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1. Intrvoduction

The discussion of the skin effect in rectangular conductors in the grooves
of electric machines can be found in the technical literature. Machine dimen-
sioning has been based on the results of Exipe [1] and Rocowsxr [2] as a rule
which can be criticized from various aspects as has earlier been shown by Fo-
poR [3]. The theory for solving the problem was amended by Fopor, without
meeting, however, the boundary conditions. For the case of a single conductor
layer SteipINGER [4] established & solution satisfying the boundary -condi-
tions. Since his results can be used for practical calculations only with
difficulties, they have not become common knowledge.

In the present paper the problem is discussed on the basis of the solution
by STEZIDINGER. It has been attempted to present the deduction in a well
arranged form and to make results easily manageable during practical caleula-
tions. On the basis of the presented results the numerical error of the usual
solution can also be estimated.
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[

2.1. The solution by Emde

In the solution by ExpE the electric field has only components in the
ditectice . while the magnetic field only in the direction y. The field is a fune-
tion exclusively of the coordinate z, i.e. the derivatives with respeet to x and
y are equal to zero.

We obtain from the integral relationships of electrodynamics valid for
the quasi-stationary case [5] the equations

EH b e

dz* a

I*E b "
2 2 ou,oE .,

dz* a

forming the basis of our further calculations. Against these the following ob-
jections may be raised:
From the differential form of Maxwell’s equations the following rela-
tionships can be deduced under the above enumerated conditions:
d*H

2

L&

4B

n‘)
Lz

= joucH

= jouck.

These equations, contrary to Eq. (1). include no geometrical dimensions
Thus the two groups of equations are in contradiction for a = b.

The solution given by EMDE, as Fopor has shown, can be criticized
also on the basis of energy flow. Let us namely examine energy flow in the iso-
lator (Fig. 2). Since E is in the direction x, while H in the direction y, thus the
Povnting vector 8 is in the direction z, that is, energy can only flow in the
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direction z in the gap. The value of S depends on z, i.e. energies of different
magnitudes are flowing through the gap sections pertaining to the different =
places. For example in the case of a single conductor layer, in the gap section
at the upper face of the conductor, at z = 0 in our system of coordinates, the

x
/E
z2=0 H y
S
Fig. 2

absolute wvalue of § is at its maximum, while at z = I, at the lower face of
the conductor, it is zero. There is, however, no energy loss in the gap, thus the
result does not correspond to the principle of the conservation of energy.

In the solution by EMDE the boundary conditions of the electromagnetic
field are not satisfied. According to these conditions the field is independent of
the coordinates x and y. This should be satisfied also in the gap. In the ferro-
magnetic material, in consequence of the assumption that u =« oc, there is no
field (E = 0, H = 0). On the surface, however, E must be continuous. This
is not the case. since on the gap side E == 0, on the ferromagnetic material
side, in turn, E = 0. In spite of the enumerated deficiencies, the results of
EMDE are being applied in practice.

2.2. The method of Fodor

In view of the errors of the EMDE method. Fopor has abandoned the
assumption that the field does not change in the direction of the y axis. (This
means that only in the direction of the x axis is there no change.) Thus he ob-
tained, in place of (1), equations in no contradiction to Maxwell’s equations.
His solution is in accord also with the principle of the conservation of energy.
Not all the boundary conditions for the field, however, are satisfied thereby.

The expressions obtained for alternating current resistances are suitable
for practical calculations.

The calculation. similarly as the method of EMDE. can be emploved
also in the case of several conductor layers.
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2.3. The method of Steidinger

STEIDINGER made his calculations for the case of a single conductor laver.
His solution satisfies all beundary conditions. His final results are not suitable
for the direet practical caleunlation of the conductor impedance. In the following

the essential steps in his work will be used.

3. Eguations for the electromagnetic field of the examined arrangement

In our arranﬁement there are three media with different material char-

acteristics (Fig. 1). In particular:

1. Ferromagnetic medium,

permeabiiityv: y =2 ~o

Conductor,
permeability: 1 = u,
specific conductivity: ¢

3. Air,
permeability: u = 1,
permittivity: ¢ = ¢,

pecific conductivity: ¢ = 0.

o

We assume in our caleulations that the field is independent of the coor
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here. f‘: is field is deduced of the electric Hertz vector.
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the s:\‘mmvh'a‘ and antisyvmietry cenditions, is the following:
II{y.z) = — A sinh gy [e™* - Ce7] (3

where 4‘1, C. g, and y are constar

g,
fatd
atio

on constant in directi

the propag
the 1eLmoz 1ship
g2 -y = Jou, o (4)

is valid.
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The field components can be determined from the Hertz vector on the
basis of the following equations:

E.=0 H.= —g
E——jourl  H.—0 (5)
oy
E,=0 H, = ot 11
v o=

Upon substituting (3) into these we find that
E. = jou, Agcosh gy [e77* + Ce¥*]
H_ = Ag*sinh gy [e 7" - Ce7]
H,= Agy cosh gv [e™ — Ce*]
E.=0; E.=0; H . =0.

In the left side air gap, at the boundary of the ferromagnetic material,
the Hertz vector pertaining to the scolution satisfying the boundary condition
is:

Il, = — A4, sinh g)(a & v) [e77* -+ Ce?], (7
where for g, we obtain, similarly as in (4).

Pt = — oy e, (8)

o
S0 7T 4

The field components can be calculated from (7) on the basis of (3):

E. = jou, A, g,coshg,la + v) [e7" - Ce”]
H.= 4, g sinhg(a + y)[e7 + Ce~]

H,= A, g,y coshg(a+ y) e — Ce]

)

4. The relationships for the propagation coefficients

In the equations of Chapter 3, the propagation coefficients g, g,. » are
unknown values. These can be determined from the following boundary con-
ditions of the field:

a) At v = F q, H. =10,
b) at z=h, H, = 0
¢) at ¥y = = E. is continuous:
d) at y=TF H. is continuous.

3 Periodica Polytechrica El. XITA.
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The expression for 1 given under (7) was written so as to meet con-
dition a).
From condition &) the constant C can be determined. This is discussed
in Chapter 5.
By force of condition ¢), on the basis of (6) and (9) we obtain:
jou, Ag cosh gb [e7* + Ce¥*] = jou, A, g, cosh g,(a — b) [e7* + Ce*]  (10)
From this we have
Ag cosh gb = 4, g, cosh g,{a—0b). (11)
According to condition d) in turn
— Ag*sinhgb[e™" + Ce?] = A4, gt sinhg(a — b) [e7* - Ce?],  (12)

that is
— Ag*sinh gb = 4, g*sinh g,(a—b) . (13)

Let us form the quotient from equation (13) by (11):
— gtanh gb = g, tanh g (a—b). (14)

This relationship will be used in our later calculations. The second important
equation is obtained as the difference of (4) and (8).

g
o

— gE = py e, + Jou,o. (15)
In practical cases ¢ > o £, as a rule. Thus
2 2 _ 2
& — g = jou, 5 =p (16)
where the symbol p* was introduced in the sense as given in the equation. (14)

and (16) contain two unknown values (g, g,). They are difficult to determine
sinee (14) is a transcendent equation,

5. The determination of the propagation coefficients in the case of a single
conductor layer

In the following some approximative solutions of (14) and (16) will be
examined.
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At first let us examine the case where no air gap exists between the
conductor and the ferromagnetic material, i.e. for ¢ = b. In this case

g tanh gb =10 (17)
and thus

g=20. (18)
We obtain from (4) for this case that
7* = Jous = p. (19)

The solution obtained in this way is identical with the solution for the
infinite conductive half space obtained if the skin effect is taken into consider-
ation.

As the next case let us assume that gb and g (a—¥b) are so small that
approximations

tanh gb = gb (20)
and

tanh go(a—b) = g4(a—b) (21)
can be employed. In this case we may write in place of (14) that
—&b=gila—b). (22)

From (16) and (22) g® and gj can be determined:

, a—b
g=———p
a

(23)

&) b a

&= ——P-
a
By using these values, y? can also be calculated on the basis of (4):
2 9 2 b 9 o 9

PEpogEptE g (24)

We see in (24) that by this approximation the dependence on z of the field is
identical with the function in the calculation of EubDE.

A more precise solution can be obtained by taking into consideration
a further term in the series of hyperbolic functions:

ob)3
tanh gb = gb — (88)° (25)
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and
. e {a — b)?
tanhg, (@ — B) = g fa — b) — =0 (26)
3

By using (16), (25), and (26). we obtain from (14) a quadratic equation for

g%: vith the solution:

— 2p2 b — | (3a — 2p2b°)* — 4p* b(p*b* — 3) [b° -- (@ — )]
2[6° - (a — b)*]

g
DY

I
—
|3}
Z

The solution of our problem involves the negative value of the square

. 9 c v D .
root since then gg = 0 for a = b. In the knowledge of g; we can determine
g% on the basis of (16). and ;2 from (8).

In our numerieal calculdtions formula (27) was used.

6. The determination of consiants .1 and {
In the following the values of the Hertz vector constants € and 4 arve

determined.
Aceording to the boundary condition &) in Chapter 4. we obtain from

(6):
A gveoshgy e — Ce®] = 0. (28)
From this
C = %0, (29)

Substituting this into (6) we obtain for the field components in the con-

ductor:

E_ = jou,?2 dgcosh gy e cosh y(h — 5)
H.=2dgsinhgye coshy(h — 5 (30}
H, =2 4gycoshgye " sinhy(h — z)

Constant 4 is proportional to the value of current I exciting the phenom-
enon. The coefficient of proportionalitv can be determined from the first
Maxwell equation written for the curve surrounding the conduetor eross section
(Fig. 3).

§fHdl={Hdl+ (Hdl + [Hdl+ [Hdl=1I, (31)
A I3 I A

where the closed curve was decomposed into 4 lengths as shown in Fig. 3.
Along length I, = = 0. thus on the basis of (30)

b
j Hdl = S 2.4 gy coshgye ™ sinhyhdy = 4 A ye " sinhyhsinhgb.  (32)
i

—b
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Along length I,, y = b. thus

{Hdl =\ 24gsinhgbe ™ coshy(h — z) dzs =
" (33)
=22 {7 sinh gbsinh vh.

Along length I, z = h, thus

—b

{Hal= | Hdy =0. (34)
I b
The value of the integral along [, is identical with that along ,:
{Hdl=\Hdl. (35)
I i
Substituting these values into (31) we may write
. C s . P
fHdl = | Hdl4-2 | Hdl = 44> ¢ sinhyhsinhgb = I. (36)
lx I: 1”
From this we have
1
A =g : (37)
4 P~ o= sinh yhsinh gb

p

In the knowledge of 4. g, und g,, 4, can be calculated on the basis

of (11).
In the preceding, constants g, g,. v, <, 4, and C have been determined.

Thus the field as given in our arrangement may be regarded as known.
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7. The determination of the impedance of the conductor

For the calculation of the impedance we determine the complex power
flowing through the surface of the conductor of length [ in the direction x.
This can be obtained by forming the integral of the complex Poynting vector
on the surface of the conductor.

On the upper plane of the conductor z = 0. The component of the Poynt-
ing vector perpendicular to the surface is, on the basis of (30):

I (38)

= —q-ja),uo 2 Agcoshgye™ coshyh (2 4 gycoshgy e sinh yh) *

e

(* designates the conjugate).

For performing the calculation, let us decompose y and g into real and

o

imaginary parts:
y =2+ s (39)
g=v+jk
Substituting these into (38) we find:
1 . | 2 .,k —2xh !
Sy = —jou Ag?y* e (cosh Zvy
] . (40)
-+ cos 2ky) (sinh 24k — jsin 25h).
The complex power flowing into the conductor across the upper plane can be

calculated simply:

‘}}5; e“ziil(sinh 2oh —

b (41)

. . 1 . 1 . )
— jsin 2 8h) {—sthvb -+ - sin 2 kbl .

The powers flowing into the conductor across the two side planes are
equal, thus it is sufficient to calculate one of them. At place y = b, the com-
ponent of the complex Poynting vector perpendicular to the surface is found
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to be, on the basis of (30):

1. . omhy - . .
=K |dgl*g* e (sinh 2 vb — jsin 2 kb) [cosh 2 a(h—z) 4+  (42)
-+ cos 2 B(h — 2)].

From this the power flowing into the conductor across the side plane
with the coordinate y = a is:

h
l : P
B+ jQ,= ZJ Sydz = —:)—jwyo iAgl>g* e **" (sinh 2 vb —
0 - (43)

—jsinZkb)(l sinh 2k - —— sin 2 B .

« p

At the lower plane (z = h) the component perpendicular to the surface

of the Poynting vector is zero.
The expression for the complex power flowing into the conductor is:

P 4-jQ = B +j0 + 2(B +j@) = IEx(R + jX). (44)

The impedance of the conductor can be calculated therefrom by using
(37), (42), and (43). The result of the lengthy calculation is:

R—= ! (=* + P + k) sinh 2 vb N
" 4owu,o® (cosh 22k — cos 2 fh)(cosh 2 vb — cos 2 kb) v '
o
4 - Smf—h—b——) (p sinh 2 xh 4+ xsin 2 fh) - (45)
ik 9 ok cin 2
un ( sinh 20k sin2ph ) (k sinh 2 vb 4 v sin 2 kb)}
o B
X — 1 (o2 -+ ) (+° + BY) [ sinh20b
T oty 0* (cosh2 ah — cos 2 fh)(cosh 2vb — cos 2 kb) v '
-
+ —Sl]if—l—»-lz-] (xsinh 2 oh — psin 2 §h) + (46)

" sinh 2 «h N sinh 2 fh
( x B

) (_usinthb—ksin.‘Zkb)} .
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8. Numerical example. Evaluation of results

The obtained formulae have been applied to calculate the alternating
current impedance of a rectangular (b = 9 mm; b = 18 mm) copper conduc-
tor arranged in a groove, as compared to the direct current resistance R,
for a frequency of 50 ¢/s, for cases of different groove dimensions, i.e. different
dimensions of the isolating layer. In our example the isolating material was
air. These results are summarized in Table 1. The R/R, values as calculated
by the methods of Emde and of Fodor are given in columns I and IT, respectively
of Table 2 the latter values ave given as published in the paper of Fopor [3]).

Table 1
a/mm gm™?! g,/m~?t wime (R =+ jX)R,
9.0 0 —106.0 +j106.0  —106.0 —;j106.0 1.792-71.792
9.9 © 31.03+j32.76 —100.8 —j101.4  —101.4 —j100.8 1.689--71.621
10.8 | 41.01--744.89 — 95.97--7 97.95 — 97.95—j 9597 1.606--71.424
1.7 46.97--753.83 — 01507 95.21  — 95.21—; 9150  1.535-71.264
12.6 51.25+j60.62 — 87.32-j 9314 — 93.14—j 87.32  1.476-j1.141
13.5 54.49-47606.26 . — 83.37-4j 91.51 - — 91.51—j 83.37 1.427--71.045
Table 2
« nun 1 i
9.0 1.792 1.835
9.9 1.693 1.678
16.8 1.610 1.543
11.7 1.539 1.441
12.6 1.480 1.351
13.5 1.430 1.266

It can be seen that the values calculated by the formula of ExpEe and
those given in Table 1 differ by less than 1%, This implies that the results of
EMpE can be well used in practice, in spite of the theoretical deficiencies, and
that the application of the more exact but essentially more complicated for-
mulae (45) and (46) is not justified.
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Summary

The impedance of rectangular conductors in grooves of electric machines is usually
calculated in practice on the basis of the method by EMpE—RoGowskl. The pertaining theory
can be criticized, as has been shown by Fopor. In the present paper a more exact theory is
described for the case of a single conductor laver, by using the results of STEIDINGER. On the
basis of this theory the impedance can be calculated. In our numerical caleulations the error
of the EMDE results was found to be within 19,.
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