien in shich the two input signals of
the controller (S, and S5) appear as independent variables and the output
signal M as dependent variable.

This function must be determined by the system designer. He must take
into account the interrelationship between the dependent variable S and the
n -+ 1independent variables of the plant, which follows from the technological
properties and requirements.

A design is to start in the first place from the functions concerning the
equilibriumn state. The designer has to cxamine the control aim, how the sig-
nals Z; influence the S value statically, then after determining the most
unfavourable disturbing signal combination pattern he marks out the necessary
modification range for M.

With the inclusion of a satisfactory ““dynamic margin’ to this range of
modification the requirement for the contrel device can numerically be estab-
Lished.

The system dynamies design is “simple”™, when the relationship among
the system variables can be given in terms of linear differential equations.
If the controller and plant functions are continuous, and the system functions
as a constant value control. so that its characteristics can be linearized at a
workpoint, the design method for linear systems can be applied for nenlinear
systems as well, at least in the vicinity of the equilibrium workpoint.

In the structure under study the following assumptions are made:

a) The control device and the plant are characterized by nonlinear fune-
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tion defined over a simply connected range T' and having continuous partial
derivatives there, This restriction aims tohave such control system to be studied
where both the plant and the control device wouldbe characterized by “smooth”™
functions. Apart from the relay (discontinuous) systems a good many control
systems are featured with this property as most practical linear systems con-
tain inherent nonlinear elements (amplifier saturation, iron saturatien, ete.),

b) The functions defined over the range T are of single value. This assump-
tion excludes from the study the hysteresis-type organs, and so the dependent
variable assumes a single value for any given combination of the independent
variables of the functions describing the system.

According to these conditions the nonlinear system functions

R e (1.1)
F080: Z): .. Z(0): M@n] =0

concerning the control device and the plant are required to be such that within
the defined range of the variables, a tangent plane could be drawn to the
hvpersurfaces (1.1) assuming arbitrary combination of variables; this tangent
plane must substitute (1.1) over the range /. On this assumption a first order

Tavlor approximation can be given.

2. Workpoint linearization of the system

Functions {1.1) can be expressed as
(1.2

For the sake of simplicity one disturbing variable {g = 1) is assumed in these
functions.
Eq. (1.2) can be obtained from (1.1) by arranging according to any factor
containing terms M(f) and S(z), then dividing by the coefficient of the factor.*
In steady state the equilibrium workpoint — assuming constant value

control — is characterized by the
M, = g(—’Wu? Sy Sa0>
Se=f(Sy: Zy: M)

(1.3

* If M(t) in g¥ or S(t) inf* does not appear, the equation should be arranged according
to the least order time derivative of M(r) and S(t). This is the case when the controller (I, PI.
PID types) or the plant are of integral type. For the sake of simplicity systems consisting of
zero-type (static) control devices and plant will be examined next.
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o

data, as the zero value of the time derivative (7 = 1)is regarded to be the condi-
tion of the equilibrium. If at this workpoint — with the system being in rest —
the variables Z and S, which are independent from the viewpoint of the svs-
tem, vary relative to their workpoint values, this fact necessarily involves the
variation of the values of 3 and S, too. The question arises, how this dynamic
operation evolves with time. This can only be answered by solving Eqs (1.2)
for Z(#) and S,(t). As mentioned before, this is a hard task because of the nonlin-
earity of functions (1.2) and often the analog modeling has to have recourse to.
It is somewhat simpler to evaluate the system dynamies, if the variation of Z
and S, is little at the workpoeint. In this case the movement over the nonlinear
bhypersurface can be approximated by a movement over a tangent plane.

This assumption permits no definite statement as to the system response
to large variaticns, vet it is worthwhile to carry out the investigation if nothing
but informatively.

Apply the Taylor approximation te equations (1.2) at the werkpoints

M Sg: 24 S, Le
S(t)== S o s(1) o | w0+ o - ¢
S s() = = z(t)~ —— - m(t
) ' 38 ;U ’ 5Z u ) oM )
V() 2 M, — 2B - &Sy 28 s
AL} o : g 8§ 3 K ’
L 0 a}zlo ) as ‘lﬂ ) SS(,‘U °

i = . 5f o
«"(f) 1‘—" . 7\ . :(l() - T )\ nl(f)
. i i ol o ) N
' (1.4}
] 2z — 3¢ —
m(_i)l 1 — 7\/,-1 = ~i—§— Ay s{t) = -?3 - A -osu{t)
‘ ) S T3,

Eq. (14) is a system of linear, constant coefficient differential equations de-
scribing the control system at the workpoint. This svstem of equations is to be
solved for given time functions Z(¢) and Sy{z), in order to get the system ro-
sponse functions s(i) and m(z) for z(f) and su(¢).*

* The **free motion” of the control system in case of excitations z(z) = 0, sg(¢i) = 0 is
characterized by the expression

- ! 2e = ] a0 < Sg 3
. [ - N L S oA ., —2— - AL-slt
| m(t) {1 T, A ] e An-m(t) =, gr s(E)

af | 7
CoamM s,

must hold. This is the characteristic equation of the system.
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From among the functions describing the system the characteristic equa-
tion is the most representative as to the dynamics. In our case this equation
can be written as

1 —

or

On the basis of this characteristic equation the problems of stability and damyp-
ing econditions of the svstem can bs analyzed.

3. Study of workpoint stability on the basis of the characteristic equation
of the linearized system

Eq. (1.5) is of great importance for the analysis of control systems. Even
the analysis of linear systems has led to a so-called characteristic equation.
whose roots have determined the performance of the system. These roots appear
in the exponent of time function of the force-free system. Their sigus, real and
imaginary parts determine the dynamic operation.

Eq. (1.5) was obtained as the characteristic equation of a nonlinear sys-
tem. but because of the linearization this equation is valid for small variations
neighbouring the workpoint.

Consider the coefficients of / in Eq. (1.5)

As dim[#] = see—’, dim[f] = dim[S] dim[g] = dim[M] and
dim [T§;] = sec
dim [TY;;] = sec’
dim [75;] = sec’ (1.6)
dim ;] = sec

dim[»] =1

. . R . i :
coefficients are numbers with the dimension sec’. denote them by T

T;:, Thtis #o respectively. Now Eq. (1.5) can be written as



434 B. SZILAGYT

oo J . i m-o. koo
[1 + 3T 7 J {1—~ X Thy ) x D thy A Sl 2= 0, (1.7)
. 0 0

0

The values of these coefficients are uniquely determined by the workpoint
data S, M. Z,. S,, as well as the structure of the g and f functions. Beside
the variables these functions include various system parameters, which are
constant, dimensioned numbers, usually as coefficients or exponents. Denote
these parameters by a. b, ¢, . .. and %, 3, 7, ... in functions f and g, respectively.
By this reason the coefficients T, 7., Ty, 7y and % are the functions of this
system parameters and of the workpoint data, i.e.

= foglasbres ..o coves S My Z S

iy =fulay by ey oL e Sp My Zys Syo)
Thyi=flos Py oo, Sot My Zs Sa) (1.8)

T =fma Bsys oo Sy My Zy: Sa)

w=f(a: b; ¢z ... wpPryr ... Syt My Zy Sa)

In linear control systems, as the functions (1.2) arc given in terms of linear
differential equation, the coefficients T, 7 and x are independent of the work-
point data S, M, Z, and S,,.

Therefore the array of the characteristic equation’s zeros for these sys-
tems can be plotted by the known root-locus methods where some a, b, ¢, . ..
or %, f. 7 ... type system parameters are taken as variables. Its influence on
the damping and the stability for the variation of the parameter over some
region is shown on the root-locus curve.

4. Nonlinear system root-locus curve

The coefficients of Eq. (1.8) suggest the idea of expressing the physical
parameters of the sysiem static workpoint as functions of the independent
variables S_, and Z,, because in the equilibrium workpoint (1.2) can be given
in form of

;11(, == g(_f}[”g Sn: ‘SGU>
S, = f(S,. Zy. M) -

= g«( dag: Z())
S,, ::fs;(San: Zn)-

This cperation in (1.8) would mean that coefficients T. 7 and K are, besides
being dependent on the system parameters, functions of only the independent
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variables S, and Z,. The following question can be raised. Assuming constant
a.b,e....andx 8,7y, ...system parameters how the zero array of the charae-
teristic equation of a nonlinear system will vary as a function of the independ-
ent svstem variables, and what kind of zero array will characterize the non-
linear system at the workpoints corresponding to various equilibrium states.
This question can be answered by plotting a conventional root-locus curve,
which curve, provided a constant basic value (constant value control), gives the
root array of linearized characteristic of the nonlinear system over the Z;, <C
Z, < Z e variation range of the independent variable Z . So essentially the

root-loci of the characteristic equaticn (1.7) written as

N
S Adasbicr oo aPiys o SeiZy) A= 0 (1.9)
0

are plotted on the complex plane, while for Sy, = const Z, or for Z, = const

S, varies over an interval preseribed by the system operation, and the svs-
tem parameters a, b, ¢, ... and z, 7, 3. ... are of constant value.

The solution of (1.9) for 7 does not mean any special difficulties as even
relatively small digital computers have corresponding subroutines for solving
equation of (1.9) type up to several hundreds of order. Some problem can arise
from the repetitive computation, because the coefficients of (1.9) are usually
complicated irrational functions of Z,.

5. Example

A circuit disgram and influence scheme are shown in Figs 2 and 3.
The relationship between the phyvsical variables of a winding-up machine drive
is illustrated by the influence scheme. The aim of control in this case is to
ensure a static funetionality Z7 - 2 = const between the load torque Z7 and
the angular velocity. This problem could be reduced to control the system to
hold (1 — 0)I*Q as constant.

This was done by measuring the signal (1 — 0)I*Q, comparing its value
with the required value S;, and feeding the differenee signal into an integrator.
The integrator output alters U, as long as the S,, — (1 — 0)[32, = 0 is
established at its input. In this equilibrium state a zero signal must appear
at the input of the integrator with £ output, that is

Sp= (1 —0)Z;,02
or o= ( ) Lrasdo (F1)

Zry 82, == const

i.e. the system meets the requirements as to the static properties. The other
functionalities in the influence scheme result from the fact that in order to
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relieve the controller and to permit manual control the drive was supplied by
a magnetic amplifier. Its output voltage — as a consequence of the negative
cwrrent feedback — linearly decreases when the current increases. Thu

ifi

Zr - 2 = const can be reached without control by a properly set feedback.
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Fig. 2. Drive control of a winding-up machine. C: Control amplifier; MA: Magnetic power
amplifier: M: Externally excited DC motor; TD: Tachometer generator; PD: Power detector;
V: Feedback circuit: B: Wound up bale

The nonlinearities shown in the influence scheme are due to the operational
properties of the series motor. The other effects due to other possible nonlin-
earities (as saturation and hysteresis of the magnetic amplifier, saturation of
other amplifiers nonlinearities in the excitation and armature ecircuits of the
motor. ete.) arve disregarded in this example.

The normalized basic equations of the sysiem are (5):

Ct - eI — o T2 — 1 - 510)20) =0
(¢4

P U t‘_Q .

Pl — ZoAy — =27, 20y
’ 0 de
-

U — ol = U — T2 = (F2)

i

S(t) — (1 — o) I* (1) - 2(t) =0
Ualt) — 8§ [Sa(t) — S(0] de =0

In this nonlinear system of equations r, p: T\; Ty, f and T can be regarded as
constant system parameters. The dependent variables are U(r), S(z), I(z).
O(2) and Ua(e), while Su(t), Z7(t) are independent variables. The system oper-
ation condition can he deseribed by Su(t) = S;, = const. while the load torque
excurses the interval 1 <7 Z,, <7 4.
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From the linearization of the the characteristic equation can be

system
gained at the workpoint (Z,,, 5,4 Q4. I, Sy U,y Uy) as

1 —0

71 T;n T/‘l “L Tv Tm J“ (1 - = QOJ TTm‘i 7 —

Fig. 3. Power control influence scheme of the winding-up machine

As from (F1)
I(% - ZTU
(1 — 032 =S,
we get
To(Seos ZTO) = 1& Zry

bao

Qo(sa(ﬁ Zry) = W
— )Ly

therefore (F3) can be written as

A (Sant Zo) 74+ Ag(Syqs Zrg) 7+ An(S g Zro) 72 +

. (F4)
+ A1(Saps Zro)2 =+ Ag(Saes Z1e) = 0.
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The coefficients in (F4) are

-"14(Sa05 Z’m) =a

( S
Ay(San: Zyg) =b + ¢ |1 4 o =0
Zry |
- ; Sal)
it
N Ta
i Sno
A (Say: Zro)=gZr, + h =
i Lo

Ao(Saps Zro) =1 !Z—ZTG

(F5)

They can be interpreted as functions of the torque and the required value

S (a. b, ¢, d; e, f, g, h, T are constants).

Zr
Sall) }Z’L@!ﬁ s
Sit)
02< 27 <25
Sag = 0.9
z A
2 cg, il

P LAV IS LRV I OOV Y P

AufA-20l2r )} { A=Az (27 )] (2= A3 zp, )] (2 =04 (270)] = O
Ay= a7

A3=a7+0,7/7+ 2970/

Ap=2m07[45 + =)

Z 3
A,:gm% Ao = 6,66¥2F,

Fig. 4. Root array of the characteristic equation in the case of a torque disturbing signal
varying in the range 0.2 < Zy < 23 with a constant basic signal S,,

For the parameters [r, 9, T,, Tp. T, §] = [3.5, 0.1, 1.0, 0.7, 1.0, 3.33].

s e

Sqo = 0.9 constant, the root array of the characteristic equation (F5) for the
range 0.2 < Z;, < 25 was computed as a function of Z;,. Computation was
carried out on the digital computer ODRA 1013 at the Department of Process

Control, Polytechnical University of Budapest (Fig. 4).

From the root-locus

curve, as it can be seen, for S, = 0.9 and increasing disturbing signal Z,
the system runs through various workpoints which results in different damping
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conditions (of course for small input variations). If the torque is in the ranges
Z: < Zpo<Zgy and Zyyy < Zpy < Z.), the damping of the system response
is YT > Ty, if Zoy < Zpy < Zey and Ze, << Zpy << Zgy, the damping is
$o/lTg > UTes > 0, and if Zoy < Zpy X Z,, or Zpy > Zg,, the response is
not damped and an oscillation with increasing amplitude will arise.

The basic requirement in the design of this system was to form a parame-
ter system [r, o, T\, Try, T; f] that the 1 < Z;, < 4 operational torque range
lies on that part of the root-locus curve, where 1/T. > £,/T, holds, as in this
case neither stability nor damping problems will arise.

2
(i—g) 140).210 B
Sit) or i
] Zrlt)
Salt £ ! 5 luw 1 r l =L o
s T+sl 9+8Ts e T Ims

(1-9 T“i’j
). G

Fig. 5. Scheme of an analog computer program for power control

To check for the damping conditions of the system the equations (I'2)
were also programmed on an eighty-amplifier analog computer of the Process
Control Department. Fig. 5 shows the block diagram. S,, = 0.9 and Z;.; = 1
were set as workpoint values in the static system. The load torque Z; was
varied linearly with a slight slope. sc that the variation due to the system’s
own dynamics took place during the variation of 1% in Z7. The static curves
02y(Z7,) and S(Zy,) are plotted in Fig. 6a. Figs 6b and 6¢ show the time
functions Q(t), when a Z, = 1(¢) step was fed into the system at the workpoints
1,2, 3 and 4 (Fig. 6b) and when starting from the workpoint 1 the system
was excited by 1(z). 2.1(¢), 3.1(z), 4.1(¢) and 7.1() torque steps. Comparing these
time functions with the root-locus curve of Fig. 4 identical results were obtained
for the damping conditions.

6. Conclusions

The dynamics of a linear control system with the open-loop transfer func-
tion W(s) = G(s)/H(s) can be characterized by the characteristic equation

G(s) +~ H(s) =0



440 B. 3ZILAGYI

dz-ni=111)

Vo Qelzn) o
) origin af
\ . inffgbi/z’!g

{l/;.sfob/e

.

5 7 8z,

®

Fig. 6. Dependence of the controlled variable (8) and an internal signal (£2) of a nonlinear

control system on the static disturbing signal (a) and its angular velocity response to
“small” (b) and *large” (c) variations of the disturbing signal in separate workpoints

‘When this equation is written in the form of

N ]
SAisi=0

0

the coefficient 4, is a function of the parameters of time constant type and of
the loop gain

Ai = ATy Tor oo T 7y Tor o o2 T K

The root-locus curve of the system plotted versus a system parameter (generally
the loop gain) shows the stability and damping conditions of the closed-loop
system.

The characteristic equation of a nonlinear system with given mathemat-
ical structure is valid in the neighbourhood of the workpoint and is signifi-
cant for the dynamic properties appearing in this region only. Therefore. the
characteristic equation written in the form:

N

' yr——
;/\'.Ai A=10

0

has different coefficients 4; at various workpoints. i.e. 4; depends beside on
the system parameters on independent variables S,,, Z,, which determine the
workpoint values,

di=Aa,b.c. ..., B .. ... S Zy)-
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Summary

Assuming constant system parameters a nonlinear system can be characterized by a
rout-locus curve, which shows the influence of the variation of the disturbing signal in the
case of varving or constant basic value on the root-locus plot of the system. The charac-
teristic equation and root-locus curve give the workpoint damping ratio at various work-
points of the system.
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