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1. Introduction

The literature of logical design has tremendously increased since the
foundaticnal publication of SHaNNON [1], and as a result of this nowadays
there are many effective algebraic methods available for the logical designer.
Especially well elaborated is the theory of static logical networks and syn-
chronous automata (discrete-time networks); their usefulness were proved by
design practice.

Apparently, it is quite another case for dynamic logical networks:
hardly any articles published results referring to this and, according to our
knowledge, a precise algebraic foundation has not been found yet. The basic
circuits of dynamic logical networks are mostly very simple while their more
general form affords wider design facilities. The reason of this greater genera-
lity is that beside the logic levels their changes (the so-called edges) and
their quick alternations (the so-called pulses) can also he used for establishing
logical relationships. In compliance with this fact, the “‘level-pulse variable”
expression is used in the Russian literature. The greater generality and the
simple means of realization promise a good prospect for the dynamic networks
only the appropriate general designing methods should be found which aid
the designer in the field of dynamic logic too. This paper tries to establish
the algebraic foundation of these designing methods.

In order to avoid lengthiness, the proofs are in the most part only
briefly summarized and in simpler cases completely omitted.

II. Definition of logical values

Our first most important step is the disavowal of the two valued Boolean
algebra based exclusively on signal levels, and the introduction of new logical
values. The aim is to find such a logical structure which defines operations,
as best for the requirements of logical design, for the expanded set of
logieal values and for the functions defined on this set as well.



206 ~ J. SAROSSY

First of all, we define the set of symbols for the logical values and the
corresponding distinctive physical states. In the usual way the symbols 0
and I will belong to the two logic levels while the level changes, considered
as those of a finite interval, will be represented by the symbols 2 and 3. Thus
our set of symbol-types is N = {0, 1, 2, 3}. The connections with physical
states are as follows: a logical value always symbolizes one of the possible
four states of a physical quantity. If the variation domain of a physical quan-
tity, varying continuosly according to our assumption, are divided to three
subdomains of which none has zero measure, and only one (open) domain
adjoins the two others (closed domains) at the same time, then the two outside
domains can be represented by the 0 and I symbols. Let us assume that the
variation of the physical quantity in the centre domain is always strictly
monotonous. In this ease 2 is the symbol for the state of the physical quantity
when, in the centre domain, it changes from the domain already marked 0
to domain I. Symbol 3 represents the state when the physical quantity, also
in the centre range, changes into the opposite direction. Further on, we assume
that the physical quantity symbolized logically belongs to but one of the above
four states, comsequently the corresponding logical value can always be
construed in the course of examination.

Three valued logics were already used e.g. in [2] and [3] for the synthesis
of logical networks built up of elements having three states and for eliminating
hazards respectively. As for the successful application of logics with more
than three values, there is to be found no reference in the literature.

III. Operations in N, the .77, Boolean algebra

After determining the elements of the set .V, disregard the concrete
physical quantity and make set )V and the algebraic structure formed from
it the basis of our examination.

Introduce the operations of two variables the disjunciion (V) and con-
junction (/) and the operation of one variable the inversion (—) by means
of the following truth tables:

V1012

o

3 A0123 o
00123 00000 0
11111 10123 1 (3.1)
22121 200220 2 .
33113 310303 3

(It would be incorrect to call the inversion negation because with more than
two logical values, the negated value of an arbitrary logical value a, inasmuch
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as the negation means “non a’’, is not a determined logical value, and in this
way the negation is not an operation).

Introducing the above operations the set IV apparently became a struc-
ture which will be designated as -7 .

For the sake of a more convenient way of writing let us introduce the
following conventions: the metalogical operational and quantification symbols
of the statements to be found in the theorems are (to make a distinction from
the sign of similar operations which are just going to be discussed) the “‘or”,
“and”, — (it is not true, that), = (if ... then), < (if, and only if), v (for
all . ..), g (there exists such ... that).

We use letters which represent an arbitrary element of the considered
set orsub set. The expressions, formed by means of such letters and the
introduced operational signs in a predetermined manner, are called formulae.
Thus for instance if 4 (x) is a formula containing letter x, and 3! is the sign
of the singular quantifier, then the definition determining the singular quan-
tifier is:

lxA(x) = 3xA(x) and vxVy(4A(x) and A(y) = x=y).

Returning to the examination of -/}, it is apparent that the disjunction
defines an ordering relation as well:

vavb(aV b=b o a<b), (3.2)

i.e. the a\/ b = b relation is reflexive, nonsymmetrical and transitive. On the
basis of (3.2)
0<L2<1 and 031 (3.3)
Since
va(0 <a and a <1I)
we may regard ( as a minimum and I as a maximum element.
It is apparent that the minimum and maximum element fulfils the

va(e A 0 =0) (3.4)
va(ay I =1) (3.5)

statements.

We introduce the notation for structures applied by [4]: if &is a strue-
ture, than & = < S;R;M:;K>, where S is the set of the elemenis of the
structure, R is the defined relations, M is the defined operations and K is
the aggregate of the special elements. For example, the Boolean algebra of
the 0, I logical values is an ordinary Boolean algebra:

:@z <{Ov 1}:£; Va /\9_‘; 05 1>~
With this notation /] = < {0, 1, 2, 3}; <; V, A, —; 0,1>.

4 Periodica Polytechnica El. XI/3
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It can be shown with simple means that -#7) is a lattice with respect
to the operations VV and A . The six axioms of lattice theory [5] require that

Vavb(ay/ b=0bV a) (3.6a)
vavbve((aV b))\ c=aV (bV c) (3.6b)
vavb(aV (a A b)=a) (3.6¢)
vavb(a ANb=0b A a) (3.6d)
vavbve((a Nb) Ae=a A (b A¢) (3.6e)
Ya Wb (a AfaV b)= a). (3.6f)

On the basis of the definition (3.1), the fulfilment of (3.6 a—f) can be simply
verified.
If we regard the structures in which lattice operations are defined as a
logical structure (shortly: logic), it follows that -/} is a logical structure.
In addition to the characteristics (3.6 a—f) it can also be easily verified
that

Vavbve(ap (DY ¢)=(a)b)V (a Ac)). (3.7)

According to a well known lattice-theoretical theorem [5] in case of the ful-
filment of (3.7) the

Vavbve(a\/ (b N\c)=(aV b) A (aV c)) (3.8)

statement is true as well, i.e. the distributivity exists in the opposite order
i0o, that is the latiice is distributive.
The complement of element a is element u for which the following con-
ditions are valid
afu=0 and e‘/ ul. (3.9)

vadu(a Nu=0 and e/ u==1) (3.10a)
holds then the lattice is called complemented; if furthermore
Yadlu{a pu=0 and aV u=1) (3.10h)

then the lattice is called uniquely complemented. -#"} is uniquely complemented
because for distributive lattices the theorem is valid [5] that if they have
maximum and minimum elements, then not more than one u belongs to any
a which fulfils (3.9). however u = — a fulfils (3.9).

The complemented distributive lattices are referred to as generalized
Boolean algebra or simply Boolean algebra in the lattice theoretical literature.
Thus 77, is a Boolean algebra.
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We should make a remark here that instead of the «/7, four valued
logical structure the $=<{0, 1,2, 3}; <; U, N, —; ~,0, 3>, so called Post-
logic could have been introduced, where the definitions of operations are:

a b max (a, b) (3.11a)
a N b= min (a, b) (3.11b)
ca= a1 (modd) (3.11¢)
— a3 . (3.11d)

It can be briefly proved that though (3.11 a—b) define lattice operations,

the complement cannot be construed and this way %7 isnot a Boolean algebra.

Therefore, it is more practical to work with -#7} (or with /" which is to be

introduced later on), because far more well applicable theorems are known

for Boolean algebras and in this way their theory is far more elaborated too.
It is valid for Boolean algebras and so for ./} too [5] that

Yavb (j {(aV b)=—a A —,b) (3.123)
and
Ya Vb (——(a Ab)=—aV —b) (3.12D)

respectively. These two theorems are the generalization of DeMorgan’s theo-
rems.

IV, The .#, Boolean algebra of functions which can be comstrued on /7|

Consider 4 and B as two arbitrary sets. In this case the direct product
A > B is the set of the element pairs (e, b), a € 4, b€ B. If & is an algebraic
structure on set S, then the

f: Sxk_» § (4_1)

type homomorphisms are called k-valued functions on & (see [4]). (S** means
the k-fold direct product of set S with itself, i.e. its k-th “direct power™.)
At the same time (4.1) also expresses that

fi(pxe oo ox)— 1. (4.2)

j.e. with an arbitrary choice of xy-s the homomorphic image of the element
(%, 5. .., ) € S is an appropriate f€ S element. (In the forthcomings
it will not be disturbing if both the function and its value will be denoted

4*
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by the same letter.) Therefore, the homomorphism of (4.1) can be written
in the form f(x;, x,,...2x) where the x;-s are arbitrary, undetermined
elements in S.

The identity of the two functions is defined:

Flag ooxy) = glag, - Lox) o V. V(= g).

Let as now deal with not more than k-valued functions in the form
f:N"k-—,»N, and within this with their set Fy determined hereafter:

0,1,2,3€FF,
N AR
F&p, o x) €FF and R{xy, .. ,x) = — f(xg, . .oxy) =
= h(x,, ..., %) € F%,
flxy, .. x) €FF and g(xy, .. .,x) €FF and h(xy, ..., x,) =
=f (% s xp) V glxp %) = h(xy, ..., x) € FE,
fay, - %) €EFY and g(xy, ...,x) €F¥ and h(x, ....x;) =
=f(xy .. x) Aglegy o ox) = h(xg, .o, x).

With the above definition Fl{ was directly construed as a Boolean algebra,
i.e. a logical structure:

Fi=<F{; <5V, A,—3;0,1>.

Since the .7} structure was generated with the operations of -/, .7; may be
regarded as the structure of functions construed on the -/ Boolean algebra.
It is obvious that all theorems, shown so far for -/, are also valid for FE
In the forthcomings we shall deal with the problem that on what con-
ditions can be all functions in F} expressed by means of favoured functions.
That r lattice element is called irreducible for the disjunction, for which

—3daedb(r=aV b and a==r and b=£r). (4.3)
If for an element a

(4.4)

[

]
il
<€

and ry, ry, . .., 7; are irreducible elements, the (4.4) is the irreducible disjunctive
expansion of a.
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Let us now define the atoms of the lattice. The element ¢ is the atom of
the lattice if
vx((gAx=00rq A\ x=gq) and ¢==0). (4.5)

It is apparent that q is at the same time an irreducible element for the dis-
junction, otherwise

Fa3b(g=a Vb and as=q and b=s=q and as=0
because from (4.3)

~(r=nVb and as=r and bs=r and a=0);

thus

Fa(g Na=a and a==q and as50)

as a consequence of (3.6 f). Comparing with (4.5) it may be seen, that ¢
cannot be an atom.

Similar considerations can be taken as regards the irreducible elements
for conjunction and dual atoms resp. (in each relationship only the VvV — A,
A—\ , 0 — I replacements should be made); because of the complete analogy,
following from the duality theorem of lattice theory, this case is not dealt
with separately.

A lattice is called atomic if Q is the set of its atoms and

Vxdqg(xs=0 = x A q and g€Q). (4.6)

It can be stated as a special case of a general theorem that all the lattices,
having a finite number of elements, are atomic [5].

In distributive lattices the theorem is valid [5]: each element of the
lattice, differing from the minimum element, disregarding the sequence of
the components, has at the maximum one not abbreviatable irreducible dis-
junctive expansion. Such expansion of an irreducible element is the element
itself in compliance with the definition.

In Boolean algebras, all the elements, irreducible for disjunction, are
at the same time atoms too. This theorem can be proved e. g. on the basis of
a well known theorem that states the unique expandability of each lattice—
element with the aid of complete conjunctive terms, that is with the aid
of atoms. v

Applying the above considerations for ,71‘ it can be seen that f{‘ is
atomic (the number of the not more than k valued functions is obviously
finite), and all of its elements (apart from the 0 valued constant function)
can be expanded uniquely by the disjunctive expression of atoms. This ex-
pansion is called the canonical form in F
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n
—
&)

Omitting the simple proof, we mention that the atoms of #7 can he
expressed in the form 2 A Qx> 3 A Qx from where

k
Q;‘ = A (m]‘ AN X Vo= mj A = xj). (47)

j=1

k . . .
Here m; = 0, 1 and i = > m; 2-1, 0 <1< 2F —

AE=S)

From the foregoings it is evident that the basic charactcrhtics of 74
greatly correspond with the characteristics of the Boolean algebra &* of not
more than k-valued functions construed on the % ordinary Boolean algebra.
The question arises, whether 71 can be decomposed, in some way, into two
twovalued * Boolean algebras?

In general, a lattice .% can be decomposed into the direct romposition
of lattices &, and ., (in designation ¥ = .7, ® .&,), if an ¢, €.7, a, £ . &
elementpair can Le assigned uniquely to an element a¢€ .f (in designation
a < (a;, a,)) so that

aUb<—(a; Usb,a, Uyby) (4-8a)

aNb<—(a; Ny a, Nyby) (4-8b)

= @< (=1 8. =, @) (4.8¢)

where U, N. o in.Z, Uy, Ny —; in.Z5, and U, Ny —» in.F, are defmed as
lattice operations and complement formatlom [5]: & E &, b €L, b, E %

On the basis of the foregoing, .71 is directly decomposable in the & e QV:
form. The decomposition can be given e.g. in the following manner: g -
«— (a;. a,), where in a “*truth”™ table:

a a, a,
00 0
111 (4.9)
20 1
310

replacing U, N, — with the operations defined in f’{ and the operations of
the ordinary Boolean algebra putting instead of Uy, Uy Ny Nos =112 — o0
the above decomposition can bhe verified.

The four-valued Boolean algebra, discussed in the foregoing, is a means
applicable for the description of static logic networks because the OR-gates,
AND-gates and inverters playving a role in such networks, realize in effect
the operations defined in (3.1). Though, by means of the four-valued Boolean
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algebra beside the levels the edges can be considered as well, the procedures
in the above structure do not dlffer in effect from those used in the ordinary
Boolean algebra, moreover, Tk 1 decomposes into two ordinary Boolean
algebras.

We mention it here, that apart from the redesignation of the four logical
values (3.1), the definition of operations is unique if we want that /7 and .7}

resp. should be Boolean algebra.

V. The -7/~ and .7 complete Boolean algebras

There is one essential difference between the Boolean algebras £* and
FX: while djk comprises all @ : B** _~ B functions, 5"§ does not include
all mappings of the form f: =k N, but it is the Boolean sub-algebra of
these transformations (functions).

To verify this statement. a function of a single variable is shown, which,
despite of being an [N — NN mapping is not the element of Fr. f:0—-0.1—-0,
2 —~1, 3 — 0. Designate this function L x (read delta-dash); in the forth-
coming it will play an important role.

Construe the A4 -function as an operation defined in N:

} (i

oo O
O H O O
—

U
et
~—,

2

Hereupon, we shall form a new struciure: -/ = {N; =1 ', AL — : 0,1
We can construe the 7 functlon-\tructure on this structure, 0111\‘ in part
IV in the definition of Fl. 7% should be written instead of F{ and it
should be completed with the definition line

flxp o x)) €FF and hix,. ... x) =4 f(x. .. ..x) =
= h{x,.....x;) € Fk.

Now let us define the following basic functions:

def X o - \
pi(x)=x AN —0x (5-3b)
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Hm

pa (¥

) A (5.3¢)
Pa(x) =

{I s
[[>

(5.3d)

(On the left side of (5.2) read: square.) By means of these functions, the atoms
ok - . .
of " can be written like this:

k k
q‘{x /\ A L ( /77) v 0 g]‘ < 4k° j = :‘ im 4”1"‘1 ® (5'48‘)
m=1 m==1
k K
g=3A A pi,(xn), #<j<24b jo—4ki X aml (3.4b)
=

where in both cases 0 <{ i, < 3. If we use the exponent designation, usual
in ordinary Boolean algebras, and definition like

xt = p;(x). (5.5)
then
) k K
G=2/N Ay, 0<j<4k j= i, 4", (5-6a)
m=1 m=1
k
qh =3 /\ A a’m » 4k g] < 2‘4‘1{5 ]: 4k+ 2 lm 4m- l (5'6}))

i

M=

Now the statement can be made that 7" is the Boolean algebra of all
f: N** - N type, four-valued functions of not more than k-variables. Only
that should be shown that (5.6 a—b) really produce the atoms of all four
valued functions, since hereafter all the other functions can be given as
irreducible disjunctive forms.

First of all, the proof of anlemma is outlined. Let &= {(L; <; U. N.
— 3 0, n—1> be an atomic lattice of n elements where L = {0,1,..., n—1},
U and () are lattice operations, while — means the forming of a complement.
Let f be the mapping of the elements of set L™, into the elements of set L.
Let 57" be the lattice of functions definable in lattice .%, of not more than k
variabhles. Herewith, f is an atom in Z* if and only if

fi: L —{0, q} and (f%: q— L = card (L}*) = 1) (5.7a)

Here ¢ means any atom of L, f~! is the inverse transformation of f, card (L;")
is the cardinality of subset L ‘. This condition can be written in another
form:

Va. . Vx (f(x, - ,x) =0 or flxnoox)=4q)
and Alx;... 3% (f(xp ..., %) =4q)

where ¢, just like above is an arbitrary atom of L.

(5.7b)
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If @ is an arbitrary element of 7", on the basis of definition {(4.5) only
that should be verified that

Vp(e ) (F (e %) A @i %) = 0 or

) 5.8

Sl oox) Aplxy, o ooox) =f) and f(x, ..., %) 0). (5-8)
First of all the formula (5.7 b) containing singular quantifiers, directly ensures
that f(x;. ..., %) 5= 0. On the other hand, it is evident, that

v, .V (B ) E L = (v, e x) AR (R - a) = 0)
and
(oo 8 €155 = (f (g o) A s o) =0 or

Flegoomg) Aolan ox) =fa, .o xy)

since, in case of the fulfilment of the implicant foremember, the value of f
can only be an atom of L, in compliance with (5.7 a). Comparing these results
we obtain (5.8). It can also be proved that if a g(x,...x) does not fulfil
(5.7 a), it can always be produced as the disjunction of at least two functions,
complying (5.7 a), provided that g(x, ... xx) == 0.

Now, it is easy to comprehend the functions gf. defined by (5.6 a) and
(5.6 b), are really the atoms of the lattice of functions type f: Xk N,
since on the basis of (5.3 a—d) and (5.4 a—b)

k .
vm (i, = x,) < ‘Al ":I;'iﬁ’-!: 0
=
with such values of 7., (5.6 a) and (5.6 b) give 2 and 3, resp. i.e. the atoms
of NV,

To prove that the atoms according to (5.6 a) and {5.6 b) give the totality
of functions f: N . N, we leave for the reader.

Having these finally obtained results, it follews directly the corollary:
7*is the Boolean algebra of all possible, not more than k-valued functions,
as was stated before.

There remains the objective, to give the canonical expansion of an
arbitrary f¢ F* function. Let N** (i) ¢ N** 0 < i < 3 be in such a way that

Fo(xyovx)—>1 = (x,...,%) €N (3).

With this notation for arbitrary f(x,, xy, ... %)

e nm)= ¥V gV vV g (5.9)
(1 er i€ [CHEAY
,\"\‘}:(:)U.\"“‘r:(l) 1\,?‘.1:(3)U5\v1&}:(1)

k
. . 1
where j = E im 47
m=1
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We refer here that the system of functions in the above sense, can be
expressed not only in the FH = {Fk; <:V, A, . &) form but by means of
other operations, differring from these. In the foregoing, reference was already
made to the Post-system [6]: 7; = <Fk; <5 U N, ~, —, this also forms
a complete system. But introducing, for example, the generalized Scheffer
operation:

. def
ab = —ay b (5.10)
L.y is also a complete system. For the sake of interest we
remark that a complete svstem can be produced even by means of a single

. k , . . . a
operation: F, = (F"; <(; 0> where a O b is the “Vebb operation:

1

—F ke
Fs={F <

a0b= ~ (a Ub) (5.11)

VI. The application of the /" and .7* Boolean algebras for the analysis and
synthesis of logical networks

There were already initiatives to use lattice theoretical means for the
description of logical networks [7], but with knowledge of discussions, more
or less independent of lattice theory, of ordinary Boolean algebras, the use
of lattice theory is really not necessary. In many-valued logics, on the
contrary, one can get along, practically only with knowledge of lattice theory.

As for the description of dynamic logical networks or the introduction
of many-valued logics respectively, in the Soviet Union several research
workers made initiative steps ([8], [9], [10]), and achieved interesting results,
but they did not lay much stress on the general algebraic treatment. Though
[9] introduces six logical values and defines operations, but further on gives
only the form of a half-canonical expansion. Later on, we shall show that
the two logical values, introduced in [9] for the pulses, are not necessary
because by means of the four-valued Boolean algebra shown in the foregoing,
everything can be described for which the structure, introduced in [9], was
intended.

[8]. [10]. and [11] deal almost exclusively with the special features
of the corresponding operation, denoted as & by us. They give (especially
[11]) useful algorithms for the logical designer. Their common restriction is
that they use two-valued Boolean algebra, in this way they cannot elaborate
a uniform, consistent formalism.

Let us now pay attention to the appearence in time, of logical signals.
If we disregard the veryv short duration pulses, it can be said that the logical
values might come one after the other in a strict sequential order: 0 may be
followed ounly by 2, 2 only by I, I only by 3, and 3 only by 0. If we permit
3 to follow 2, and 2 might come after 3, then we already have appropriate
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means for the handling of pulses too. It is easy to see however, that by means
of a combinational network in a wider sense (namely for which xout (f) =
= f(xin (£))s Fouts xin € N, fE€ F) the above type pulse cannot be produced
of one edge (see for example fig. 1.).

This fact would make the analysis much more difficult. Let us make some
further abstractions, permit the succession of 2 and 0, and 3 and 1 respectively

P . ‘

!
Xint) N g
' g
t
KXous (1) 2
0 4
t
Fig. 1. Non-combinational differentiation Fig. 2. “Edge preserving” differentiation

too. In this case, the formation of a pulse from an edge (see fig. 2.) can be
more simply represented.

This type of “differentation’ can be described with the function

) Xout (1) = %ip (1) AN 2 x5 (8)

thus it can be handled as a combinational Jogic. Finally, of course, there is
the possibility to connect the pulse, at the formation from an edge (in case
of “differentation’) to the appearance of a suitable short duration logic level
(0 or I) (see fig. 3.). At this point, naturally, we should assume

Fig. 3. “*Perfect” differentiation

that the levels (0 and I) might also follow each other, i.e. the obtained pulse
has no edges (see [8]. (3)). The relationship between the signals of fig. 3. can
now he expressed especially simply:

Xout (t) = 2 %, (t) :

With this, at the same time, a clear interpretation of operation £ is given.
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At this point, it is important to realize that the formalism, introduced
in chapters III., IV. and V., does not mean any restrictions for the timing
sequence of the individual states, and thus any representation may be applied
freely, suitably to the purpose.

As for the realization techniques, in most cases, the maximum interval,
while the states 2 and 3 are maintained, is commensurable with the disturbing
signal shifts caused by the delay, storage, etc. of the circuits. In such realiza-
tions it is not practical to build up, for example, the direct realization of the
following expression:

Xout = & ¥iny /\ 2 Fjpa /A Xins-

In other realizations it occurs that, though, the defined operations can be
realized by simple physical means, the realization is not perfect (especially
difficult is the realization of the relationship 2 A 3 =0, 2 / 3 = 1), These
restrictive aspects should be taken into consideration just like the timing
hazards in two-valued logic.

On the basis of the above said, there is no objection to the precise
definition of dynamic logical networks: to describe algebraically the operation
of such networks, beside the operations defined in (3.1), it is necessary to introduce
the operation of (5.1) as well. On the other hand, the logical networks which
can be properly described by the operations of (3.1), are called static-logical net-
works.

Now let us turn our attention to the extension, important from a prac-
tical aspect, of the set of operations and functions introduced so far. Let us
introduce the following operations (funections):

Ta=A qa (6.1a)
AxExh fx (6.1b)
TrimayoTa (6.1c)

x :s,y(i—cf(x AN=COxVTx)/ yLy (6.1d)

2Py E ((mxA= OV L3/ =y/ Ty) (6.1c)

(reading in the above order: nabla-dash, delta, nabla, pre-delta, pre-nabla).
By means of these operations, the so called differentiating or priming-dif-
ferentiating gates can be described. Thus, it might be said that the dynamic
logical networks are characterised by the occurence of means, realizing the
eperations (5.1), (5.2), (6.1a—e¢).

In the further part of this chapter, some useful identities, in connection
with the above operations, are shown. The mostly simple verifications are
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left to the reader. To elude the unnecessary parenthesises we shall keep the
following precedence order among operations: —, &, ¥V, A, V, [J5 As N
V3 7. Among unary (of one variable) operations the order of writing is
decisive.

First, here are the relations and their duals, related to nablas, deltas
and quadrangles: '

Va=—A —a; Aa=-—Y —a (6.2a)
ah Aa=a ey Va=a (6.2b)
AV a=0; VAa=1 (6.2¢)
Aa A A —ae=0; VaV VYV oa=1 (6.2d)
FahTFa=0 (6.2¢)
L4 a=0; TYa=0 (6.2£)
AYa=0; FAhAa=0 (6.2g)
Lapn pAb=Aap Ab; —=TavVb=VaVy Vb (6.2h)
MNa=[]—a (6.2i)
—[Je A La=0: —JaAFa=0. (6.2j)
Employing the (6.2) relationships

abb=(a A =JaV A—=a)/AAb (6.3a)

a7b=—(mal —b)=
= —(maA—=[JaV Aa)V Vb. (6.3b)

Also it can simply be derived that

Aab b= 0; Varb=1I (6.4a)
Tai b= A b AaFb="b (6.4b)
et a=0; a7a=1 | (6.4c)
Al b)y=alb; V(@b =ai b (6.4d)
A (a7 b) = 0; V(@ b)=1. (6.4e)

Introduce the following notation:

CaVA —a. (6.5)

Na=a/ —



220 J. SAROSSY

It can be verified with the appropriate ““truth” tables that

N(@Ab=NaA b
On the other hand
NeVb==RaVy 0b
but
2AR(@Vb)=2A(SaV b).

With these and with (6.3a)

aAb>sc=(a_¢c) A(bD ¢)
(aVbdbhc=alcV bl c.

From these two identities, with full induction and dualization resp., can be
obtained

}:\ Gl b= A (a; - b) (6.6a)
(C{/ a) b= v a L b (6.6b)
%a,-?b - }\ (a; = b) (6.6¢)
{;/ 4,7 b= \2 (4,7 b) (6.64)

If we write down the **truth’ tables of A (a A b), and A(aVb), it can
be verified merely at a glance that

AlaAb)=a b A(Aay Ab)
Ala b)=—alabV blLy

or with dualization
T(avb)y=aVbV (TaATb
Vi@ Ab)=(=al7b) N(=b7a).

With induction:

I (A a)=Aa;, ANV A g (6.7a)
./_(V a;) = VA (= a; L) {6.7b)
i i j%i
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n

v(Aa) AV( a; s a)

7_

ViVa)=VaV AVa,.

Using (6.7a—b) in (6.3a)

n n

aly Ab, = \za/'\A(A b;) =

i i

=SaAAbA(YAb)=

AL (Vb)=8a /i AV )=

i

ZEa/\VA( ]__l;l):

i i

n

= V A( Sa AT b Ab)=

n o n

=V A (@ A —b; =by).

i jFl
With dualization it can be directly obtained again that

arAb =AV(aV=byb

ijEi

221
(6.7¢)

(6.7d)

(6.8a)

(6.8b)

(6.8¢)

(6.8d)

Surveying all these relations. it iz evident that. according to what was
discussed in chapter IV., they apply to the elements of N and F* as well.

VII. Application examples

In this chapter we shall try to demonstrate the practical application
of those, shown so far, especially in the preceding chapter. on some simple,

more exactly simplified, examples.
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1. Equation of dynamic flip-flop

Tt is well known that the operation of storage elements cannot be des-
cribed with an equations of the following type:

Fout (1) = F(®in1 (0 X2 ()5 .- ) (7.1)

The flip-flop is the simplest of storage elements since no time parameter
should be given to describe it. That is why we choose it now as an example.
Let us decide upon the following notation:

x'(t) = Hm x(7), v <t (7.2)
Tt
(Introducing this notation, we must remind the logical value — physical

parameter assignment, given in chapter 1., especially as regards the domains
of the physical parameter to be open or clused.) With this notation the general
equation of the flip-flop is:

Q= =1 AV 1O)A=(EAsNAQ)YV

AsANAQ NV =T ANETATO (7.3)
with the condition that
v (s(t) Ar(t)) =0 (7.4)
where
def

1O =40Vo00 A0,

while s and r symbolize the set and reset signals. Though (7.3) is absolutely
precise, its use would lead beyond the scope of this paper, thus let us be
satisfied with the treatment of the simplified equation below:

Q=1 A(sV Q) (1.5)

while (7.4) is valid further on. This formula requires two restrictions: on the
one hand

vi(s(t) A7’ (1) =0) and Wi (s’ (t) A r(t) = 0) (7.6a)
on the other hand, for these ¢, in which
s(ty) =0 and r(t)) =0 and (Q'(t) =2 or Q' (t)=3) (7.6b)

the above does not give a quite correct result.
The discussion and comparison of (7.3) and (7.5) would give many
interesting results but this would exceed the aims of this paper. We remark
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only that following from (7.6) and (7.5)

VW £Q () = Q) =1 and Q' (1)+=3
or Q(t)=10 and (' (t)5=2) (7.7)

In case of dynamic set and reset
s =x;n ¢ (7.8a)
re=xlc . (7.8b)

where x symbolizes the priming signal and ¢ the firing signal. With this
the equation of the dynamic flip-flop:

Q= (xr I Cr) A (“’s—» cs V Q,) (79&)
(xs265) A (x,e) =0. (7.9b)

The equation of the complementing (T type) flip-flop derives directly

=@= N (=QLcV Q) (7.10)

while (7.9b) is fulfilled automatically. As a consequence of (7.8 a—Db), here
going beyond (7.7)

vi(Q)=0Q (1) = Q) =1 and Q' (1) =20rQ(t) =0
and @’ (1) = 3)

With a view to practice, the following two relations have great sig-

(7.11)

nificance. Starting from (7.3)

AQ=/[(=rA(sV Q)=
=7 A8V Q) A (L\ TV A(sY QI)) =
=—=r AEVQ)IANL =TV T AV Q)A(—sLQ)
Voar AV Q) A(= QL)

where we relied mainly on (6.7b). Continuing:
AQ=s AN A=tV ANATAsA(=sEOQ)Y
—r A(Rs2Q)V AT A(RQ )V ST AQ A (= Q).

Now here we utilized (6.7b) and (6.3a), If we consider (7.8 a—b), (6.3 b),
(6.4e) and (3.6¢), then

AQ==r1 AN(AQ"V = Q' s)

3 Periodica Polytechnica EL XI/3.
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since obviously § — s = 1. If now we exclude the 7, times, already determined
above, then A Q' also might be left out from beside — Q" I s, then considering
(7.4) again, we obtain:
AQ=—0Q Ls=
= =10 A= e (7.12)

After similar deduction it might be obtained that

LH—mQ=Q _r=
=@ A x 0. (7.13)

2. Equation of shifi-register
If a shift register consists of the @;, 0 < i < n storage elemenst, and
¢ is the shifting pulse, then
X = Qi3 Xy =— Qi~y» I1<in
€ = € = C, 0 i<n.
With this
Qi=—(10i—12¢) A(Qimy eV Q) =
= (Qi—1 " = ¢) AN (Qiq eV Q7). 1<i<n
Qo= (%7 —¢) N (i ncV Qo) (7.141)

3. Simple binary counter

The rule is known, according to which, if (J; is the i-th storage element
of a binary counter (0 <1 < n), then

-1

s;i=—0; AN AQ;c 1<i<{n (7.15a)
j=0
i1

r=0;/\ AQ;xc, 1<i<n (7.15b)
=0

Sg = T Qu~ C: Ty= Q() ¢ (7.156)

where ¢ iz the symbol of the signal to be counted and
Qi = —r AV Q) 0<in.

If we introduce the notation

i—1
AQibhc= Ag, 1<i<n, Cyp=¢ (7.16)

H
j=0
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then
s;== Qe r=0Qh¢, 0<in.

On the other hand

i—-1 i—2

Aeg=AQ;Lhc=0Q, N AQ;lc=
j=0 i 1

=Q_ ey O, =1, l1<i<n. (7-17)
If (7.13) is applied to a complementing flip-flop, then
A=Q=0Q0AQ e=0Lc
as a consequence of (7.11). Comparing with the expression of Ag¢;:
Se= L0 0y (7.18)

if complementing flip-flops are chosen for storage elements. With this

s;=— Qi =0 =00 —0,. 1<i<n (1.19a)
sy=— Qylhc: ry=0Q,c. (7.19b

4. Elimination of triggering hazards

In aecordance with the remarks in the preceding chapter, hazards are
mostly encountered if a signal, expressible in aV/ b, or a A b form, arrived
to the input of a storage element or to a differentiating input, in which case
e/ [Jbs=0. (It is more suitable to attribute the other type hazards to
the inappropriate frequency choice or the improper adjustment of delays.)
In purely dynamic networks (that is, in which differentiating gates are con-
nected to all storage element inputs) the above circumstance should be taken
into consideration only at the differentiating inputs.

Take for example the realization of the expression

-1
[
<

s=x."¢, Ac {

where s e.g. means the set condition, in negative logic, of a positive going
edge triggered flip-flop. The functioning of the circuit in the usual semi-
conductor realization is ¢bvicusly unreliable if for example ¢; = 2 and ¢, = 3
might cccur at the same time.

Let us convert the (7.20) expression in such a way that the realization
corresponding to the new expression, could work reliably even in case of

slight timing errors!
g

ot



226 J. SAROSSY

On the basis of (6.3b)
S (mx A TRV AN YT (6 A c)
then taking (6.7d)
s==(mx /A= JxVARDY (7 6) A= ).
If we again apply (0.3b) and (6.6d), we obtain the expression
s={(xV me)7e) A ((xV me) 7 ) (7.21)

as a final result. Though, this expression can be realized only by means of
considerably more elements than the (7.20) expression, but its operation is

free of anyv timing uncertainty.

In the paper, discarding the ordinary Boolean algebra, we introduced

a new, four-valued Boolean algebra. By means of this, the analysis and
synthesis methods, elaborated on the basis of ordinary Boolean algebra, can
be generalized for dynamic networks too, opening the way to the algebraic

design of dynamic networks.
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Summary

The paper discusses a formalism which, introducing four logical values, besides the
logic levels, considers the edges too. The formalism is based on lattice theoretical methods
and it is pointed out that the introduced structure is in effect a generalized Boolean algebra.
After denominating the atoms and the canonical decompositions many relationships, important
from a practical aspect, are discussed on the basis of the introduced operations. Finally somé
simple design examples are given.
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