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1. Introduction 

In control engineering no unique theory has heen developed, not even 
concerning the linear systems. As the most important design methods, the 
following may he mentioned: 

1. The "classic" method. 
2. The statistical method. 
3. The phase-space method. 
From among the enumerated methods the first one is hased on typical 

deterministic signals (e.g. unit impulse, unit step, unit vclocity step, unit 
acceleration step). The prescrihed value of the so-called steady-state control 
deviation determines the magnitude of the loop gain (for simplicity's sake 
we shall consider a simple, single variahle, single loop control system). With 
the loop amplification known, the stahility of thc system may already he in­
vestigated, e.g. hy one of the procedures of :0\YQUIST, BODE, NICHOLS, l\II­
KHAILOV, LEOl'iHARD, ROUTH, HUR\YITZ, EVA);S, etc. [1-6]. 

In most cases the system proves to he instahle. In order to cancel the 
contradiction hetween the low valuc of thc steady-state error and the securing 
of the necessary degree of stahility also some signal-forming (compcnsation) 
organs, resp. elements are to he included. The investigations are most purpose­
fully carried out in the frequency domain and it is perhaps the simplest to usc 
the logarithm magnitude logarithm frequency, i.e. the so-called BODE 
diagrams. 

In this case we start out from the transfer function of the open control 
loop. In many cases hy the inclusion of an appropriate compensation element 
it is possihle to reach, that the approximating BODE diagram, eyen without 
diminishing the loop gain should intersect the 0 dB axis 'with a slope 
of -20 dB/decade (6 dB/octave). If this section of -20 dB/decade is long 
enough to the right and to the left, then usually the quality requirements 
are also satisfied. For checking this we should return into the time domain 
hy the inverse Laplace transformation. But this may also he avoided, if we 

* Inauguration lecture held at the Hum:arian Academy of Sciences on the 18. Jan. 1966. 
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rely on the CHESTNUT-MAYER performance charts [7], with the aid of 
which the most important quality characteristics for a given BODE diagram 
may he estimated. In the knowledge of the settling time, the maximum over­
shoot, the oscillation frequency it is possihle to check the progress of the 
control process. If we happened to transgress against some of these prescrip­
tions, then we reiterate the whole procedure 'with the inclusion of a different 
·compensation element or loop amplification. So the "classic" method might be 
connected with a certain amount of trial and error as well. This method looks 
l)ack by nO'f to a past of over three decades. 

The second method chooses, for the truer approximation of reality, 
signals of an irregular random course, varying according to a random 
process and the control system it may he designed on the hasis of a certain 
statistical characteristic of the signal. Further on we shall deal with this 
method in detail. Here preliminarily we only wish to mention, that this method 
has heen developed on the hasis of the work of WIEI'ER and KOL}IOGOROY 
about t·wo decades ago [8-13]. 

Finally the third method realizes the design in the so-called phase space. 
On the coordinate system axes the state variables of the control system, in 
most cases its phase coordinates (signal, signal velocity, signal acceleration, 
etc.) figure. The task is to find the choice of a control signal (or signals) in 
such a way, that the system should convert from one state into another in 
the most fa,-ourahle manner. Among the usual processes the variational calculus, 
the PONTRYAGII' maximum principle and the BELL2HANN dynamic program­
ming may be mentioned [14, 15]. The third method is still younger than a 
decade. 

Optimization plays an important role in all three methods. In the case 
of the first method the question arises thus: By what compensation elements 
-can the foreseen quality characteristics be optimally fulfilled, with as little 
as possible 5teady-state error? In the case of the second method an optimum 
weighting function, l'esp. an optimum transfer function is to he determined for 
the whole system or for a part of it (e.g. for the compensation element) in such 
a \\-ay, that the output signal should optimally approximate the desired sto­
chastic signal. Finally in the case of the third method the switch-over time in­
stants are to he determined in such a way that a certain cost functional, e.g. 
the changing time, or the energy consumption should reach a minimum. The 
first method may he regarded as already nearly closed, the second one ap­
proaches closure, whereas the third one is still greatly developing. 

H. The fundamental variant of the statistical design method 

F or the introduction of the statistical design method we shall start out 
from the simplest possible variant (Fig. 1). 



STATISTICAL SYZITHESIS METHODS OF CO,\'TROL SYSTEMS 113 

The stochastic signals are denoted by the lower case letters of the Latin 
alphabet. It is assumed that the input signal r(t) of the linear, invariant 
concentrated parameter, single variable control system of 'weighting function 
wet) consists of two components: of the useful command signal component 
s(t) and of the disturbing signal component (in short: noise) n(t). At the system 
output the stochastic output signal c(t) arises. This is compared with the ideal 
output signal i(t), in other words with the desired signal. It is to be noted, 
that the ideal signal is sometimes considered to be derived from the command 

signal with the aid of a certain transfer member yet). The weighting function 
yet) - as we shall see later - is not one which must be physically realizable 
unconditionally. The difference between the signals i(t) and c(t) is the error 
signal e(t). 

The statistical design of the control system sets the task of determining 
the weighting function w(t), or the transfer function W(s). The transfer func­
tion - as is well known - is the Laplace transform of the weighting function: 

W(s) = .2[w(t)]. 
The sta~ting conditions are: 
1. The statistical characteristics, e.g. the autocorrelation function 

Ifrr (T), or the power-density spectrum (fJrr (s) are assumed as being known. 
2. The ideal output signal must be chosen. E.g. if i(t) = set), then the 

task is the true filtering [in this case yet) = bet), 'where bet) is the Dnu .. c unit 
impulse function, more correctly distrihution]. It rarely happens, that it 
should be i(t) = set - T d ), i.e. yet) = bet - Td ), i.e. that the task should be 
the following of the command signal delayed hy deadtime T d. The prediction 

is very interesting, when i(t) = set + Ts), i.e. yet) = bet + Ts), so in this 
case the signal sped by time Ts is to be followed with as little error as possible. 
This task arises, for instance, in the case of anti-aircraft batteries, or of rockets, 
but similar tasks are met 'with in every system, where the controlled section 
contains a deadtime and the task is the true foUo'wing of the command signal. 

3. Also the optimization criterion must be given. Most often the set 
task is the minimization of the error signal mean-square value, i.e. 

e2 (t) = [e(t)F = minimum (1) 

8 Periodica Polytechllica El. XI/l-:!. 
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not as if this ,vere always the best criterion, but doubtlessly this is the criterion 
to be treated mathematically as the simplest, which is independent from the 
sign of the error signal. 

Ill. A few relationships of the stochastic signals 

It must be mentioned here that the stochastic signals are assumed to be 
stationary and ergodic, because otherwise the difficulties would greatly in­
crease. We regard the stochastic signal as stationary, when its statistical 
characteristics do not depend from the beginning of the time count (e.g. the 
correlation function is only the function of time shift r and not the two-variable 
function of time data ta and to = ta r). The ergodic hypothesis assumed that 
the ensemble average of a great number of signals and the time mean value 
of a single representative signal coincide (see e.g. [11, 16-20]). 

With the assumption of the ergodicity of stationary process e. g. the def­
inition of the cross-correlation function of the actual and the ideal output 
signals on the basis of the time average formation is: 

T 

rei (r) = lim + .\' c(t) i(t -+- r) dt 
T-·= :..T 

-T 

while e.g. the auto correlation function of the error signal is: 

T 
1 

qcc (r) = lim I e(t) e(t -+- r) dt. 
T-·= 2T 

-T 

(2) 

(3) 

The stochastic signals can be characterized not onh- b,- the correlation func­
tions, hut also by the power-density spectra. The latter are, according to the 
WIEl'IER-KHIl'ICHIl'I relationship, the Fourier transforms of the correlation 

functions 

= 

q)cds) = J (Fci(r)e-STdr=·;:T(lci(r)], (4) 

or 

(5) 

Here and further on too s = j(l). 
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From the power density spectrum the correlation function may be 
determined by the inverse Fourier transformation: 

or 

j= 

epei (r) = ~ f Weds) eTS ds = y-1 [WCi (s)] , 
27C] • 

epee (r) 

-j= 

j= 

~ f Wee (s) eTS ds = 7-1 [Wee (s)]. 
27C] 

-j= 

(6) 

(7) 

The significance of the autocorrelation function, resp. of the pO'wer-density 
spectrum is especially evident by the fact, that they may be brought into 
direct relationship with the mean-square value of the error signal 

-;;--( ) l' 1 e- t = lm 
T--= 2T 

T J e2 (t) dt 

-T 

figuring III the design criterion according to the relationships 

resp. 

e2 (t) = Tee (0) , 

j= 

-;;--() 1 J rl> ()d e- t = - '1-' cc ss. 
27Cj 

-j= 

(8) 

(9) 

(10) 

The first relationship is simpler than the second one, yet - as 'we shall see 
later during the calculations - our goal is reached easier, if we start from 
the second one. Though here we are not going to extend upon the features 
of the correlation functions and the power-density spectra, as these may be 
found elsewhere, e.g. [9, 11, 12], yet 'we shall mention in short the rules of 
the index inversion and of index changing [11, 19, 20]. 

According to the rule of index inversion for instanee 

Tei (r) = epic (- r) , (11) 

or 

(12) 

S* 
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On the other hand if r(t) and c(t) are the input, resp. output signals of a control 
element or system ·with w(t) weighting function, then the formal index chang­
ing rules are, for instance, as follows: 
Changing of the second index: 

= 

<Pee er) = S w( &) <Per (r - &) d19 (13) 

resp. 

(14-) 

Changing of the first index: 

= 

<Per (r) = J w(~) <Prr (r + n d~ (15) 

resp. 

(16 ) 

Changing of both indices: 

= = 

<Pee (r) = .\ w(~) J w(&) <Prr (r - B + C) dB d, , (17) 

resp. 

Wee (8) = W( - 8) W(s) Wrr (8). (18) 

We will not deal here with the proof of these rules but refer to the literature 
[9, 11, 12, 18-20]. 

IV. Variations of the statistical design method 

The yariants of the statistical design method are summed up in Table 1. 
For a start first the mean square values of the error signal must be written up. 
In the first, two variants the latter is expressed ·with the aid of the correlation 
functions. Then at the first variant we arrive through the variational calculus 
performed in the time domain to the WIENER-HoPF integral equation, "which 
further on is reduced by a few mathematical manipulations and conversions 
to an integral equation of the first kind. The solution of the first kind integral 
equation in the time domain gives the optimum weighting function. 

The second procedure solves the first kind integral equation by the 
Fourier transformation; in this way the optimum transfer function can be 
determined. 
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The first t"WO procedures were developed by WIENER [8]. 
The third method expresses the mean-square value of the error signal 

hy power-density spectra. Then by variational calculus and spectrum factoriza­
tion in the frequency domain it finally results in the optimum transfer func­
tion. The third method comes from TSIEN [21, 22]. 

Table I 

)Iean square value of the error 

Expressed by correlation func­
tions in the time domain 

+ 
Yariational calculus 

I 

I ~iener-Hopf-t)ye I mtegral equatIOn 

1-----· 
Solution in the 

time domain 
(Spectrum factor­

ization) 

i 
OP.timU:l W?ight-/I 

Ing fUllctIon . 

1. variant 

Fourier transfor­
mation. spectrum 

factorization 
in the frequency 

domain 

+ 
Optimum transfer I 

function 

2. variant 

Expressed by power-density 
spectra in the frequency domain 

Yariational calculus 

j 
Spectrum factoriza­

tion 

3. variant 

Si mplified method 

1 

\ 

I 
I 
y 

Spectrum factoriza­
tion 

y 

" 

OPtil_llum transfer 
function 

4·. variant 

The fourth method also starts from the po"wer density spectra, but 
instead of the variational calculus it arrives hy simple elementary considera­
tions to the optimum transfer function. This method was first applied hy 
BODE and SHAN:'i"ON [23], hut they assumed the existence of an uncorrelated 
command signal and a noise. The author of this paper made the solution 
independent of this constraint and, at the same time, proposed a considerahly 
simpler procedure [24-26]. 

The advantage of the simplified method shows itself especially when 
going over from the simpler configurations to the more complex ones, e.g. 
from the totally free configuration to the semi-free or to the constrained semi­
free configuration, as it was first proposed hy NEWTO:'i" [27, 28]. Similarly 
when going over from single variahle systems to multi, ariahle ones. 
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In the following we shall consider each variant in turn for the sake of 
comparison. The starting point is the expression of the error: 

e(t) = i(t) - c(t) (19) 

resp. the square of the error 

e2(t) = i2(t) - c(t)i(t) - i(t)c(t) + c2(t), (20) 

or still better the mean-square value of the error 

(21) 

V. First variant: Variational calculus in the time domain 

In the first variant [8, 11] the mean square value of the error is ex­
pressed with the aid of the correlation functions: 

e2 (t) = Cfii (0) - f{!ci (0) - rpie (0) rpee (0). (22) 

Taking into consideration the rules of index changing and of index inveTsion: 

= 

e~ (t) (fu (0) - 2 ) u;(t1) ffri (tJ dtl + 
(23) 

= = 

+ J U;(tl) J u,(t~) rprr (tl - t2) dt2 dtl · 

Our task is to determine a weighting function Hi m (t), which mmlmlzes the 
mean square "alue of the de\-iation. For its determination we use the varia­
tional calculus. Let us assume, that there exists a minimizing weighting func­
tion lV m (t); then if the latter is altered, the error mean-square value must 
increase. Let us produce the weighting function lV(t), as a linear combination 
of lV m (t) minimizing and of 10" (t) arbitrary, but physically realizable ·weighting 
functions: 

u; (t) = lVm (t) SlVe (t), (24) 

where S is a variational parameter. According to the above the mllllmum 
mean-square error occurs at s = O. In other words the derivative of the mean­

square error is zero: 

d~1 =0. 
ds 1.=0 

(25) 
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Starting out from this condition and carrying out the derivation according 
to s and the substitution s = O. we have: 

= 

- 2 J WE (tl) Cf r; (tl) dt I-+- JWm (tl ) S We (t2) er rr (t l - t2) dt z dtl + 

(26) 

The last two terms evidently coincide, thus: 

= = 

2 .\' WE(t1 )[ ,\' It'm (t 2) 'Frr(t l - tz) dtz - <Pr; (tl)]dtl = O. (27) 

As WE (t) is physically realizable, thus for negative times it must be identically 
zero, i.e. it must be a so-called positive-time function. (According to the 
definition, the "weighting function is the output signal arising under the effect 
of the impulse function, which i;; acting at the time instant t = 0.) But for 
positive times the left side of the preceding expression can be only zero, when 
also the arbitrary weighting function HI, (t) is taken into consideration, if the 
expression in the square hrackets i;; zero: 

J Wm (tJ qrr (tl - t2) df:!. - q:ri (tl ) = 0, 

o /~ t
1

• 

(28) 

This important relationship is the W IE:.'iER - HOPF integral equation. It is 
this equation which must he satisfied hy the minimizing weighting function 
Wm (t). unfortunately the solution of the integral equation in the time do­
main is not an easy task. 

Before continuing 'we shall proye that the calculated extreme value is 
really minimum. Physically this is clear, hecause the maximum of the mean­
square value is evidently infinite. For its mathematical proof the second deri­
vate must be determined: 

d2 e2 (t) 
dE2 

The right side term is the mean square value of an output signaL which 
arises on the effect of an input signal led through the system of weighting 
function /t'e (t). As the mean "quare value is never negative, the second differ­
ential quotient is positive, i.e. the extreme value is indeed minimum. 
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VI. Spectrum factorization in the time domain 

If the WIENER-HoPF iutegral equatiou were valid not only for 0 < t] 

time, but for every tl time, so we should have to deal with an integral equation 
of the first kind, 'which is easier to solve. So let us try to convert the WIE="ER 

HOPF integral equation into an equation of the first kind. 
As a first step 'we shall produce the auto correlation function Cfrr as the 

convolution of a positive-time function Cf;; and of a negative-time function 
p;:;, so 

= 

Prr (tl - t~) = ,I' rp;;. (t3) (P;;' (tl - t~ - t3) dt3· (29) 

It is to be noted, that Cf;; and Cf;:; functions may be called the time-domain 
spectrum factors. The cross-correlation function Cfri may also he expressed 
similarly: 

(30 ) 

The auxiliary function V) figuring here has generally values differing from zero 
hoth for positive and for negative times. Introdueing these relationships and 
changing the sequence of the integrations we have: 

"'" = J (P;;' (t3) [ J U'J1l (t~) (P;~ (t[ - ta - t:2) dt~lP (t] - t;l)] dtJ 0 (31) 

o <t1 • 

But this latter relationship for a negative ta time can only he fulfilled, if the 
expression appcaring in square hrackets is zero: 

= 

J n'm (':2) g.';;' (t] - t;J - t:J dt~ - V.I(tl - t3 ) = 0 (32) 

0: 
l.e. 'when 

Introducing the suhstitutions 

t ~ = 0 

we obtain: 

= 

\' lt'lI! (0) q:;; (r - 0) dO -ljJ(r) = 0 

o r. 
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This integral equation is in a form similar to the original \VIENER - HOPF 

integral equation, but now it is only in consequence of the v;(-r) function, that 
the left side is not zero for negative c time, because the convolution integral 
is zero for a negative time, as both Wm and (prr are positive-time functions, con­
sidering, that u'm is a physically realizable weighting function. 

Let us separate the auxiliary function lp( r) into V'- (r) negative-time 
and ~'_( r) positive-time function components: 

V" ( r) If' - (r) 

where lp (c) 0, when 0 r · , 

Ij'-;.-(r) = 0, when r < O. 

As the left side of the above equation differs from zero in the case of a negative 
shifting time r only because of the lp _ (r) component, if '\'e drop this latter, 
so the integral equation already gives for the whole r domain zero result: 

1J!+ (r) = 0 (34) 

00 < r < 00. 

This already is a common integral equation of the first kind, which is easier 
to solve. 

VII. Second variant: Transition to the frequency domain 

The second variant soh-es the integral equation of the first kind by the 
F ourier transformation. 

Relationships (29), (30) and (3,1) of the preceding point, Fourier-trans­
formed (with the notation s = j(;)), give: 

c]Jrr (s) = c]J;:;. (s) c]J;~ \s), 

c]Jri (s) c]J;:;. (s) P(s) , 

Tf~n (s) c]J;:;. (s) 

(3.') ) 

(36 ) 

(37) 

namely, the conyolution integrals go oyer into the product of the transformed 
functions. It is a known feature of the Fourier transformation, that all poles 
of the positive-time (negatiye-time) function transforms are positioned on 
the left (right) half of the plane of complex quantities. In addition in the fre­
quency domain the spectrum factorization given by relationship (35) must be 
performed in such a way, that all zero points of the spectrum factors c]J~~, 
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resp. rp;; should also be on the left (resp. right) half of the plane of complex 
quantities. The two spectrum factors are conjugates of each other. From 
relationship (37) 

lJf+ (s) 
~,(S)=-~':"" 

rp;;. (s) 

On the other hand according to relationship (36) 

(38) 

(39) 

Determining the 1jJ( r) function by the im-erse Fourier transformation, then 
separating the positive time function component 1jJ.,.( r) and performing the 
transformation, we obtain 

(40) 

as the last two steps can be performed simultaneously with the common 
Laplace transformation. From relationship (39) 

(41) 

hy the suhstitution of which into expression (38), finally the requested, phys­
ically realizable optimum transfer function is: 

W;" (s) = I [rp ri (S)] . 
.. rp;;.(s) W;;.(s).L 

(42) 

VIII. Third variant: Variational calculus in the frequency domain 

In the further yariants the mean-square yalue of the error is expressed 
hy power-density spectra according to (10): 

j= 

e~(t)=~ j'rpcc(s)ds 
_oIl ' 

-j= 

where, taking (21) into consideration 

( 43) 

( 44) 
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Appl)ing the index changing rule: 

Wee (s) = Wu (s) - w( - s) Wri (s) - Wir (s) W(s) -+­
+ W( - s) Wrr (s) W(s). 

123 

(45) 

J\ (. ,I ,I e perfOIm the Y3riational calculm in the frequency domain [21, 22 

Let it once more be 

W(s)=W,n(s) sW.(s). 

The derivatiye of the mean-square error is zero: 

ds 
=0. 

From this condition 

j= 

_1_. J' W~ (- s) [Wrr (s) w'n (s) - Wrds)] ds --'-
2;rJ 

-j= 

2~j r [W;" (- s) Wrr (s) - Wir (s)] w~ (s) ds = o. 
-j= 

(46) 

(47) 

(48) 

By the way, let us ODSerye that the integrand in the second line is the con­
jugate complex expression of that in the first line. Performing the spectrum 
factorization given by expression (35) and taking also relationship (36) into 
consideration, we haye: 

j= 
1 J W~(- s)<P;:;:(s) [W;;.(s)w,,,(s) - P(s»)ds-

.) . 
~;rJ 

-j~ 
( 49) 

It may he seen, that 

j= 
1 ._ 
-. . j We ( - s) W;:;: (s) P _ (s) ds = 0 
hJ 

(50) 

-j= 
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and (SI) 

as in the individual integrals only transforms belonging to negative-time (resp. 
positive-time) functions appear, i.e. only right-side (resp. left-side) poles are 
occurring. Closing the integration path along the imaginary axis hy a left-hand 
(right-hand) semicircle of a radius approaching infinity, zero will result accord­
ing to the residuum theorem, hecause ,,"ithin the closed loop there is no pole. 
There is that only to he proved, that the value of the integrals along the semi­
circles of a radius approaching infinity is zero, hut this is satisfied, as can be 
sho"wn, that the denominators of the terms to be integrated are at least hy 
two degrees higher, than their numerators. Indeed the denominators of WE and 
P _ are at least one degree higher, than their numerators, while the numerators 
of CP-;;' and cP"j;. are at most of the same degree as their denominators. Deducing 
the last t"WO terms (SO) and (SI) from ('19), we hayc: 

j= 
I' - J W~ (- s) rj);, (s) [rp~~ (s) W;" (s) - P + (s)] ds 

27Cj 
-j= 

j= 

-j= 

(52) 

This relationship is fulfilled then and only then, when the terms in the square 
hrackets are zero. As tl10 latter are the conjugates of each other, it is enough 
to consider thc first one, from which is again 

w;" (s) 
P+ (s) 
---" 
rp;~ (s) 

(53 ) 

resp. 

(54) 

IX. Fourth variant: The simplified method 

The first steps of the simplified method [24-26] are the same, as in the 
third variant. However, now we perform no variational ealculus, hut we con­
vert expression (45). The key to the converSIOn IS given by the introduction 
of an auxiliary transfer function 

(55 ) 
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As the pO'wer-density spectra are known, so G(8) may also regarded as known. 
If we now substitute the expression 

([)Ti (8) = ([)TT (8) G(8) (56) 

and its conjugate into (45), we obtain the form: 

([)ee (8) = ([)ii (8) - G( - 8) ([)rr (8) G(s) + 
+ [G( - 8) - W ( - 8)] ([) TT (8)[ G( 8) - W (s)] . (57) 

It is to be remarked, that only the last term contains the minimizing transfer 
function W(8). The mean-square error would evidently be minimum, if the 
last term was missing altogether from the expression of the power-density 
spectrum. This would occur, if it were 

(58) 

So we obtained an optimum transfer function W·o (8), but the latter is, in gener­
al, physically unrealizable. The physically realizable optimum transfer func­
tion W m (8) may be obtained by spectrum factorization. 

X. Spectrum factorization in the frequency domain 

Relationship (56) 'with consideration of (58) can be 'written thus: 

([)TT (s) JT~ (8) = ([)ri (8). (59 ) 

:0l"ow if 'we put in place of Wo (8) the transfer function 

W;n (8) = Wa (8) -lv;, (8), 

where Wn (8) is a certain physically unrealizable transfer function, so a new 
term appears on the right side, but this may contain only right-half-plane 
poles 

([) TT (8) W;n (8) = ([) ri (8) + F _ (8) (60) 

where 

(61) 
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Introducing by relationship (35) the power-spectrum factors, relationship (60) 
may be converted into: 

<P;:;. (S) w,,, (S) = <Pri (S) + 
<P;:;' (S) 

(62) 

By separating the components belonging to the positive-time and the negative­
time functions, 'we have: 

<P;:;' (s) rr~" (s) = [ <P~ (s) J + [ <P~ (sL J 
<Prr (s) -+- <Prr (s) _ 

(63) 

On the left side only left-half-plane poles appear, therefore on the right side 
the terms containing the right-half-plane poles mmt neutralize each other: 

(64) 

from the latter, if necessary, the function F -Cs): which was unknown up till 
now, may be determined. On the other hand, from the terms belonging to the 
positive-time function, we again have: 

W~, (s) = 1 [<Prd
S

) 1 
<P;:;.(s) <P;:;.(s) ..,. 

(65) 

So the simplified method determined first by elementary considerations the 
physically unrealizable Wo (s) transfer function-formula (58)-, then from 
this the physically realizable W'/Il (s) optimum transfer function hy spectrum 
factorization. From the expression of Wo (s) often the expression of W'll! (s) can 
he directly 'written up. 

XI. ~:Iore complex single variable configlll'ations 

The simplified method is the simplest of those introduced ahove. Instead 
of the variational calculus only a G(s) auxiliary transfer function had to be 
adopted in order to arrive at form (57). The advantages ofthe simplified meth­
od are especially evident, when going over from a totally free configuration 
to a more complex one. But in such cases besides the auxiliary transfer func­
tion also the introduction of auxiliary power spectra is necessary [24-26]. 
For instance, in the case of the semi-free configuration (Fig. 2) the part with 
weighting function IVj (t) of the control system is given (fixed) in advance and 
the task is to optimally choose the control, or compensation organ of weighting 
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function Wc (t). With the omission of detailed calculations we only refer to the 
fact, that in these cases by the introduction of the auxiliary power density 
spectra 

nitJ 

+ 

s{l) 

CPJi (s) Wj( - s) CP,i (s), 

CPjj(s) = Jfj (- s) CP" (s) W{(s) 

rfl) 

I + f 
1 sit) ,---, ·1 
'------{ y(t) 1-1 _-..:.I.:.;;t)-..:.---l 

L __ -l 

Fig. 2 

e{l) 

rlt! G ill! G clI! ---"",' -1-',--1 wrllJ 1--1"", .,., '--.:.:....,1---1. Welt) J--T""t"--
i i I ' I 

~ I , 

\f:!} ~ ~ 9 
, 

ilt! I 

Fig. 3 

(66) 

(67) 

(which can be interpreted according to Fig. 3) the task may be reduced to the 
preceding one and so the solution can be directly written, as 

or taking into consideration (66) and (67) as 

W~m (s) = 
[ 

Wj( - s) CP/I (s) ] 
[Jfj ( s) W{(S)]- CP;-,. (s) + 
[Wj( - s) Wj(s)]+ CP" (s) 

(68) 

(69) 

for the physically realizable optimum transfer function of the controller. 
The constraint in the case of a semi-free configuration (Fig. 4) may be 

expressed in the· form of 
j= 

b~ (t) = crob (0) = 1 S CPUb (s) ds 
2::rj 

-j= 

(70) 
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where 
WOb (S) = W;, (- S) Tv.: (- S) Wrr (S) Tv.: (S) W;, (S). (71) 

The task may now he solved hy the Lagrangean conditional extreme value 
calculus. The function to he minimized is now 

x~ (t, i.) = e~ (t) l.b2 (t) , (72) 

n{t) 

or 

j= 

x2 (t, ?) = ~ J' [Wee (s) + i, Wbb (s)] ds. 
27Cj . 

(73) 

-J= 

Now the introduction of the auxiliary power density spectrum 

and of the auxiliary transfer function 

(75) 

is necessary. This then yields the physically realizahle optimum transfer func­
tion of the controller in the form of 

W (s) = 1 [ Wji(s) 1 
cm W;~ (s, i.) W;;a( s, i.) + 

(76) 

or in more detail 

Wem (s, i.) = r 
Wj( - s) Wri (s) ] 

[Wj(-s)Wj(s) i,Wd-s)Wds)j-W,:;:(s) + 

Wj(- s) Wj(s) + i.Wd- s) Wds)]+ Wr~(s) 
(77) 
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It is to be emphasized, that in this case the Lagrangean indeterminate factor 
I. figures in the term of the physically realizable optimum transfer function. 
The factor I. may be eliminated with the aid of the constraining unequality, 
i.e. relationship (70). In expression (71) of Wbb (s) the transfer function Wc (s) 
may be substituted by the physically realizable optimum transfer function 
W'cm (s, I.), and 'we determine the mean-square value b2(t) of the constrained 
output signal bet) on the basis of the Cauchy theorem of residues, then we choose 
factor I. in such a way, that the constraining unequality (70) should be satis­
fied. In this 'way the physically realizable optimum transfer function Wcm (s) 
becomes independent of factor I .. 

XII. Multivariahle systems 

The task of the optimum statistical design may also be extended over 
multivariable control systems [29-33]. In such cases generally the minimi­
zation of the sum of the error signals' mean-square values is required: 

L __ 

>' ef(t) = minimum. 
-=' 
[=1 

(78) 

For the treatment of the multivariable systems the matrix calculus offers 
itself. From the signals we generally form row vectors, from the transfer (or 
weighting) functions square matrices. The signal vectors and the matrices are 
distinguished from each other hy upper indices, the lower indices serye for 
the notation of the rows, resp. of the columns. 

The physically realizable optimum function matrix [34, 35] of the to­
tally free multivariable configuration (Fig. 5) may be expressed in the form of 

W~)(s) = [WT;;..r" (8)]-1 {[Wr;;.r" (S)]-l Wr",;, (s)) + 

(k = k', k" 1, ... K: l = 1, .. . L; K = L). 

(79) 

Here Wrk ;,(s) is the power-density spectrum matrix belonging to the crasi'­
correlation functions of the input signals and the ideal output signals, while 
the spectrum factor matrices must be chosen in such a way, that on the one 

hand 

(80) 

should be satisfied, where Wr'JJ;(s) is the power-density spectrum matrix 
belonging to the correlation functions formed from the input signals, on the 
other hand the elements of matrix W~r;,.,(s) and its inverse may contain only 

9 Periodica Polytechnica El. ~I, l-::!. 
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right-half-plane poles, the elements of matrix W;;' .. Tk(S) and its inverse may 
contain only left-half-plane poles. 

In the semi-free multivariahle configuration (Fig. 6) the optimum trans­
fer function matrix of the controller [36, 37] is: 

Wf.71 (s) = [Wr;, .. Tk (S)]-l {[Wr;.,rk .• (S)]-l Wrk"( (s) W{,j' (- s) X 

X [(Wf/ (s) W{'i' (- S))-]-l} + [(Wf/ (s) WL, (- s))+ ]-1 (81) 

(k,k',k" = 1, .. . K; j = 1, .. . J; 1= 1, .. . L; K = J = L). 

I S.cfl} r--' . IL ' --'" I./!IJ 
L:::: = ==-,....., y*,ft) !====:'J 

L __ .J 

Fig. 6 

It is to he noted, that when the matrix Wil(S) of the fixed part (e.g. the con­
trolled section) is of minimum phase, i.e. 

(Wf/ (s) W{'i' (- s))- = W{'i' (- s) 

(Wfl(S) W{'i' (- s))+ = Wfl(S) 

then (81) may he simplified: 

In such cases 

( 8:2) 

(83 ) 
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For constrained semi-free configuration multivariable systems (Fig. 7) it IS 

usual to give the constraint in the form of 

H __ 

~ bl; (t) < (j2 (84) 
h=l 

The constrained signal vector b.h(t) (h = 1, ... H) is produced by the ,.,reighting 
function matrix W;h (t) from the intermediate modified signal vector m.j(t) 

I s., (t) r--'" i. 1 (1) 

lJ::=====:>t Y'IIt) I======:J L __ ..J 

Fig. 7 

(j = ], ... J). For instance if W;'l (t) is the diagonal unit impulse function 
matrix, then the m.j(t) signals are directly constrained, if WPl (t) = wfz (t), 
then the C.I (t) output signals are constrained. 

It ought to be mentioned, that the constraint may be expressed in the 
form of 

(85) 

where tr means the trace of the matrix, I.e. the sum of the main diagonal 
elements, further 

For the determination of the optimum controller transfer matrix it IS most 
practical to again use the simplified derivation method. The required optimum 
transfer matrix [38]: 

9* 

W·cm (') [m~ ( ')]-1 kj S,). = 'Pak.ak S, /, X 

X {[ CPa;A, (S, },)]-1 CPrk,il (S) W{,d - S) [(W5z (S) W~'j' (- S»-]-l} + X 

X [(JP-51 (s) Wk (- S»+ ]-1 (87) 
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contains for the time being also the parameter I .. The auxiliary power density 
spectrum figuring here can be determined on the basis of the following re­
lationship: 

W{j' (- s) Wj'k' (- s) eflrk ,,, (s) WZj (s) W31 (s) + 
+;. W~.j. (- s) Wh, (- s) eflr".r;, (s) WZj (s) W), (s) = 

- Wf . (_ ) T1'7C (_ ) rr-. (.) IT)'C . ( ) W'J ( ) - 1'1' S W j'le S 'l-'a".ak S, I. W kj S jl S . (88) 

The auxiliary matrix efla;. aj(S) does not depend on the transfer matrix W~j(s), 
but only on the transfer matrices WJI(S). Wjkh(S), the power-density spec­
trum matrix (jjr",rj,(s) and the parameter I., if 

(89) 

where Go (s) is a certain transfer function, while I jj a unit matrix of j xj 
dimension. 

Parameter ). may be eliminated, if we substitute relationship (87) and 
its conjugate into expression (86), then we determine with the aid of the 
constraining unequality (85) the permissihle yalue of I,. Suhstituting this 
latter yalue back into formula (87) the transfer function of the optimum con­
troller W~T(s) hecomes independent of factor i,. 

The minimum sum of the mean-square values of the error signals may be 
computed with the following formula: 

,,'here 

L 

2 ef(t) 
1=1 

(jjeA (s) = (jji,i, (s) - (jji,.r k (s) WTi' (s) W11 (s) -

- W{.j. (- s) wy;;, (- s) eflr;.i; (s) 

W{-j. (- s) wYZ. (- s) (jjr,r;, (s) WjI (s) W51 (s). 

(90) 

(91) 

Finally we note, that the most general case is the multivariable, semi-free 
configuration with constraint. So e.g. by the substitution of i. = 0 the results 
of the unconstrained semi-free configuration may be regained. On the other 
hand, going over from the multivariable system to the single yariable system 
we regain the results of point XI. 

XIII. Complementary remarks 

Recently the pulsed-data (sampling and digital) control systems are 
gaining eyer more significance. The investigations of the continuous control 
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systems may easily be extended and similar results, up to a certain measure, 
may be determined for the pulsed-data type single and multivariable systems 
as well, as those described under points XI and XII [39, 40]. 

XIV. Some conclnsions 

Finally we refer in short to some further tasks concerning the statistical 
analysis and design of the control systems. 

In connection with linear systems it IS worthwhile to deal with the 
L 

solution of tasks deviating from the criterion e2(t) = min., resp. Eel(t) = min., 
1=1 

though this will complicate the design. In multivariable systems the spectrum 
factorization of the matrix plays a decisive role. We have to investigate here 
also the case, where the rank is smaller, than the order of the matrix. 

It is similarly interesting that the spectrum factorization of matrices 
built up of elements containing e-STd transcendent factors. All these investi­
gations may be extended to pulsed-data control systems as well. With the ex­
ception of the linear systems the consideration of the variable parameter and 
non-linear systems, further the non-stationary processes is still in the stage 
of its starting steps; the difficulties of the investigations keep increasing, the 
more so, as the transformation methods lose their validity. 

Finally, on the basis of the theoretical results the applying of correlators 
for the system analysis and synthesis seems to be of great importance. Here, 
for instance, practical difficulties arise by the 'white noise not being perfect 
even in a finite frequency domain, and the integration time T cannot he in­
creased in an arhitrary measure. 

Summary 

This paper wishes to give an insight into the range of problems of the statistical syn­
thesis of single- and multivariable control systems. It compares the four variants. which may 
be used for the design and shows the advantages of the so-called simplified method. It aj,;o 
gives a few results on the range of the single- and Illulth'ariable continuous control systems. 
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