
THEORETICAL FOUNDATIONS OF THE REDUCTION OF 
TRIPHASE NETWORKS TO COMPONENTS 

By 

I. V_.\.GO and A. IV_'\'NYI 

Department of Theoretical Electricity, Poly technical University, Budapest 

(Received September 21, 1966) 

Presented by Prof. Dr. K. SDIOl'iYI 

1. Introdnction 

One of the customary calculation methods for triphase linear networks 
is based on its reduction to components. Thus, a usual method is the application 
of symmetrical components and of the components iX, p, O. The idea of the 
reduction to symmetrical components 'was originated by C. L. FORTESCUE [11-
Calculation methods that can be used in practice can be found in the book 
by WAGNER-EvANS [2]. The formulation of the equations in the matrix form 
was first applied by HOFF;\IAN-KoCH-PRYCE [3] and RISLEy-BuRLINGTON 
[4]. The works of BACH [5], SZENDY [6] have laid the foundations for the re­
duction to symmetrical components as a reduction with respect to the 
eigenvectors of the impedance matrix characterizing the network. The 
idea of the iX, p, 0 vectors originated by E. CLARKE [7]. Other authors [8, 9] 
have used other reductions too. 

The aim of the present paper is the clarification of the unified theoretical 
foundations of the various methods of reduction. Generallv reduction is made 
with respect to the eigenvalues of the transfer matrix G characterizing the 
network. In the case of symmetrical reciprocal net'works the two eigenvalues 
of G are identic, thus, various reductions satisfying the given conditions are 
possible. These are, among others, the reduction to symmetrical components 
and to the components iX, p, O. In the case of symmetrical or reciprocal net­
works the reduction 'with respect to the eigenvectors leads to the reduction 
to the symmetrical components, as has also been proved by BACH [5]. 

2. General correlations 

2.1. Transfer matrix 

At an arbitrary place in a triphase network the three volt ages (Ula , 
Ulb , Ule ), resp. the three intensities (Jla , J1b , Jle ) pertaining to the three phases 
are called primary voltages, resp. primary intensities, while the three voltages 
(U~a, U2b , U 1e ) or intensities (J~a, J2b , J2c) arising at another place are denomi-
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nated as secondary quantities. In the case of a linear network a linear correlation 
can be written between the primary and secondary quantities. E.g. if the 
primary quantities are voltages and the secondary quantities intensities, 
then this linear correlation has the following form: 

I2a = Y n U Ia + Y I2 U Ib + Y 13 U Ie 

IV! Y2I U Ia + Y Z2 U 1b + Y 23 U Ie (2.1) 

Y 32 U Ib + Y 33 U Ie 

The relationships given under (2.1) can be more compactly formulated 
m the matrix form: 

(2.2) 

where U I is the colulllll vector of the primary voltage, and 12 that of the sec­
ondary intensity: 

(2.3) 

and Y IS the quadratic admittance matrix: 

[

Yll Ylra Y13] 

Y = Y Z1 Y LZ Y 23 • 

Y~1 Y 32 Y 33 

(2.4) 

The vectors of the primary intensity and of the secondary voltage, respectively, 
can be defined similarly as in (2.3). 

[
Ila] 
lIb and 

lIe 

(2.5) 

Between the varIOUS primary and secondary quantities relationships similar 
to (2.2) can be written, such as 

(2.6) 

where Z, G u, and Gi designate the impedance, the voltage transfer and the 
intensity transfer matrix, respectively. In the following the transfer matrix G 
will be equally interpreted as the admittance matrix Y, the impedance matrix 
Z, the voltage transfer matrix G u, or the intensity transfer matrix G i • 
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2.2. Reduction with respect to the eigenvalue 

The calculation of the network becomes more simple if in G the elements 
outside the main diagonal are equal to zero, then G is a diagonal matrix. 

If (2.7) is satisfied, (2.1) assumes the following form: 

1za = Gll U Ia 

12b = GZ2 U Ib 

12e = G33 U Ie 

(2.7) 

(2.8) 

(2.8) means that (2.1) and (2.6), respectively, are decomposed to three 
independent equations. Thus, the calculation is naturally more simple. Equa­
tions (2.1), (2.2), and (2.6) can be subjected to such a transformation that they 
assume a form similar to that of equation (2.8). This task means the decom­
position of the matrix G with respect to the eigenvectors. The equation for 
the determination of the eigenvalues i.i pertaining to the eigenvectors is: 

det [G - i'iE] = 0, (2.9) 

where E is the unit matrix, having elements in the main diagonal with a value 
of 1, while the others are zero. By writing (2.9) in the ordinates, we obtain 
the following equation: 

jGll - }'i Gl~ G23 

iG~1 GZ2 - }'i GZ3 • = 0 . (2.10) 

,G31 G32 G33 - }'i i 

(2.10) is an equation of the third degree with respect to i'i, generally having 
three different roots. In the knowledge of the eigenvalues the pertaining 
matrix Lagrange polynomial L" can be determined. 

3 G- E Ld G) = II -----~-
i=1 i' k - }'i 
iop" 

k = 1,2,3. (2.11) 

The decomposition of the column vectors U, or I can be made by utilizing the 
matrix Lagrange polynomials. 

3 

U -:5' L, U 
~ It. 

k=1 

3 

1= Y Lj,I. 
r=! 

(2.12) 
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In (2.12) the individual terms in the sums give the components in the direction 
of the eigenvectors, i.e. with the aid of the Lagrange pol:ynomials the coordi­
nate system is transformed in the directions of the eigenvectors. 

2.3. Examination of the system of perpendicular eigenvectors 

In the followings our attention will be concentrated on that case when 
the eigenvectors are perpendicular to each other. A transformed system of this 
kind is caJled an orthogonal system. The reduction of U, or I in the new system 
can also be written with the aid of the unit column vector Tk of the new co­
ordinate system. 

3 3 

U· '" T (-T*U) - ( "i:' T -T*) U ==..:;,; k k - ~ Ii. k , (2.13) 
k=1 k=1 

where * indicates the transpose, the dash the conjugate, i.e. T~ is the row 
vector. (T~ U) is the scalar product of 1\ and of U, that is the projection of U 
in the direction of T/{. 

Tk T~ is the dyadic product of Tk with itself (dyad) and thus this is a 
quadratic matrix. 

By comparing (2.12) and (2.13), it is evident that 

(2.14) 

According to (2.14) Lk is a dyad, the column vector of which is just the 
k-th eigenvector, while its row vector can be obtained by the transposing and 
conjugating of T k • Thus, we obtain Tk from L" by dividing the elements in the 
first column by the square root of the first element in the first row. 

In the new system of coordinates the individual components of U are 
equal to the coefficients of Tkin (2.13). Let UT designate the column vector 

formed by these: 

(2.15 ) 

'where the T transformation matrix is 

(2.16) 
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Similarly as in (2.15), the transformed form of I can also be written: 

IT TI. (2.17) 

From equations (2.15) and (2.17): 

U = T-IUr (2.18) 

(2.18) can also he ·written in terms of the unit vectors T k : 

U = Tl U 1'1 T~ U T2 + T3 U T3 = [Tl T2 TsJ [~~~l = [Tl Tz T3] UT' (2.19) 
U T3 

By comparing (2.18) and (2.19) we find that 

(2.20) 
that is 

TT* = E. (2.21 ) 

(2.21) is the condition that the eigenvectors are to be perpendicular to 
each other. The orthogonality supplies a condition also for the Lagrange poly­
nomials. Namely, in the case of perpendicularity 

(2.22 

Equation (2.22) can he fulfilled independently of U only if 

L%L, O. (2.23) 

Since U = ZI, hy utilizing (2.15), (2.17), and (2.18) the relation between 
UT and IT can be expressed: 

(2.24) 
where 

ZT TZT-l. (2.25) 

Similarly as 1Il (2.25) the transformed transfer matrix G T can also be 
defincd. 

GT = TGT-l (2.26) 

G T and naturally also ZT and Y T are diagonal matrixes in the main dia­
gonals of which just the eigenvalues can be found. A single transformed primary 
component is the function of only a single transformed secondary component. 

2 Periodicn Polyte:::hnica El. XIll-'2 
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2.3.1. Power conditions of the orthogonal transformed system 

For calculating the power at a prescribed place the connected U and I 
values arising at that place should be taken into consideration, namely in such 
a "",-ay, that the voltages Ua, Ub, Ue should give physically real powers "with the 
intensities la, lb, le, respectively. Then the expression for the complex power 
is found to be: 

P I "Q-l-*U TJ - a a nUb (2.27) 

where P is the effective and Q the reactive power. On the basis of (2.18) we have 

(2.28) 

From equations (2.18), (2.21), (2.27) and (2.28) the complex power can also 
be expressed with the aid of the transformed voltages and intensities. 

-I'" U I-'" U T T= h Tl i'h U T3 • (2.29) 

Formula (2.29) means, that after the transformation the individual voltage 
components produce a po"wer only with the respective intensity components, 
since transformed components not ha,ing identical indices are orthogonal to 
each other, thus, no power can originate from them. 

3. Symmetrical reciprocal triphase networks 

In the case of symmetrical reciprocal net"works the matrices G(Z, }'-) 
are symmetrical and all the elements in the main diagonal (Go) are equal to 
each other and the elements outside the main diagonal (GIc) are also identical. 

(3.1) 

According to (3.1), formula (2.10) for the eigenvalues has now the following 
form: 

:Go - ;, GI: G,: 
GI: Go -;. GI; = (Cc - :2C! - ;,)(Co (;1: I.)' = O. (3.2) 
Cl: GI: Gc - ;. 
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The solutions of (3.2) are 
J,o = Go 2G" 

J'l:' = Go - Gk , 

z 

/ 

Fig. 1 

u 

\ y 

]9 

(3.3) 

where J'12 is a double root. In the knowledge of the eigenvalues, on the basis 
of (2.11) the respective Lagrange polynomials can be determined. Thus, the 
Lagrange polynomial pertaining to J.o is: 

Lo= 
G - J.12 E 1 

X 
J·o - i' l2 Go + 2GI; - Go + GI( 

[G' - G, Gk G" GI; 

]'r"1 
(3A) 

X Gk Go Go Gk Gk =- III . 

G" GI; Go-Go G" 3 III 

In symmetrical networks the eigenvectors are denoted by S. The eigen­
vector So pertaining to i.o can be obtained by dividing the elements in the 
first column of Lo by the square root of the first element in the first row: 

(3.5) 

So is a unit vector forming the same angle with all the three datum lines. 
i'12 is a double root of the characteristic equation. Accordingly L 12U 

is a vector in the plane perpendicular to So' That is, the reduction with respect 
to the eigenvectors means a reduction to a component in the direction So and 
to a component perpendicular to the former (Fig. 1). Lo similarly to L 12, 

it can be calculated on the basis of (2.11) and (3.3), that 

2* 
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1[ 2-1-1] 
3 -1 2 -1 . 

-1 -1 2 
(3.6) 

It can be seen in formulae (3.4) and (3.6) that the values Go and Gk characteriz­
ing the net"work are not figuring either in Lo or in Ll'!.' This means that in a 
symmetrical reciprocal triphase network the matrixes characteristic for the 
reduction with respect to the eigenvalues are independent of the actual net­
work and of the place in the network where the primary and secondary quan­
tities are chosen. The reduction is independent of the actual network, accord­
ingly the transforms of the Kirchhoff equations written for the three phases 
disintegrate to the equations with respect to the eigenvalues. In turn it follows 
from this that the correlations which can be deduced from the Kirchhoff 
equations are valid for each component separately. It is evident from this that 
the advantages of the reduction with respect to the eigenvalues are especially 
effective in the case of symmetrical networks. 

The component L 12U is perpendicular to So independently of U, i.e. 
equation 2.23 is fulfilled. 

(3.7) 

The correctness of this relationship can easily be proved by susbtituting (3.5) 
and (3.6). The component of U perpendicular to So, i.e. L 12U can be reduced 
to t"WO components. The directions of these should be identical with those of 

the unit vectors SL and S2' According to the reduction, L12 can be "written sim­
ilarly to (2.13), as th<.> mm of two matrixes, Ll and L 2• 

(3.8) 

Let the ordinates of SI b<.> x, )', ;:;, that is 

[Xl SI= ~ . (3.9) 

SI is a unit vector, that is 

(3.10) 

SI is perpendicular to So, i.e. by utilizing (3.5) and (3.9), 

o. (3.11) 
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The ordinates of vector SI should be chosen in such a way, that they should 
satisfy equations (3.10) and (3.ll). Under these conditions, however, they 
can be chosen arbitrarily. Ll can be determined from SI on the basis of (3.8): 

[
XX xy XZ] 

Ll = SI Sf = yx y~ y~ . 
zx zy· zz 

(3.12) 

By choosing SI' we obtain L2 from equations (3.6), (3.8), and (3.12). 

2 
(: + X Y) ( 1 . -xx 3+ xz) 3 

') .. 
Lz = L12 - Ll = - (: + yx) --yy 

3 3 ~, " -

- (: + z xl (: + Z Y) 
:2 
--zz 
3 (3.13) 

From (3.13) S2 can be calculated in the already described way: 

r 2 r 
(1 I -) --xx 3'xZ 3 

1 
(: + y x) 1 r 1 -' S2 = 3 +yzJ (3.14 ) 

- l -xx zz 

_ - (: + Z x) 2 _) 

L 

-g--ZZ 

The second form of (3.14) could be more expediently used In such 

cases when 2/3 - xx = o. 
According to the choice of SI several reductions are possible. From these 

two are utilized in practice: Reduction with respect to the symmetrical com­
ponents and to the components x, p, o. In the followings these two reductions 
are examined. 

3.1. Symmetrical components 

The basic idea of the reduction to symmetrical components is that the 
three ordinates of the component in the direction SI should form a symmetrical 
triphase system, that is, 

(3.15) 
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where 

(3.16) 

The folIo'wing correlations for a are known: 

? - • a- = a = a- L 

a3 = 1 (3.17) 

1 a a2 = O. 

By selecting SI according to (3.15) the equations (3.10) and (3.11) are 
e.vidently satisfied. 

The expression for Ll = D+) on the basis of (3.12) and (3.15) is 

(3.18) 

L"2 I) -) can now be determined already by using (3.8) and (3.18). 

S2 SI· (3.19) 

S2 = S<-J can he calculated either on the basis of (3.14) or of (3.19). 

(3.20) 

S( I is perpendicular to s< -'- ), namely 

s<-)* Sc+) (3.21 ) 

In the kno'wledge of So, SC+ l, S( -) that is on the basis of (3.5), (3.15) 
and (3.20), the transformation matrix T = S of the reduction to symmetrical 
components according to (2.16) can be written: 

[

So* ] 
S = ~C+)* 

SC-)* 

1 [11 1] 
1 a.? a

2 
, 

. 1 a-a 

(3.22) 
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and 

1 [11 1] _ 
-1 - 0 - * S - 13 1 a~ Cl - S . 

~ 1 a a2 

(3.23) 

It is conceivable on the basis of (3.22) and (3.23) that equation (2.21) is also 
fulfilled for S. 

The reduction of the voltage and intensity to symmetrical components 
can be performed on the ground of (2.15) and (2.17): 

Us = SU and Is = SI. (3.24) 

We may further write that 

U S-l Us and 1= S-1 Is. (3.25) 

It should be mentioned that in the relevant literature on writing S, 

frequently 1/3 figures in place of the factor 1/V3. In this case in the expression 
of S-1 in place of 1/V3 'we should write 1. This mode of writing is identical 
in principle with the equations also applied by us, but in this case So, SI' S2 
are not unit vectors. 

On reducing to symmetrical components, the component in the direction 
SI is called the positive order component, the one in the direction S2 the nega­
tive order component, and the one in the direction So the zero order component. 
As we have seen in the case of symmetrical networks, the Kirchhoff-equations 
and all the relations to be deduced therefrom can be "written separately for 
the individual components and OIl calculating the power only the products 
of currents and voltages of the salne order are to be taken into consideration. 

We determine hereafter, hy taking (2.2.1,), (3.ll), (3.22), and (3.23) into 
consideration, the transformed transfer matrix as defined hy (2.24): 

(3.26) 

In the main diagonal just the eigcn..-alues are figuring. If G = Z, then 
on the basis of (3.26) and (2.6), 

where the zero, 
upper indices 0, 
impedance is Zo 

Uo - fZ .. )Z ) 1° ~-~I) -I; 1 

TT- - (Z Z )1(+) 
G~ - I) - " 1 (3.27) 

posItIve, and negati..-e order components "were designated hy 
+, and - respectively. According to (3.27) the zero order 

2ZI;, while the positive and negative impedance Zo - ZI;' 
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3.2. The x, {J, 0 components 

The basic point of the reduction to components 0:, {J, 0 is that the reduc­
tion should form a system in which the ordinates of the individual components 
are in phase or in anti-phase with each other. Then a reduction of L12 to such 
dyad sums is to be found, with ·which all the ordinates are real values. This is 
not connected 'with any special difficulty, since L12 is symmetrical and its ele­
ments are real, accordingly we may obtain SI also in such a way that the first 
column of L12 is divided by the square root of the first element. SI is now desig­

nated by S~, 8 2 by Sp, Ll by L~, and L2 by L;,. Thus 

1 [ 2] S~ = V3 = ~ . (3.28) 

Further on the ground of (3.12), 

L,. = S" S;' = _ 1 [2 - 1 - 1] = - -1 1/2 1/2 . 1 [ 2] 1 [ 2 -1 -1 1 
3 _ 1 3 -1 1/2 1/2 

(3.29) 

The conjugate designation has been omitted since all values are real. 
Lp can be determined on the basis of (3.13). 

'0 0 0 

Lp Ll~ - L. = 
1 3 3 

3 
0 

2 2 

3 3 
0 

2 2 

Sp can be calculated from (3.14). Since now 2/3 - xx 
expression for Sp is used: 

o 

1 1.fI2 SfJ= V3 

1·
(3 
/-

o 2 
L ..J 

S" and Sp are perpendicular, since 

(3.30) 

0, the second 

(3.31) 

(3.32) 
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The components in the direction So:, S,o, and So are called the alpha, beta 
and zero components, respectively. 

With the knowledge of So, S"" and Sp, i.e. on the basis of (3.5), (3.28), 
and (3.31), the transformation matrix T = SR corresponding to (2.16) can be 
written. 

1 1 

-1~ 1 
[~~l 1 V2 1 

SR = ~i = ]f3 

y3 0 . 2 

(3.33) 

and thus 

S-l _ 1 
1 V2 6 

R - V3 1 
1 (3.34) 

1 -
1 

Let us also determine on the basis of (2.24), (3.1), (3.33), and (3.34) the 
transformed transfer matrix G s : 

(3.35) 

In the main diagonal, now again the eigenvalues are standing. 

4. Symmetrical, non-reciprocal networks 

Triphase electric machines form a symmetrical triphase non-reciprocal 
net"work. The transfer matrix of such networks is cyclic, i.e. of the following 
form: 

( 4.1) 

Accordingly the characteristic equation (2.11) is 

(4.2) 
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On adding the second and third ro'w to the first one, then by deducing 
the first column from the second and the third, we obtain 

(4.3) 

On deducing the a-fold of the second row from the first row of the de­
terminant, then by adding the a-fold of the first column to the second, we ob­
tain the root factor form of the characteristic equation: 

From this the eigenvalues are: 

}·o Go + Gl -+- G~ 
}'l = Go a2 Gl aG2 (4.5) 

In the knowledge of the eigenvalues, on the ground of (2.11) we write 
the Lagrange polynomials. 

1 [1 a
2 

a ry] 
a 1 a-

3 
a2 a 1 

G - 1'0 E G - E 1 [1 a a
2

] 
. . = - a2 1 a 

}'2 - }." I •. , - 1'1 3 .) 1 
- a a-

1 [1]1 a -.r;:; [1 a2 a] 
13 a2 

1 [1 ]1 -=- a2 -;:;::: [1 a a 2] 
)i3 ]13 

a 

It is obvious from (4.6) that the eigenvectors of the transfer matrix of 
symmetrical non-reciprocal networks are the unit vectors of the symmetrical 
components, i.e. the expressions 'written under (3.5), (3.15), and (3.20). The 
transformation matrix S is giyen by equation (3.22), its reciprocal value by 
(3.23). 

It is thus evident that in the case of symmetrical non-reciprocal net­
works the reduction 'with respect to the eigenvalues of the transfer matrix 
is identical with the reduction ,..-ith that of the symmetrical components. 
Thus, the symmetrical components are promoted from among the other corn-
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ponent systems. Naturally the reduction is even now independent of the 
actual network, thus the Kirchhoff equations can be written for the indi­
vidual components separately. Let us also write the transformed trans­
fer matrix on the basis of (2.24), (3.22), (3.23), and (4.1): 

o 
a2 G1 + aG2 (4.7) 

o Go 

Since the values figuring in the main diagonal represent the correlation 
between the components of various orders, therefore (Go G1 -+- G2) is called 
the transfer function of the zero order, (Go + a2 G1 aG2) the transfer func­
tion of the positive order, and (Go -+- aG1 + a2 G2) the transfer function of the 
negative order. These are just equal to their eigenvalues. 

Summary 

One of the usual calculation methods of triphase linear networks is based on the reduc­
tion to components of various systems. The aim of the present paper is to clarify the unified 
theoretical foundations of the various reductions. 

It is proved that reduction is made with respect to the eigenvalues of the transfer 
matrix G characterizing the network. In this case, namely, to a component of a given order 
of a primary quantity (intensity, voltage), a secondary quantity of the same order (intensity 
or voltage) belongs. In the case of symmetrical reciprocal networks the two eigenvalues of 
G are identical, therefore several reductions satisfying the given conditions are possible. 
There are, among others the symmetrical components and the C(, {3, 0 components. The reduc­
tion of symmetrical non-reciprocal networks with respect to the eigenvalues leads to the 
symmetrical com ponen ts. 
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