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1. Intreduction

In control engineering no unique theory has been developed, not even
concerning the linear systems. As the most important design methods, the
following may be mentioned:

1. The “‘classic” method.

2. The statistical method.

3. The phase-space method.

From among the enumerated methods the first one is based on typical
deterministic signals (e.g. unit impulse, unit step, unit veloeity step, unit
acceleration step). The prescribed wvalue of the so-called steady-state control
deviation determines the magnitude of the loop gain (for simplicity’s sake
we shall consider a simple, single variable, single loop control system). With
the loop amplification known, the stability of the system may already be in-
vestigated, e.g. by one of the procedures of Nyquist, Bope, Nicmors, Mi-
kHAILOV, LEoNHEARD, Rovuts, Hurwirz, Evans, ete. [1—6].

In most cases the system proves to be instable. In order to cancel the
contradiction between the low value of the steady-state error and the securing
of the necessary degree of stability also some signal-forming (compensation)
organs, resp. elements are to be included. The investigations are most purpose-
fully carried out in the frequency domain and it is perhaps the simplest to use
the logarithm magnitude — logarithm frequency, i.e. the so-called BopEe
diagrams.

In this case we start out from the transfer function of the open control
loop. In many cases by the inclusion of an appropriate compensation element
it is possible to reach, that the approximating BopEg diagram, even without
diminishing the loop gain should intersect the 0 dB axis with a slope
of —20 dB/decade (6 dB/octave). If this section of —20 dB/decade is long
enough to the right and to the left, then usually the quality requirements
are also satisfied. For checking this we should return into the time domain
by the inverse Laplace transformation. But this may also be avoided, if we
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rely on the CEEsTNUT—MAavER performance charts [7], with the aid of
which the most important quality characteristics for a given BopE diagram
may be estimated. In the knowledge of the settling time, the maximum over-
shoot, the oscillation frequency it is possible to check the progress of the
control process. If we happened to transgress against some of these preserip-
tions, then we reiterate the whole procedure with the inclusion of a different
compensation element or loop amplification. So the ““classic’ method might be
connected with a certain amount of trial and error as well. This method looks
back by now to a past of over three decades.

The second method chooses, for the truer approximation of reality,
signals of an irregular random course, varying according to a random
process and the control system it may be designed on the basis of a certain
statistical characteristic of the signal. Further on we shall deal with this
method in detail. Here preliminarily we only wish to mention, that this method
has been developed on the basis of the work of WiENER and KorLmMocorov
about two decades ago [8—13].

Fipally the third method realizes the design in the so-called phase space.
On the coordinate system axes the state variables of the control system, in
most cases its phase coordinates (signal, signal velocity, signal acceleration,
ete.) figure, The task is to find the choice of a control signal (or signals) in
such a way, that the system should convert from one state into another in
the most favourable manner. Among the usual processes the variational calculus.
the PONTRYAGIN maximum principle and the BELLMANN dynamic program-
ming may be mentioned [14, 15]. The third method is still younger than a
decade.

Optimization plays an important role in all three methods. In the case
of the first method the question arises thus: By what compensation elements
can the foreseen quality characteristics be optimally fulfilled, with as little
as possible steady-state error? In the case of the second method an optimum
weighting function, resp. an optimum transfer function is to be determined for
the whole system or for a part of it (e.g. for the compensation element) in such
a way, that the output signal should optimally approximate the desired sto-
chastic signal. Finally in the case of the third method the switch-over time in-
stants are to be determined in such a way that a certain cost functional, e.g.
the changing time, or the energy consumption should reach a minimum. The
first method may be regarded as already nearly closed, the second ome ap-
proaches closure, whereas the third one is still greatly developing.

I, The fundamental variant of the statistical design method

For the introduction of the statistical design method we shall start out
from the simplest possible variant (Fig. 1).
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The stochastic signals are denoted by the lower case letters of the Latin
alphabet. It is assumed that the input signal r(t) of the linear, invariant
concentrated parameter, single variable control system of weighting function
w(f) consists of two components: of the useful command signal component
s(t) and of the disturbing signal component (in short: noise) n(t). At the system
output the stochastic output signal c(t) arises. This is compared with the ideal
output signal i(t), in other words with the desired signal. It is to be noted,
that the ideal signal is sometimes considered to be derived from the command
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Fig. 1

signal with the aid of a certain transfer member y(t). The weighting function
y(t) — as we shall see later — is not one which must be physically realizable
unconditionally. The difference between the signals i(t) and c(t) is the error
signal e(t). .

The statistical design of the control system sets the task of determining
the weighting function w(t), or the transfer function W(s). The transfer func-
tion — asis well known — is the Laplace transform of the weighting function:
W(s) = L [w(@)].

The starting conditions are:

1. The statistical characteristics, e.g. the autocorrelation function
@rr (1), or the power-density spectrum @,, (s) are assumed as being known.

2. The ideal output signal must be chosen. E.g. if i(t) = s(t), then the
task is the true filtering [in this case y(t) = 0(t), where 6(f) is the Dirac unit
impulse function, more correctly distribution]. It rarely happens, that it
should be i(t) = s(t — Tq), i.e. y(t) = 0(t — Ty), i.e. that the task should be
the following of the command signal delayed by deadtime Ty. The prediction
is very interesting, when i(t) = s(t -+ Ts), i.e. y(t) = 6(t + Ts), so in this
case the signal sped by time T is to be followed with as little error as possible.
This task arises, for instance, in the case of anti-aireraft batteries, or of rockets,
but similar tasks are met with in every system, where the controlled section
contains a deadtime and the task is the true following of the command signal.

3. Also the optimization criterion must be given. Most often the set
task is the minimization of the error signal mean-square value, i.e.

e* (1) = [e()]* = minimum (L)
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not as if this were always the best criterion, but doubtlessly this is the criterion
to be treated mathematically as the simplest, which is independent from the
sign of the error signal.

ITL. A few relationships of the stochastic signals

It must be mentioned here that the stochastic signals are assumed to be
stationary and ergodic, because otherwise the difficulties would greatly in-
crease. We regard the stochastic signal as stationary, when its statistical
characteristics do not depend from the beginning of the time count (e.g. the
correlation function is only the function of time shift v and not the two-variable
function of time data ¢, and ¢; = t; - 7). The ergodic hypothesis assumed that
the ensemble average of a great number of signals and the time mean value
of a single representative signal coincide (see e.g. [11, 16—20]).

With the assumption of the ergodicity of stationary process e. g. the def-
inition of the ecross-correlation function of the actual and the ideal output
signals on the basis of the time average formation is:

—d

while e.g. the autocorrelation function of the error signal is:

7

¢o(7) = lim *'1"? [ o(t) et = 7) dt. 3)

Teree 2

— 4
The stochastic signals can be characterized not only by the correlation func-
tions, but also by the power-density spectra. The latter are, according to the

WieNer— KHINCHIN relationship, the Fourier transforms of the correlation
functions

O ()= [ palt)e = dr = Floq ()], (4)

Doo(s) = [ oe(r) e dr = Fg,.(2)] . (5)

Here and further on too s = jo.
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From the power density spectrum the correlation function may be
determined by the inverse Fourier transformation:

jee
Palt) =5 [ Pa(o)etds = 720 (9] (6)
27j ke
1 7
== D (sYetds = .71 @ees . 7
) =5 - j e (s) [ ()] (7)

The significance of the autocorrelation function, resp. of the power-density
spectrum is especially evident by the fact, that they may be brought into
direct relationship with the mean-square value of the error signal

T
&) = lim -—21? J ¢ (1) dt (8)
-7

figuring in the design criterion according to the relationships

¢ (t) = Qe (O) > (9)
resp.
1 T
() = — j D, (s) ds. (10)
2my
_.j:o
The first relationship is simpler than the second one, yet — as we shall see
later during the calculations — our goal is reached easier, if we start from

the second one. Though here we are not going to extend upon the features
of the correlation functions and the power-density spectra, as these may be
found elsewhere, e.g. [9, 11, 12], vet we shall mention in short the rules of
the index inversion and of index changing [11, 19. 20].

According to the rule of index inversion for instance

P () = re (— 7)., (11)

gDci (S) == ®ic (_ S)' (12)
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On the other hand if r(¢) and ¢(t) are the input, resp. output signals of a control
element or system with w(t) weighting function, then the formal index chang-
ing rules are, for instance, as follows:

Changing of the second index:

oo

Pec ()= | w(®) @, (v — 9)dd (13)

resp.

P (5) =W (s) P, () (14)

Changing of the first index:

ca

e (7) = [ w() @, (v + L)ds (15)

— e

resp.

@cr (s) = W(“ 5) D, (S) y (16)

Changing of both indices:

P (@) = [ 0() [ w(®) @, (x— 9 +0)dddC, (17)
resp.
D, (5) = W(— 5) W(s) D,, (5). (18)

We will not deal here with the proof of these rules but refer to the literature
[9. 11, 12, 18—20].

IV. Variations of the siatistical design method

The variants of the statistical design method are summed up in Table I.
For a start first the mean square values of the error signal must be written up.
In the first, two variants the latteris expressed with the aid of the correlation
functions. Then at the first variant we arrive through the variational calculus
performed in the time domain to the WIENER— HoprF integral equation, which
further on is reduced by a few mathematical manipulations and conversions
to an integral equation of the first kind. The solution of the first kind integral
equation in the time domain gives the optimum weighting function.

The second procedure solves the first kind integral equation by the
Fourier transformation; in this way the optimum transfer function can be
determined.
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The first two procedures were developed by WieNEer [8].

The third method expresses the mean-square value of the error signal
by power-density spectra. Then by variational calculus and spectrum factoriza-
tion in the frequency domain it finally results in the optimum transfer func-
tion. The third method comes from Tsiex [21, 22].

Table 1

[ Mean square value of the error

1

:

¥ i
Expressed by correlation func- Expressed by power-density
tions in the time domain spectra in the frequency domain
* 4
i ' I [
- . .Y T . . N oY e s M
Variational calculus Variational caleulus Simplified method
| ‘ K
|
i
4 ‘
Wiener-Hopf-type ’
integral equation i
. J’ . - Y! r Y . .
Solution in the Fourier transfor- Spectrum factoriza- Spectrum factoriza-
time domain mation, spectrum tion tion
(Spectrum factor- factorization %
ization) in the frequency !
1 domain ‘
. ! |
. - ; : i :
Optimum weight- Optimum transfer Optimum transfer Optimum transfer
ing function function function function
1. variant 2. variant 3. variant 4. variant

The fourth method also starts from the power density spectra, but
instead of the variational calculus it arrives by simple elementary considera-
tions to the optimum transfer function. This method was first applied by
Bope and Smanxon [23], but they assumed the existence of an uncorrelated
command signal and a noise. The author of this paper made the solution
independent of this constraint and, at the same time, proposed a considerably
simpler procedure [24—26].

The advantage of the simplified method shows itself especially when
going over from the simpler configurations to the more complex ones, e.g.
from the totally free configuration to the semi-free or to the constrained semi-
free configuration, as it was first proposed by Newrox [27, 28], Similarly
when going over from single variable systems to multivariable ones.
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In the following we shall consider each variant in turn for the sake of
comparison. The starting point is the expression of the error:

eft) = i(t) — cft) (19)

resp. the square of the error
2(e) = i2(0) — oe)i(t) — i(0)e(t) + (), (20)

or still better the mean-square value of the error

EO)=E0) — i) — i @+ 2@ - (21)

Y. First variant: Variational calculus in the time domain

In the first variant [8, 11] the mean square value of the error is ex-
pressed with the aid of the correlation functions: '

e (1) = ¢4 (0) — 9 (0) — #:c (0) + 9. (0). (22)
Taking into consideration the rules of index changing and of index inversion:

£

e (1) = ¢ (0) — 2 (e @ (1) dty +
o (23)

-+ 3\' w(ty) j w(ty) @pr (8 — 1,) diydty

J.

Our task is to determine a weighting function w,, (), which minimizes the
mean square value of the deviation. For its determination we use the varia-
tional calculus. Let us assume, that there exists a minimizing weighting func-
tion w,, (¢); then if the latter is altered, the error mean-square value must
increase. Let us produce the weighting function w(t), as a linear combination
of w,, (t) minimizing and of w, (f) arbitrary, but physically realizable weighting
functions:

w (1) = w, (t) + ew, (1), (24)

where ¢ is a variational parameter. According to the above the minimum
mean-square error occurs at ¢ = 0. In other words the derivative of the mean-
square error is zero:
de(t) | o=
___.i.). I = O . (;D)
de je=0
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Starting out from this condition and carrying out the derivation according
to ¢ and the substitution ¢ = 0, we have:

=0 e

—2 j w, (tl) @i (tl) dtl+ X Wy (tl) S W, (t'Z) Crr (tl - t‘l) th dtl+

— = —

= >

b T w0 (0) T () @0 (1 — 1) dey dr, = 0. (26)

— = -

The last two terms evidently coincide, thus:

=3 S

2 j‘ W, (tl)[ g Wiy (t‘l) For (tl - t:?) dt:’_ — @ (tl)] dtl =0. (27)

- —o0

As w, (¢) is physically realizable, thus for negative times it must be identically
zero, i.e. it must be a so-called positive-time function. (According to the
definition, the weighting function is the output signal arising under the effect
of the impulse function, which is acting at the time instant t = 0.) But for
positive times the left side of the preceding expression can be only zero, when
also the arbitrary weighting function w, (t) is taken into counsideration, if the
expression in the square brackets is zero:

o

S W (t'.!) Frr (t'l - t:Z) dtz = r (t'l) =0, (28)

— o=

0 <t

This important relationship is the WieNER—HoPF integral equation. It is
this equation which must be satisfied by the minimizing weighting function
w,, (t). Unfortunately the solution of the integral equation in the time do-
main is not an easy task.

Before continuing we shall prove that the calculated extreme value is
really minimum. Physically this is clear, because the maximum of the mean-
square value is evidently infinite. For its mathematical proof the second deri-
vate must be determined:

£ o

2Em ( _
L =2 ) | ) g ( — 1) s,

—_ o — o

The right side term is the mean square value of an output signal, which
arises on the effect of an input signal led through the system of weighting
function w, (). As the mean square value is never negative, the second differ-
ential quotient is positive, i.e. the extreme value is indeed minimum.
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VI. Spectrum factorization in the time domain

If the WieNErR—Hopr integral equation were valid not only for 0 = ¢,
time, but for every ¢; time, so we should have to deal with an integral equation
of the first kind, which is easier to solve. So let us try to convert the WiENER —
Hoprr integral equation into an equation of the first kind.

As a first step we shall produce the autocorrelation function ¢, as the
convolution of a positive-time function (p,—, and of a negative-time function

@rr, SO

Gty — 1) = S Frr (83) i (1, — t, — t3) dts. (29)

ey

It is to be noted, that ¢;; and ¢;; functions may be called the time-domain
spectrum factors. The cross-correlation function ¢, may also be expressed

similarly:

oo

@ri () = S Prr (&) w(ty — t3) dty. (30)

— 2

The auxiliary function p figuring here has generally values differing from zero
both for positive and for negative times, Introducing these relationships and

changing the sequence of the integrations we have:

g () [ (a0 () o (n — 1y — ) dey — (4 — 1)] dey = 0 (31)

-2 e

But this latter relationship for a negative ¢ time can only be fulfilled, if the

expression appearing in square brackets is zero:

’Y W, (8) 77 (8 — 1y — t) dbty — (1, — 1) = 0 (32)
i, 2 0 0T,
i.e. when
0 =1, —t4

we obtain:
[ 10 () g7 (e — 0) 49 — () =0 (33)

— o

0= .
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This integral equation is in a form similar to the original Wiexgr—Horr
integral equation, but now it is only in consequence of the y(7) function, that
the left side is not zero for negative 7 time, because the convolution integral
is zero for a negative time, as both w,, and (;; are positive-time functions, con-
sidering, that w,, is a physically realizable weighting function.

Let us separate the auxiliary function y(r) into y_(7) negative-time
and y (1) positive-time function components:

(1) =y () + v(7)
where p ~(r) =0, when 0 < v;

p.(7) =0, when v < 0.

As the left side of the above equation differs from zero in the case of a negative
shifting time v only because of the y_(7) component, if we drop this latter,
so the integral equation already gives for the whole 7 domain zero result:

¥, (9) 07 (r — 0)d —p (1) =0 (34)

— oo < T < co.

This alreadyv is a common integral equation of the first kind, which is easier
3 g q ,

to solve.

VII. Second variant: Transition to the frequency domain

The second variant solves the integral equation of the first kind by the
Fourier transformation.

Relationships (29), (30) and (34) of the preceding point, Fourier-trans-
formed (with the notation s = jo), give:

D, () = D () P (5) (35)
D,; () = Drz () V() - (36)
W, (s) D (s) — Wi (s) = 0 (37)

namely, the convolution integrals go over into the product of the transformed
functions. It is a known feature of the Fourier transformation, that all poles
of the positive-time (negative-time) function transforms are positioned on
the left (right) half of the plane of complex quantities. In addition in the fre-
quency domain the spectrum factorization given by relationship (35) must be
performed in such a way, that all zero points of the spectrum factors @/,
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resp. @;; should also be on the left (resp. right) half of the plane of complex
quantities. The two spectrum factors are conjugates of each other. From
relationship (37)

Wi (s) = 2., (38)
D5 (s)
On the other hand according to relationship (36)
P, (s)
Y(s)=——=. 39
Y=g (s) %)

Determining the y(7) function by the inverse Fourier transformation, then
separating the positive time function component y_(7) and performing the
transformation, we obtain

¥, (5)=2 |71 [P(s)]) (10)

as the last two steps can be performed simultaneously with the common
Laplace transformation. From relationship (39)

)= [_gf{((—z)l]: {41)

by the substitution of which into expression (38}, finally the requested, phys-
ically realizable optimum transfer function is:

. 1
BFm (S) = _@ﬁ; (S)

VIII. Third variant: Variational caleulus in the frequency domain

In the further variants the mean-square value of the error is expressed
by power-density spectra according to (10):

j:,;
a0 = -;i}— D, () ds (43)
_ij

where, taking (21) into consideration

:dr)ce (S) = ®ii (s) - @cf (S) - @ic (S) + @CC (S) (44)
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Applying the index changing rule:

Qjee (s) = @z'z‘ (s) — W(— S) Qri (S) _' ®z‘r (s) W(s) + (45)
(5B, (5) T(s).

New we perform the variational calculus in the frequency domain [21, 22

Let it once more be

W(s) =W, (s) + e W (s). , (46)

The derivative of the mean-square error is zero:

de@)) 7
ph §e=0”0' (47)
From this condition
7
2o | TP T () = P ()] ds
27y J
e (48)
1 7
+ o | (= 9) () = By ()] Wils) ds = 0.
2aj
—jm

By the way, let us observe that the integrand in the second line is the con-
jugate complex expression of that in the first line. Performing the spectrum
factorization given by expression (35) and taking also relationship (36) into
consideration, we have:

=

T 9950 [0 (O Tinls) — )] s

_tj'” ’ (49)

L ‘ [, (— 5) iz () — W(— )] ;i (s) W, (s) ds = 0.
2a5
i

It may be seen, that

o=
_9.1_. W, (— s) D5 (s) ¥ (s)ds = (50)
2y

—je
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ol
9
"
i,
=
o

: [EECELCTACETS (51)

—je=

and :
2mj

as in the individual integrals only transforms belonging to negative-time (resp.
positive-time) functions appear, i.e. only right-side (resp. left-side) poles are
occurring. Closing the integration path along the imaginary axis by a left-hand
(right-hand) semicircle of a radius approaching infinity, zero will result accord-
ing to the residuum theorem, because within the closed loop there is no pole.
There is that only to be proved, that the value of the integrals along the semi-
circles of a radius approaching infinity is zero, but this is satisfied, as can be
shown, that the denominators of the terms to be integrated are at least by
two degrees higher, than their numerators. Indeed the denominators of W, and
Y _ are at least one degree higher, than their numerators, while the numerators
of @;; and @;; are at most of the same degree as their denominators. Deducing
the last two terms (50) and (51) from (49), we have:

fe=
S [ PP @ 2 0 — )]s
2] v
—je 592
s (52)
+— J [ (= ) D (s) = P (— 9)] Pz () W, (5) ds = 0.
2mj

This relationship is fulfilled then and only then, when the terms in the square
brackets are zero. As the latter are the conjugates of each other, it is enough
to consider the first one, from which is again

L s
W, (s) = _‘_U:ll (53)
(s
resp.
e 1 ) ®ri (S) ol
J25 s) = e D . 54
e D (s) | Pr(s) |4 el

IX. Fourth varianit: The simplified method

The first steps of the simplified method [24—26] are the same, as in the
third variant. However, now we perform no variational caleulus, but we con-
vert expression (45). The key to the conversion is given by the intreduction
of an auxiliary transfer function
(j)ri (S)

=%

(53)
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As the power-density specira are known, so G(s) may also regarded as known.
If we now substitute the expression

D, (s) = ©,, (5) G(s) (56)
and its conjugate into (45), we obtain the form:
@ce (S) = @ii (S) - G(_' S) (‘Drr (S) G(S) +
+[6(= 5) = W(—9)] B, (5) [6(s) — W(s)]. (57)

It is to be remarked, that only the last term contains the minimizing transfer
function W(s). The mean-square error would evidently be minimum, if the
last term was missing altogether from the expression of the power-density
spectrum. This would occur, if it were

W, (s) = G(s) = - (58)

So we obtained an optimum transfer function W, (s), but the latteris, in gener-
al, physically unrealizable. The physically realizable optimum transfer funec-
tion W, (s) may be obtained by spectrum factorization.

X. Spectrum factorization in the frequency domain

Relationship (56) with consideration of (58) can be written thus:
B, ()W, () = By (5). (59)
Now if we put in place of W, (s) the transfer function

W, (s) =Wo (s) —Wn (s),

where W, (s) is a certain physically unrealizable transfer function, so a new
term appears on the right side, but this may contain only right-half-plane
poles

er (S) W;n (S) = ®ri (S) + F_ (S) (60)
where

D, ()W, (s) = —F_(s). (61)
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Introducing by relationship (35) the power-spectrum factors, relationship (60)
may be converted into:
Bu(s) | F_(s)

D)=L S o (62)

By separating the components belonging to the positive-time and the negative-
time functions, we have:

On the left side only left-half-plane poles appear, therefore on the right side
the terms containing the right-half-plane poles must neutralize each other:

85

from the latter, if necessary, the function F_(s); which was unknown up till
now, may be determined. On the other hand, from the terms belonging to the
positive-time function, we again have:

So the simplified method determined first by elementary considerations the
physically unrealizable W, (s) transfer function—formula (58)—, then from
this the physically realizable 17, (s) optimum transfer function by spectrum
factorization. From the expression of W, (s) often the expression of W, (s) can
be directly written up.

XI. Mere complex single variable configurations

The simplified method is the simplest of those introduced above. Instead
of the variational calculus only a G(s) auxiliary transfer function had to be
adopted in order to arrive at form (57). The advantages of the simplified meth-
od are especially evident, when going over from a totally free configuration
to a more complex one. But in such cases besides the auxiliary transfer func-
tion also the introduction of auxiliary power spectra is necessary [24—26].
For instance, in the case of the semi-free configuration (Fig. 2) the part with
weighting function wy () of the control system is given (fixed) in advance and
the task is to optimally choose the control, or compensation organ of weighting
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function w, (t). With the omission of detailed calculations we only refer to the
fact, that in these cases by the introduction of the auxiliary power density
spectra

ZHOLACEFI0R (66)

@, (s) =W, (— ) D, (s) Wy(s) C(67)

rit) , fit .
ot will i clti
L s B Bl
A
|
1'(’1)!
Fig. 3

(which can be interpreted according to Fig. 3) the task may be reduced to the
preceding one and so the solution can be directly written, as

Wen (s) = L [3_(5_{ ; (68)
Dz (s) | Dz (s) s .
or taking into consideration (66) and (67) as
[ (= 5) B, (5) ]
W (s) = L= W)= Do) ). (69)

7 (= )W, (5)]7 @ (s)

for the physically realizable optimum transfer function of the controller.
The constraint in the case of a semi-free configuration (Fig. 4) may be
expressed in the form of
Je=
B0 = 710 (0) = — | 2uas < (70)
2aj

“j“’
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where

Dy () =Wy (— $) W (— ) D () W (5) W, (s) - (71)

The task may now be solved by the Lagrangean conditional extreme value
calculus. The function to be minimized is now

& (t, ) = e (1) + 6% ()., (72)

mit [ 1ot
S

£ ‘—~—| r_—-_l
® ri welt miY welt) ct)

+ L= L1 l
s - eft)
;
I_________s/i.{'y”’}'"l i
[ -
Fig. 4
or
7t
(1, ) = —— J [D..(s) = 2Dy, (s)] ds. (73)
27y
_jg.,

Now the introduction of the auxiliary power density spectrum
B (5. 2) = [ (= YW (s) + Ay (— 8) Wy (5)] D, (5) (14)
and of the auxiliary transfer function

@ji (s)

G (s, 7) = oo

(75)

is necessary. This then yields the physically realizable optimum transfer func-
tion of the controller in the form of

. - 1 ®f1' (s) 7
Wem (s) = Dy (s, A) [Q')ga(s, /’-),L "

or in more detail

{ Wi(—3) Pri(s) }
Wcm (S.{ ;.) = [ Wf(— S) va (S) + }“Wlf ('—' S) W.]{ (S)J“ (—D; (S) -
Wi(— ) Wy(s) + W (— ) Wi (s)]* P (s)
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It is to be emphasized, that in this case the Lagrangean indeterminate factor
A figures in the term of the physically realizable optimum transfer function,
The factor . may be eliminated with the aid of the constraining unequality,
i.e. relationship (70). In expression (71) of @y (s) the transfer function W (s)
may be substituted by the physically realizable optimum transfer function
Wem (s, 2), and we determine the mean-square value b%(f) of the constrained
output signal b(¢) on the basis of the Cauchy theorem of residues, then we choose
factor 1 in such a way, that the constraining unequality (70) should be satis-
fied. In this way the physically realizable optimum transfer function W, (s)
becomes independent of factor A.

XTI. Multivariable systems

The task of the optimum statistical design may also be extended over
multivariable control systems [29—33]. In such cases generally the minimi-
zation of the sum of the error signals’ mean-square values is required:

u\/jt‘

e7(t) = minimum. (78)
=1

For the treatment of the multivariable systems the matrix caleculus offers
itself. From the signals we generally form row vectors, from the transfer (or
weighting) functions square matrices. The signal vectors and the matrices are
distinguished from each other by upper indices, the lower indices serve for
the notation of the rows, resp. of the columns.

The physically realizable optimum function matrix [34, 35] of the to-
tally free multivariable configuration (Fig. 5) may be expressed in the form of

Wi (s) = [Pror ()] {[Prr ()] 72 Prcty (5)] - (79)
(k=k.F =1...K:l=1,...L; K=1).

Here @, ;(s) is the power-density spectrum matrix belonging to the cross-
correlation functions of the input signals and the ideal output signals, while
the spectrum factor matrices must be chosen in such a way, that on the one

hand
(‘ﬁrk'rf: (S) = ®’::’z (S) (Dr;,,rk (S) (80)

should be satisfied, where @, ,(s) is the power-density spectrum matrix
belonging to the correlation functions formed from the input signals, on the
other hand the elements of matrix @;_ (s) and its inverse may contain only

§Q Periodica Polytechnica ElL XIjl-—-2.
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right-half-plane poles, the elements of matrix Q'),;,L(s) and its inverse may

contain only left-half-plane poles.
In the semi-free multivariable configuration (Fig. 6) the optimum trans-

fer function matrix of the controller {36, 37] is:

W (s) = [P, (5)] 7 {[Drric ()] 72 P () W (— 5) X
X (Wi () Wy (— s)7] 7+ (W5 () W (= )] (81)
Bk =1,...K;j=1,...J; I=1,...L; K=J = L).

.t

N

N rltr m; ) Cult]
£ wiift) Wil ==

5,0t

|
Skl | T
[__L._::ﬁ:} Yuft]

Fig. 6

It is to be noted, that when the matrix W{r(s) of the fixed part (e.g. the con-
trolled section) is of minimum phase, i.e.

(4 (5) Wiy (— s))™ = Wy (— 5)
(P (5) Wy (— $))* = W ()
then (81) may be simplified:

Wff,ln ( ) [@f; ”1 S)] [@,} r; S)] Qj’k»iz (S)}+ [W§/ (S)]‘.] . (82)
In such cases

WiF (s) = Wi(s) [P ()] (83)
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For constrained semi-free configuration multivariable systems (Fig. 7) it is
usual to give the constraint in the form of

H
S b
h=1

H/\

(84)

The constrained mgnalvector biu(t) (R = 1, ... H) is produced by the weighting
function matrix wjh (t) from the intermediate modified signal vector m, i(t)

Nt " omyt ] balt)

winlt) F——1>
M gt (1)
I mjl
‘
X
lL TSN
k= :§>| yk,(t)
—
Fig. 7
(=1, ...J). For instance if wj-‘}l (t) is the diagonal unit impulse function

matrix, then the m(t) signals are directly constrained, if wj"-‘}l (1) = wﬁ (2),
then the c; (t) output signals are constrained.
It ought to be mentioned, that the constraint may be expressed in the

form of
H I=
SH@) =tress (0)= .‘jtr@ao~@>dsg;aﬁ (85)
h=1 27{] /
e

where tr means the trace of the matrix, i.e. the sum of the main diagonal
elements, further

Pey v, (8) = Wiy (— ) Wi (— ) Pryr, (s) Wi () Wi (s). (86)

For the determination of the optimum controller transfer matrix it is most
practical to again use the simplified derivation method. The required optimum
transfer matrix [38]:

7 (5.7) = [Pa s D]
X {[qr)a_,-,-,ah,« (s, }')]~1 @’;:'fz (S) WJICJ (" s) [(W Z(S) W],J, ("“ 5)) ] }"‘ <
< [( 1(5) Wi o (— s))+]-—1 (87)
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contains for the time being also the parameter Z. The auxiliary power density
spectrum figuring here can be determined on the basis of the following re-
lationship:
Wi (= 8) Wik (— 8) Pror, () Wi (5) Wi (s) +
+ AWy (= 8) Wi (— 8) Dror, () WE; (s) Wy (s) =
= Wy (— 8) Wi (— 5) Daya, (s, 2) W (s) Wi (s). (88)

The auxiliary matrix @, 4,(s,%) does not depend on the transfer matrix Wj(s),
but only on the transfer matrices jl(s) h(s) the power-density spec-
trum matrix @,};,P(s) and the parameter 4, if

Win () W ()] =G, (s) I (89)

where G, (s) is a certain transfer function, while I;; a unit matrix of jxj
dimension.

Parameter 2 may be eliminated, if we substitute relationship (87) and
its conjugate into expression (86), then we determine with the aid of the
constraining unequality (85) the permissible value of A. Substituting this
latter value back into formula (87) the transfer function of the optimum con-
troller W7 (s) becomes independent of factor /.

The minimum sum of the mean-square values of the error signals may be
computed with the following formula:

i
L
e (1) = tr pe,e, (0) J tr De,e, (s) ds (90)
1=1 277

s

where
Deey (5) = Biyiy(5) — Biyr, () WS () Ty (s) —
Ty (= ) WS (= ) Pri (5) + (91)
-+ WJU (—s) Wf,’}f., (—s)Dr,r, () W“’ (s) WJJ, (s).

Finally we note, that the most general case is the multivariable, semi-free
configuration with constraint. So e.g. by the substitution of 4 = 0 the results
of the unconstrained semi-free configuration may be regained. On the other
hand, going over from the multivariable system to the single variable system
we regain the results of point XI.

XHI. Compiementary remarks

Recently the pulsed-data (sampling and digital) control systems are
gaining ever more significance. The investigations of the continuous control
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systems may easily be extended and similar results, up to a certain measure,
may be determined for the pulsed-data type single and multivariable systems
as well, as those described under points XI and XII [39, 40].

XIV. Some conclusions

Finally we refer in short to some further tasks concerning the statistical
analysis and design of the control systems.

In connection with linear systems it is worthwhile to deal with the
L ——
solution of tasks deviating from the criterion €¥(t) = min., resp. Zej(t) = min.,
l=]
though this will complicate the design. In multivariable systems the spectrum
factorization of the matrix plays a decisive role. We have to investigate here
also the case, where the rank is smaller, than the order of the matrix.

It is similarly interesting that the spectrum factorization of matrices

built up of elements containing e~"¢ transcendent factors. All these investi-
gations may be extended to pulsed-data control systems as well. With the ex-
ception of the linear systems the consideration of the variable parameter and
non-linear systems, further the non-stationary processes is still in the stage
of its starting steps: the difficulties of the investigations keep increasing, the
more so, as the transformation methods lose their validity.

Finally, on the basis of the theoretical results the applying of correlators
for the system analysis and synthesis seems to be of great importance. Here,
for instance, practical difficulties arise by the white noise not being perfect
even in a finite frequency domain, and the integration time 7 cannot be in-
creased in an arbitrary measure.

Summary

This paper wishes to give an insight into the range of problems of the statistical syn-
thesis of single- and multivariable control systems. It compares the four variants, which may
be used for the design and shows the advantages of the so-called simplified method. It also
gives a few results on the range of the single- and multivariable continuous control systems.
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