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1. Introduction 

The discussion of the skin effrct in rcctangular conductors in thc grooycs 
of electTic machines can he found in the technical literatuTe. Machinc dimen­

sioning has hrcn based on thc results of E::;IDE [lJ and ROGOWSEI [2] as a rulr 
'which can be criticized from various aspects as has earlier been shown by Fo­
DOR 13]. The theory for solving the prohlcm was amended by FODoR, without 
mceting, hov;eyer, the boundary conditions. For the case of a single conductor 
layer STEIDE\GER [L1J estahlished a solution satisfying the boundary condi­
tions. Since his results can l)e used for practical calculations only 'with 
difficulties, they have not become common knowledge. 

In the present paper thc prohlcm is discLlssed on thc hasis of the solution 
by STEIDI:\"GER. It has becn attemptcd to prescnt the deduction in a well 
arranged form and to makc results easily manageable during practical calcula­
tions. On the hasis of the presented results the numerical error of the usual 
solution can also he estimat(~cl. 

2. Eyaluation of known solutions 

In the follo\\-ing the concli Lions of the arrangenlcnt Eho\\-n in 1 aTe 

examined. In the rectangular ;;eetioE slot of v;idth :2a cut ill the ferromagnetic 
material a eomluctor of similarly rectangular section, of ,,-idth ::'b ,wd height h, 
of :3pecific conductivity (j is C1l'rallgcd ~ conducting the sinusoidally changing 
current I_ The lines of magnetic field IJrod,lccd by the currcnt arc dosed through 
the ferronlagnctic luaterial. The perllleability of this Inaterial IS aSSUllled to 

be infinitely high. An isolating bHf of wiuth a-b is built in l)etween the 

conductor and the matPl'ial on both sides. In our calculaiions 

the system of eoordin"tes sho\\'ll ill thc figure is used. In the folIo'wing the 
theories of E}IDE: FODOR, and STEIDI~GER are j)riefly surveycd. 
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2.1. The solution by Emde 

In the solution hy E:\IDE the electric field has only components in the 
directioe .x, while the magnetic field only in the direction y. The field is a func­
tion cxclusiyely of the coordinate z, i.e. the deriYatiYes with respect to x and 

y arc equal to zero. 
We obtain from the integral relationships of electrodynamics yalid for 

the quasi-stationary case [5] the equations 

d2 H b 
jw,uu r;H , 

dz2 a 
(1 ) 

(FE b. E 
dz:!. 

= --]U),Uu r; , 
a 

forming the basis of our furthPI' calculations. Against tht's(' the follo·wing oh­

jections may be raised: 
From the differential form of lUaxwell's equations the following rela­

tionships can be deduced under the aboye enumerated conditions: 

d:!.H 

d·' 

d:!.E 
= jco,i([f E . 

d·' 

(2) 

These equations, contrary to Eq. (1), include no geometrical dimensions 
Thus the two groups of equations arc in contradiction for a c--'- b. 

The solution giyen by E:VIDE, as FODoR has shown, can he criticized 
also on thc basis of energy flow. Let us namely examine energy fIo-w in the iso­
lator (Fig. 2). Since E is in the direction x, while H in the direction y, thus the 
Poynting Yector S is in the direction z, that is, energy can only flow in the 
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direction;;; in the gap. The value of S depends on z, i.e. energies of different 
magnitudes are flowing through the gap sections pertaining to the different z 
places. For example in the case of a single conductor layer, in the gap section 
at the upper face of the conductor, at;;; = 0 in our sY5tem of coordinates, the 

x 

--~~--z-=~o~~~-------y 

Fig. 2 

absolute value of S is at its maximum, while at z = h, at the lo·wer face of 
the conductor, it is zero. There is, however, no energy 10s5 in the gap, thus the 
result does not correspond to the principle of the conservation of energy. 

In the solution by E}IDE the boundary conditions of the electromagnetic 
field are not satisfied. According to these conditions the field is independent of 
the coordinates x and y. This should be satisfied also in the gap. In the ferro-
11lagnetie matcrial, in consequence of the assumption that ,u ~ =, there is no 
field (E 0, HO). On the surface, hO'wever, E must be continuous. This 
is not the case, since on the gap side E 0, on the fCl"romagnetie material 
side, in turn, E = O. In spite of the enumerated deficiencies, the results of 
E}IDE are being applied in practice. 

2.2. The method of Fodor 

In VIew of the errors of the E}IDE method, FODoR has abandoned the 
assumption that the field does not change in the direction of the y axis. (This 
means that only in the direction of the x axis is there no change.) Thus he oh­
tained, in place of (1), equations in 110 contradiction to l\Iaxwell's equations. 
His solution is in accord also with the prineiple of the conservation of energy. 
::\ ot all the boundary conditions for the field, however, are satisfied thereby. 

The expressions obtained for alternating current resistances are suitable 
for practical calculations. 

The calculation, similarly as the method of E}IDE, can be employed 
also in the case of several conductor layers. 
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2.3. The method of Steidinger 

STEIDI:'IGER made his calculations for the case of a single conductor layer. 
His solution satisfies all houndary conditions. His final results are not suitahle 
for the direct practical calculation of the conductor impedancc. In the following 
the essential steps in his work 'will he used. 

3. Effuations for the electromagnetic field of the examined arrangement 

In our arrangement there are three Ill('dia with different material char­
actcristics (Fig. 1). In particula1': 

1. Fcrromagn':tic medium, 

permeability: p -= 

2. Conductor, 

permeability: .I' = .1'0 
specific coneluctivi tv: Cl 

3. Ail", 

permcability: p = Po 
permittivity: C Cl) 

specific eonductidty: Cl O. 

We aSSlllllP III our calculations that the fielel is illdqwndeut of the COOl' 

dinate x 
8 

01· 
,I ox 

Under the enumerated conditions the solution of }In~~y;ell's equaticl1s 

canhe f'ound fOT the cas:' ofhoth m"d('s 'rE and TM. The i.\H) deductions 
tIlt:' Salll{~ rf~sult. Th:_'rt<fon" only the caleElations of 11lode Tl~~ art: descrihed 

her{~. rrhis field is deduced of the (:le(?tric I-Iertz Y('ctOl'. 

1'he expr\:ssi011 of the electric IIf'Ttz -vector Df th~~ c{)llduGtor~ illto 

consideration the SYUIHlf'try and antlsynlnH~tr:- conditio113:- is tIle follo\\-ing: 

(3) 

\1-hcTe A, C, f:!" and" are con3tants to he dcfincd later. the::,c g denotes 

the propagation COllEtal1t in dil'cetion y, 'whilc that in direction :::, for which 

the rclationship 

(4) 

is vnlid. 
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The field components can be determined from the Hertz vector on the 
hasis of the following equations: 

o 
. all 

Ex = - 10 ft 
8y 

o 

H:_:=O 

lipon suhstituting (3) into these we find that 

E~ = jw,un Ag cosh gy [e-'-Z Ce'-:] 

H z ,A,g~ sinh gy [e-:-z -;- Ce'-:] 

H y = Ag i' cosh gy [e-:'z - Ce;'Z] 

E z = 0; Ey = 0; H x = O. 

(5) 

(6) 

In the left side air gap, at the houndary of the ferromagnetic material, 
the Hertz Yectol' pertaining to the solution satisfying the boundary condition 

where for go we ohtain, similarly as in ('1), 

"'J~ 
I 

The field components can be calculated from (7) on the basis of (5): 

-1 a 'J co"h a (a -'- ),) [e-:-z - Ce:-:] 
- (j co I '-' co : 

0; Hx = O. 

4. The relationships for the propagation coefficients 

(7) 

(8) 

(9) 

In the equations of Chapter 3, the propagation coefficients g, go' ;' are 
unknown yalues. These can he determined from the folIo-wing houndary con­

ditions of the field: 

aj At " a, Hz = 0: 
bj at ~ - h, Hy 0; 
cj at v - b, - Ex is continuous: 

dj at -v - - b, H: is continuous. 

I) Periodica Polytt·chnica El. XIV4. 
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The expression for lIo given under (7) 'was written so as to meet con­
dition a). 

From condition b) the constant C can be determined. This is discussed 
in Chapter 5. 

By force of condition c), on the basis of (6) and (9) we obtain: 

From this we have 

Ag cosh gb = Ao go cosh go(a-b). (11) 

According to condition d) in turn 

(12) 

that is 
A g2 sinh gb = Ao g'!. sinh go(a-b) . (13) 

Let us form the quotient from equation (13) by (11): 

g tanh gb (H) 

This relationship will be used in our later calculations. The second important 
equation is obtained as the difference of (4) and (8). 

(15) 

In practical cases 0' ?> (j) Co as a rule. Thus 

(16) 

where the symbol p2 was introduced in the sense as given in the equation. (14) 
and (16) contain two unknown values (g, go)' They are difficult to determine 
since (14) is a transcendent equation. 

5. The determination of the propagation coefficients in the case of a single 
conductor layer 

In the following some approximative solutions of (14.) and (16) will be 
examined. 
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At first let us examine the case where no air gap exists between the 
conductor and the ferromagnetic material, i.e. for a b. In this case 

g tanh gb = 0 (17) 
and thus 

g= O. (18) 

\Ve obtain from (4) for this case that 

(19) 

The solution obtained in this "way is identical with the solution for the 
infinite conductive half space obtained if the skin effect is taken into consider­

ation. 
As the next case let us assume that gb and g o( a - b) are so small that 

approximations 
tanh gb = gb (20) 

and 
(21) 

can he employed. In this case we may write in place of (14) that 

(22) 

From (16) and (22) g2 and g6 can he determined: 

., a- b ., 
g- = ---p-

a 

a 2 __ _ b_
p2 C'O - • 

(23) 

a 

By using these values, )'2 can also be calculated on the hasis of (4): 

., 
cr- -i:J -

b 
== - gij ~ (24) 

a 

We see in (24) that by this approximation the dependence on z of the field is 

identical with the function in the calculation of R.\lDE. 

A more precise solution can be obtained hy taking into ('onsideratioIl 
a further term in the series of hyperholic functions: 

tanhgb ab _ (gb)3 
i:J 3 (25 ) 

6" 
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and 
gg (a - byl 

b) --
3 

( :26) 

By nsing (16), (25), and (26), we obtain from (14) a quadratic equation for 

gg, with the solution: 

(:2 7) 

The solution of our prohlem in,01,es the negative ,alue of the square 
root since then g~ 0 for a b. In the kno1dedge of gi ,,-e can determine 
g~ on the hasis of (16), and ;'~ from (8). 

In our numerical calculations furmula (27) W<lS used. 

6. The determination of constants A and C 

In the following the ,aInes of the Hertz lector constants C and A are 
determined. 

According to the lJOundary condition b) in Chapter 4, ,,-e obtain from 
(6) : 

o. (28) 
From this 

(29) 

SulJ5tituting this into (6) we ohtain for the field components in the con­
ductor: 

E.. jC'J,u o :2 A g cosh gy e-:'h cosh y(h =) 

H: = :2 A r/ sinh gy e-:'h cosh /,(ll - =) ( 30) 

H., 2 A g)' cosh gy e-:'il "iull y(/z - z) 

Constant A is proportional to the ,alne of current I exciting the phenom­
enon. The coefficient of proportionality can he determined from the first 
}Iaxwell equation written for the curve surrounding the conductor cross section 
(Fig. 3). 

f j.j at .\' H at --'- J j.j at J H at + J j.j at I, (31) 
I, C I, 

'where the closed eUI',-e \\-as decomposed into 4 lengths as shown in Fig. 3. 
Along length l1' z = 0, thus on the basis of (30) 

_ b 

J H al = J 2 A gy cosh gy e-: h 5inh yh ay ~1 A (e-: h siuh yh sinh gb. (32) 
il -0 
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Along length 12 , Y = b, thm 

A e-: h sinh gb sinh ?h. 

Fig . .3 

Along length 13, ;;; = h, thus 

-iJ 

\" fi al = \. H... ay = O. 
i. 

Thr yaIue of the integral along I] is identical with that along 12 : 

\. H dl 
L 

Substituting theE'e nllu('s into (31) 'H' may \\Tite 

fH ell = J H al 
I, 

. , p~ 
:2 j H al = -1 A--- e' .·h sinh ('h sinh gb 

r2 ;-' 

From this we haye 
I 

I. 

461 

(33) 

(34 ) 

(35) 

(36) 

(37) 

In the knowledge of A, g, and g Il' A (l can be calculated on the hasis 
of (11). 

In the preceding, constants g, gu, I', A, All' and C haye been determined. 
Thus the field as giyen in our arrangement may he regarded as known. 
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7. The determination of the impedance of the conductor 

For the calculation of the impedance we determine the complex power 
flowing through the surface of the conductor of length I in the direction x. 
This can be obtained by forming the integral of the complex Poynting vector 
on the surface of the conductor. 

On the upper plane of the conductor z = O. The component of the POYllt­
ing vector perpendicular to the surface is, on the basis of (30): 

Sl=~K.H~= 2 ..• 

= _l_ jOJ,Llo 2 A g coshgye-YIz cosh yh (2 A g "I coshgy e-"iz sinh yh) '" 
2 

('" designates the conjugate). 

(38) 

For performing the calculation, let us decompose f' and g into real and 
imaginary parts: 

(39) 

g = v jk 

Substituting these into (38) 'we find: 

+ cos 2ky) (sinh 2xh - j sin 2ph). 
(40) 

The complex power flowing into the conductor across the upper plane can he 
calculated simply: 

b 

Pr + jQl = I f SI dy = ~ jw,uo IAgiZ "1* e-z><lz(sinh 2 xh -

-h (41) 

- j sin 2 ph) (~Sinh 2 vb + _1_ sin 2 kbl . 
,v k. 

The powers flowing into the conductor across the two side planes are 
equal, thus it is sufficient to calculate one of them. At place y = b, the com­
ponent of the complex Poynting vector perpendicular to the surface is found 
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to be, on the basis of (30): 

~EH:!'= 
2 x -

= ~ jw,uo JAgJ2 g* e-2>h(sinh 2 vb - j sin 2 kb)[cosh 2 x(h-z) + (42) 
2 

cos 2 p(h - z)]. 

From this the power flowing into the conductor across the side plane 
with the coordinate y = a is: 

It 

~ + jQ2 = 1 f 52 dz = ~ jO)fIO !AgJ2 g* e-'!.>Iz (sinh 2 vb -

o 

- j sin 2 kb) (_1_ sinh 2 ah + _1_ sin 2 Ph) . 
a p 

(43) 

At the lower plane (z = h) the component perpendicular to the surface 
of the Poynting vector is zero. 

The expression for the complex power flowing into the conductor is: 

(44) 

The impedance of the conductor can be calculated therefrom by using 
(37), (42), and (4-3). The result of the lengthy calculation is: 

R I {( stnh 2 vb + 
4,w,uo 0'2 (cosh 2 ah - cos 2 ph)( cosh 2 vb - cos 2 kb) v 

x 

i 
I 

sin 2 kb 

k 
(p sinh 2 ah + a sin 2 ph) 

sinh 2 ah + 1-----+ Sin; ph ) (k sinh 2 vb + t' sin 2 kb)} 

4 w,uo 0'2 (cosh 2 rJ.h - cos 2 ph) (cosh 2 vb - cos 2 kb) 

sin 2 kb + (a sinh 2 ah -/3 sin 2 ph) + 
k 

-L (Sinh 2 ah -L sinh 2 ph ) (, . h 9 'b _ k . 9 kb)} 
I I [SIn ~ v SIn ~ . 

x p 

sinh 2 vb 
1----+ 

v 

(45) 

(46) 



I. i·..{eO and E. HOLU)S 

8. Numerical example. Evaluation of results 

The obtained formulae haye heen applied to calculate the alternating 
current impedance of a rectangular (b = 9 mm: h = 18 mm) copper conduc­
tor arranged in a grooye, as compared to the direct current resistance Rn 
for a frequency of 50 cls, for cases of different grooye dimensions, i.e. different 

dimensions of the isolating layer. In our e::\:ample the isolating material 'was 
air. These l'esults are summarized in Table 1. The RIRo yalues as calculated 
hy the methods of Emcle and of Fodor are giyen in columns I and II, respectiyely 
of Ta hIe :'2 the latter yalues are giyen as puhlished in the paper of FODOR [3]). 

Table 1 

a,mm g!'lll-l 

9.0 0 -106.0 --jl06.0 -106.0 -jl06.0 1. ~92 -- j 1.792 

9.9 31.03 7 j32.'6 -100.8 -jl01.4 -101.4 -jlOO.8 1.689 --j 1.621 

10.8 -11.01-j-14.89 - 9.~.97 --j 97.95 9'.9.'5-j 9.:;.97 1.601; --jl..121 

11.7 ·16.97 -:-j53.S3 91.50-j 95.21 95.21-; 91.50 1.:;.35-j 1.26·1 

12.6 5l.25 7 j60.62 - 87.3:!.-,-j 9.3.14 93.H-j 87.32 1.476-jl.l-ll 

13.5 54.-19 -,-j66.26 83.3, ~j 91.51 - 9l.51-j 83.:1':- lA27 -·-J1.04:) 

Table 2 

If 

9.0 1. 792 1.835 

9.9 1.693 1.678 

11).8 1.610 1.'5-13 

11.7 1.539 1.Hl 

12.6 1..180 1.3.:;1 

13.5 1..130 1.266 

It can be seen that the yalucs calculated by the formula of E}IDE and 

those giyen in Table 1 differ by less than 1 %. This implies that the results of 
E:\1DE can be well used in practice, in spite of the theoretical deficiencies, and 
that the application of the more e::\:act hut essentially more complicated for­
mulae (45) and (46) is not justified. 
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Summary 

The impedance of rectangular conductors in grooves of electric machines is usually 
calculated in practice on the basis of the method by EJlIDE-RoGOWSKI. The pertaining theory 
can he criticized, as has heen sho,m hy FODOR. In the present paper a more exact theory is 
described for the case of a single conductor layer, hy using the results of STEIDI?i"GER. On the 
basis of this theory the impedance can be calculated. In our numerical calculations the error 
of the E)IDE results was found to be within 1 o~. 

References 

1. E)IDE, F.: Strom.verdrangung in .-\.nkernuten. El. u. }Iasch. 1908. p. 703. 
C) ROGOWSKI, J.: Uber zusatzliche Kupferverluste . .. Archiv f. El. 1913. lI. 
3. FODOR, Gy.: Arm~1:kiszoritas villamos gepek hornyaihan. Elektrotechnika 1956. p, ~.). 
4. STEIDI'-'iG.ER, "\V.: Uher Stromverdrangung in Ankernuten. Archiv f. El. 1923. p. 149 . 
. ). Smo'-'iYI. K.: Elmcleti yillamossagtan. Tankunyykiad6 1960. 

Dr. IstYan -,""(GO t 
Edit HOLLOS J Budapest XI., Egri J6zsef u. 18-20, Hungary 




