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Introduction

Roughly speaking the inhomogeneities of heterogeneous media may be
of two types. They can fill in whole parts of the body within which the charac-
teristies of the medium influencing the propagation of the waves considered
vary continuously or they exhibit a granulated (polycrystalline) structure,
inside of which these characteristics are constant, but vary with the kind of
grains. Correspondingly, we speak about inhomogeneities distributed con-
tinuously or discretely.

In some respect the problem is similar in regard to electromagnetic
waves and mechanical (acoustical and thermal) waves, respectively, only the
appropriate characteristics of the media are to be taken into account. Of
course, the former problem will not be dealt with here.

In the following treatment normally ultrasonic waves are considered
(practical examples), but as the phenomena involved depend only on the
relative size of the wavelength and inhomogeneities, the results obtained
can naturally be applied also on lower frequencies, larger grains and on higher
frequencies (hypersonic and thermal phenomena), smaller grains, respectively.

An example of the continuous distribution is the sea-water with its
continuously varying salinity and temperature. certain geological formations,
structure of the earth layers, ete.

The structure of metals provides an example of the discrete distribution.
But here belong the suspensions, emulsions, fogs, smokes (aerosols) too,
within which grains are suspended, imbedded in a bulk medium. Of this type
is the blood consisting of red blood-cells, animal and plant tissues, ete.

Beside these two main types of inhomogeneities also transitional and
mixed forms are possible, however the investigation of these presumes that
of the two basic forms.

Not so long ago the inner structure of a medium could be investigated
only after its destruction which is to be avoided. Methods are needed for
testing without destruction. One of these is testing by X. rays However, its range
of applicability is limited. The ultrasonic waves can be applied in a broader
area. They are mechanical waves of high frequency, the propagation propérties
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of which are determined by the mechanical features of the medium, i.e. density
and elastic moduli. Reaching another medium the velocity of the propagation
can vary and on the boundary refraction and reflection may occur. Just these
properties of the ultrasound are used for testing material defects, 1.e. macro-
scopic discontinuities, inhomogeneities. However the question arises, what
occurs, when the ultrasound does not reach a few discontinuities of large
size, but the medium contains a large number of discontinuities having small
size (smaller than the wavelength). By these the ultrasonic wave will be
scattered, the particles become sources radiating in every direction and the
examination of the scatter furnishes a possibility to obtain certain informations
concerning the interior of the material without destroying it.

The procedure dealt with in the present work is based on the pulse-echo
method. By a transmitter electric pulses will be formed and these are led
to a piezoelectric crystal-plate which transforms the electric oscillations into
mechanical ones and radiates them as ultrasonic waves into the examined
matter. Then acting as receiver, it picks up the returning echos, retransforms
them into electrical signals, which can be — after amplification — studied
on an oscilloscope screen. There the echo signals appear at places corresponding
to travel time (which is proportional to the path covered) of ultrasonic pulse.

The ultrasonic testing probe, which contains the piezo-crystal, the electro-
mechanical transducer, is attached to the object by a coupling medium.
In this arrangement the transmitter acts as a receiver as well, the advantage
of which is that only oune probe is needed. Usually, the opposite side of the
object may not be reached and the separation of the scattered wave from
the direct wave is a difficult problem.

The problem of continuously distributed inhomogeneities for liquids
and gases has been treated in [3], while for solid bodies in [1]. The last paper
contains the basic formulae and their application on a hemispherical layer.
The problem of discrete distribution was treated in [5].

The first part of the present paper proceeds on the lines of [1] by deter-
mining the scattering (attenuation) coefficients '(not to be confounded with

the absorption coefficients) both for pressure waves and shear waves (in the
. 2af

sequel P and S waves) provided that ka < 1. Here k= -C— . fis the frequency,
¢ the velocity of the propagation (¢ == « for P waves and ¢ = § for S waves),
a means any of the later defined correlation distances. A further purpose is
to obtain the “*scattering formula™ expressing the scattered energy depending
on the direction and other quantities.?

The problem of discrete inhomogeneities will be discussed in the see-
ond part.

! The determination of these quantities makes the newness of the first part.
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It is obvious that the results may be only of statistical character (not
as testing rough material defects). The inhomogeneities of a solid body are
strictly determined being the medium immobile providing that thermal
agitations are disregarded and the phenomenon is considered macroscopically.
(The irradiation, however, may influence the medium.) Fluids as moving
media mean a different case. With this in mind the distribution of the inhomo-
geneities is well determined and not at random. However, under conditions
regarded as quite identical (which after all are not identical) the irradiated
waves will be scattered differently and so this scatter is a random process.
This circumstance will be expressed by saying: the inhomogeneities have a
random distribution, from which the accidental regular distribution of the
inhomogeneities is to be distinguished. This may perhaps be described by a
special formula.

The random character of the measurement will heimputed to the structure
of the inhomogeneities of the medium. However. this is correct, because the
latter may be examined and recognized through the former only. The successive
measurements give a statistical ensemble concerning the functions (of position)
X7), u(¥). o(f) (Lamé “constants’ and density),

i.e. every measurement could
provide at most a function-triplet A(¥), u(7), o(r), if it would be possible at all.
In fact, only some quantities composed of certain statistical characteristics
of these three random processes may be compared to measured data.

Consequently, our basic hypothesis is that 7, ©, o have determined
probability distributions, each of them is an ergodic and spatially homogeneous
and isotropic process. Let us denote their auto- and cross-correlation fune-
tions by

Ny=N,. N, N, =N,_.N,_, N

R ® n I ot ~'pot T 'po 0

By definition they depend on the mutual distance |7, — 7| of the two
positions only. On the other hand the ergodicity furnishes a value equal to
the mean value of the ensemble, moreover by means of a unique local mean

value formed by a function representing the process. E.g

—lim = |o(F) o7 + ) dv = Ble()ofr + )

v

(expected value), where the integration has to be extended over the whole
medium which is regarded as infinite, R = 'R | and P(r) is a point of dv.

This will not be needed in connection with the above correlation funec-
tions, because another mean value built up of them (the mentioned scattering

coefficient) will be determined and compared to the measured value.
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The wave equation and its solution

The obstacle derives from the circumstance that the waves propagating
in solid bodies may be characterized by vectors only, because both P and
S waves can arise. At a measuring process each of them may be irradiated
into the material. On the other hand. in agreement with the physical model
both of these arise from any kind of incident wave. Viz. the direction of the
wave-vector will be changed by the scattering sources compared to the original
direction of propagation. E.g. if the vector were perpendicular to this, then
it will not be, but it will have a component parallel to this too, which
exactly means the arising of a P wave.

The vector u of the elastic displacement satisfies the following wave
equation (s. e.g. [1], p. 339)

= . — o'u
Flx,y,2,0; A, 1,0, )= —o

Hpl(a+ 20y a] — prpp <u+ o (1)

o8
+2ppe Y =2 a4 2pp)y K pos w =0,

Let us take an infinite, isotropic medium (the matter may be assumed as
infinite in respect to the echo, in which we are interested, because it arrives
back earlier than that coming from the farther situated boundaries), the
charaecteristics 2, u. p of which have evervwhere the constant values 4, p,.
g, except a volume J7 where

Jommly 0L W= U, O, 6= 0, + 0o (2)

and 0/, du, 6o are random functions of the positions and

D4 ou o0 ) o

—=<l —=<l —<=l1 {(small inhomogeneities).

I jiry 0y
Let us assume that a wave u, falls in V from the outside. The resulting total
vector-field is composed of u, and the scattered wave u,

U= u, - uy . (3)

Then |, <€ , u, . Replacing (2) and (3) into (1) and cancelling the terms
higher in order than one. the following wave equation will be obtained for u,

%u — . — 1 4 cn o e =
S Ppeu P AP U, =—F(x,y. 55 04,00, 00; uy) =
o 94
1 -
= Fn : (“U
%
where
Y .
Z“:——Q Ijj'lx}_l.q }':/—T—B‘u

99
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For the scattered wave, equation (4) is an inhomogeneous linear (elastic)
wave equation, the solution of which for infinite medium fulfils the equation
(s. loc. cit.)

ou P s 2 o
e "1:_{} PR, 3arBF, | 3erp  20F Xl (5)
ot o2, r 98 r3 Bt ri 2 B 3
v
. 1 $<i82Fr+ﬁ§FL+_3ﬂjF~iaz_F_i?_MF_iF &
PSS s o rt r o 2 6 3
v
where

7:[5——.r, n—y, < —z)|. dt=dfdndlr =

and the integrations are to be extended to V; F, is the scalar projection of
F on 7. The brackets [ ] and () mean retardations corresponding to the
velocities of the propagation of the S and P waves. These are just o and f.

'l
Z P .
Therefore, the argument ¢ must be replaced byt — — and t — — _respectivelv.
r r .
x. v, z are the coordinates of the observation point P.

fw?

If @, and F(T,) are harmonic with a time dependence of the form e~
equation (5) will be formed as

CUOKS 3ik. 3\FF 0 ik, . 1 -
dmg, 02U, = J{[ ks ;%__’}&+ '_Eé;_f-._ Flel‘,fﬂf__
. r r‘_’ r3 r r':_' ri‘-/ }[
v : (6)
_‘{(k;'_n?)ikﬁ ~3]F,7~;
ro rt rs ro
v
el Ll
| r e rs |
where
(42} (O]
bk, = —, k=, w=2af.
== i

This may be rearranged to the form (s. loc. cit.)

- ik 7
—‘1_:’—1 ] Ve ‘ (Ver Fydr —
4 mo, 2, I ) -
v (7)
ikgr
B 1 - e w (\ c F) (ZT
4o w* | r

v

too, where the first term corresponds to the scattered P wave, the second
one to the scattered S wave.
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1. Continuously distributed inhomogeneities

1.1 The scattered SS wave

Let the (along axis x) incident plane-polarized monochromatic (*moneo-
tone”) plane S wave be of the form

Uy = Ae, e =0, 5= [0,0,1] (8

Qs L)

7

Plnyz)

the size of 7" small to OP (P = observer), large to the wavelength, and 0 a
point of 7. The directon of the oscillation is the z axis.

We will determine the scattered S wave in P(x, y, ). Let us remark
that for an actual measurement the incident wave is not a plane wave, rather
a slightly divergent spherical one with an angle of divergency below 10°.
However, this will be approached by a plane wave. — Furthermore the
applied wave is a pulse consisting of 510 waves (and so it is not mono-
chromatic), which can easily be studied on the screen of an oscilloscope. —
In the present treatment we remain at the approach by a monochromatic
plane wave.

At first the vector F(u,) playing a role in (7) must he determined.
This may be rearranged to the form

F=— 0ty -+ VN U+ (VU ) (V) — 2 (VV X ) ==
+ (Vi) AV A t) 2 (Ve V) g — 2 (Va)(V ) ¢ 9)

o A a 3y
(1= o + O - ete.)

Replace (8) into (9). The corresponding terms in turn can be determined:

1° — 0l = 0w uy = 00° fe., f = flx,1) = A¢
2° Vet = 0. 1v2 ity = wW(vV-uy) =0

3° (\7 : 1—10) (\71’} =0
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4° VXU, = — ikfey, e, =[0,1,0],k = kg

v

VXV XUy, =k fe., —uVXVXuy= —ukfe.

5° Ve s (\‘ s ﬂ0) = ikf(:u: e, — M E:) s Uy =T =
Ox
62 Vv = g 8 t 8 8
eV = Py —— gy —— o M
Ox I oy 3z
_ 0 _ o =
2 (vu 'V) g =21ty "8—" (fez) =2 szf,ux €.
X
7° —2(vu)lveu,=0.
Thus B
F :f[(c')2 0 — uk? +iku)e, + ik‘uz'é_<J.
But
“ 2 Ho
k= , Pr=1,
g g 99
whence
@ — uk? = K2 (fo — p) = B [* (00 + 00) —
(g + O)] = K2 (B0 — 8u)
and so

F = kf{[’” (/3., '59 - ('),“) —+ il“'."f] E: - iﬂ: é.\:}'

Let the abbreviation
/)]JQ - Au' =0
be introduced, then

F = kf[(kdo = iue. + ip.e.] = [@. 0, ]

where
] o du 80
@ = l]z'ull:fe Y= kf(}h'()o‘ -+ Llu.‘\.) s My = — = ia
Ox Bx

Expression A «F in (7) will have the form

v F = [7/"’3_", bz Ve — (p}'] = kf [J{- e @}-

Bu _ d(ow)

Ox

267

. ete.

(10)

Here
= ko, + i,
B = —ik?00 + ke, + iy, — p.) (¢ =y — o abbreviation) {12")
¢ = - i.“).':'

Furthermore
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Then by (7) the x component of the scattered SS wave
Ak * 1 —ikr

4 o, w® J s
v

[(1=5)€ = (€ — =) B] T2t dr - (13)

uSSz =

where &, 5, { are the coordinates of the scattering element. The integration
is extended to ¥ being & = & = € = 0 elsewhere. To determine the square
of the absolute value of u , multiply it by its conjugate. So we have

A2 k2 { (1 — ikr)(1 - tkr,)

16 7% g5 o r3r
ViV,

lug 2 =

(fff) eFGimssnmrm go gz, (14)

T r

Here each of the integrals are extended to the same V7, = I, = ¥ volume

and their elements, points are distinguished by the subseripts 1 and 2, and f

is pot identical with the above f. Its value

f=—ye—(:—32%
and
hLfi= [”h —¥)€ — (5, —3) -“//:‘1][(777 =)@ — (L, — =2)Bi]. (15)
Taking into account that the size of F is small to OP, we take in fifs - ¥ o~
~ 1j, — ¥, ete., even neglect £, 1, [ beside x, y, z. Obtaining

fif5 =yl — =) (yCS — =55) =
=y2C, C} + 5, By — yz (B, €5 + €, .57).

The formulae of u,_ and ug, are similar, only fifs are replaced by

g1 8 = P A+ PO O] — ax (O A L A OF)
and
hlll: = xi .Z;l - /J):) ,— _\'2 L/'Cll v{j — x}‘ (_/7.11 -jj; "I‘ -,/jl J{:X)

respectively, the sum of which is

S=ff5+ + 2) S
(rw))OO — vz (5, €5 + O A —

— za (25 + @1 YY) — xy (A F ).

Corresponding to the ensembles of 7, 4, o, the average (expected) value of
lugs 2 is as follows:

42 L2 PRUE -y I R o L B
§u55§2 — _,il__lb‘__. ’ ’ (l lerl)(l i 1.1»,1‘_) <S/} pikp(si—F21 =1} d‘fl dz., (lb)
‘ 16a2gget J rirs )

where {S) means the average value of S in the same sense. To compute (16)
we introduce new coordinates, center of mass coordinates and relative coor-
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dinates. These are

&+ & 1+ 12 &+ 6

Xy = s Yo= T B = -
2 2 2

=8 — &, Yo=ma—n. =410,

With regard to the smallness of ¥ to OP we obtain

(17)
5 170 ) 51 — % -
K=K =2k |14 22— . 17)
T] ;

In (16) everywhere we take r; = r, = r = const, except in the exponents,
where for r; — r, the above better approximation must be taken, since e.g.
sin k(r, — r,) varies more quickly. Then

14k

. )
Cillge™ - ==

1 T ‘ /S e KR dy’ dvy =
72 g% o

(dv' =dx" dy’ d=’, dvo =dxody,dzy , Vo =V" =V =)
A2k ] 14 R2et

— de‘ 'S o iRKR Jp =
4 7205 0 | i

V. v

(18)

A2 AT «
2RV (1; 1)/

4 72 0F i rt
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where

T = ([ {S) e iKRdy’, (19)

%4

The correlation functions decrease rapidly with the distance R = | R |. There-
fore, in (19) V' may be replaced by a small sphere S;, with radius b and
centered at point 1.Then .7 can be determined term by term as follows. Corre-
sponding to the value of S in (15) -7 consists of the terms

1° j ;= (_)3 + Zl} S (/./'C/l L/,;/ G—if“:\) d’l/” .
Ss

Here by (12'') (denoting kéo -~ iy, by f; its meaning differs from the previous

one)
. e Ofy Oy [ fr
Ay A = fy  afs . ° (f1f7)
8y B 81, 01,
since f, is independent of 7, and f of 7,. — Everyone of the correlation

functions depends only on

R = V(Q'Lz — 5P+ —m)r+ (&, — &)y

BN N AN
———= = , ete. (20)
8%, 8¢, dx’

consequently

Taking into account that (€ ,-%3) consists (linearly) of these correlation func-
tions (s. later) we obtain

RS
‘/.-/_;fl '_/f_:s/" = —JFEL B

oy’

%

Furthermore by (17) (denoting the direction cosines of OP by L, M, N}

2 (RR)=k|[1+ | =k(1 1)
3x’ o
a(f‘f{)_ S S RV
oy Ty
B(KR) — L 51 _::_ — LN
a9z’ ry
This gives e.g.
8(3"’”{4’?)

o = — k(1 — L)e—'KR, etc.
x
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So by repeated integrations by parts and with regard that du, dp, together
with their derivatives, and thereby «# too, vanish on the surface of S,

T =M .\fﬂ)J B N L
s ” (21)
= (M2 N R | CfifiemikR Ay
S5

Now let us inspect the value fiff more closely

<L Bu T, . BOu,
fufs = {k()al +i— koo, —i—2 | =
‘ <1 <o
, . 8(0u, o0, ., 8(dc, Ouy 80y Opey
= k96, 00, - ik (Alh 2) ik (99, 0u,) (:1!-)
a,‘l as_- 8:1 a;:_:
whence
o 0o s L0
ffsy = k00 00,) — ik — ({0, 00y, —
ox
o 82 Dy, du, >
oy Oy ) — ———HL 2
- A IRA
By’?
Here we made use of the relation
Ars s N NN
/O(OGO‘LL) \ _ 890 0us 109) .
- —- (s.[2], p. 102
\ Ox / Ox
But
00,00, == N_, {00, 0u,, = {00,0u,» = N_, , etec.
g0
o . ., BN 8V,
AR =N —2ik R —
ox’ ox"®

Therefore, by repeated integrations by parts

[ CAfE e ®RAy =k [ [N, +2(1 —L)N,, +(1 — L) N Je KR dv',  (22)

Se S
since the IV's and their derivatives vanish on the surface of S;.Let us suppose
that the correlation funections have the form

N = n%e .
where n2® and a are constant (the correlation coefficient and correlation distance,

1
on which N decreases on its — th part). Herewith it becomes necessary the
e
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evaluation of
T = [e @ KR gy’

S

To Ehis en(iintroducing the polar coordinates R, 0, ¢ (6 is the angle included
by R and K)

v _ R — _

e 9 e iKRcosORsinfdRdOdp, K=|K,R=|R|=

Re' a* sin KR dR.

The exponential factor decreases rapidly with R. Hence b may be replaced
by +oo. By integration by parts

the value of which is as follows

_ Kia?
T =a3ade * A 7dad (23)
since by (17') and our assumption
K2a? k° a’
(1-L)<=l.
4
From (21)—(22)—(23)
T = AR (MR 4 N3)M? [nal + —~L) ni ab. + {1 — L)*n?af]
2° 7= (522 Y /;Ll 6“’R§d1
Si
Here
~ma 8 ~2 |
B, f-* ﬁvlz()('~ll 9d¢, _f_ioo'“l.__iodul
SEL 5% 5
< Aj("fa . f\;}) 9 . g% o
‘iiff)a_, NI e B l"u'“ il é‘u",
! o6&, i 83

Carrying out the multiplication, using (20), introducing the correlation
functions and integrating repeatedly by parts we obtain

g = R - N2) A\" [N, +2(1 —L)N,, +

+2 (N2 — 1—L))\ (1 —LPN, +
+2(1—L){N*— (1 —LP) N, + (1 — Ly — N2) N ] e~ iRR dv’
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which may be computed in the same way as 4. Obtaining

T = a2k 2 (L2 N?) [n2ad + 2 (1 — L) ng, ad, +

L
2( —(1—L))n- ad, + (1 —Lynad+
2(1

G

L)Y(N* — (1 —Ly)ni,ad, + ({1 — L} — N*) ni a].

Eu

Similarly without detailing the steps of the calculation

3° e = a2 (L 4 M) M2 N*nlad
45T o =27 B LMIN2[nd, ad, + (1 — L) nj-;aﬁ]
5° T o = 2 ANk M2 N [n;[, al, + (1 —L)n, d,
+ (N*— (1 — L)) n? ,”]
6° T o= — 272 B LMN [ (O
— (1 —LP+ N)ni a2, (1 L) nZ, a3 +
;(1 _L) nllsa!lsf(]‘ - ( 1 _L))nuau -

Summing up the values 1° to 6° we get the value of /" in (19), whence by (18)

L da8ym A2V L
Quss®) = - T / & (24)

03 5

where
= K_n’al -+ K, ngal-+ K niad+
2 LK a
- K, n;,a, + K, n: — K, n;.ad,.
The ecoefficients K, ..., K, are rather involved polynomials of L, M, ]

Simpler results will be obtained. if in (22) and similar formulae we return
from o, u, € to o, 2, 1. By (12) e.g.
;’V-“/) \’ 20N 4 N | ete.

So we obtain

= L,nyal — L, n;ad, + L, n;, al, (25)
with
L . ) B
= MF S LENT 2R - 22N -
P
L,=L*M*— L M* 4+ L* N2 - N¢ (26)
L

Y=L — LM2-- LM* + 3LN* 2L MN — LMN3,

(8
\D

(24) 1s the **scattering formula™ giving the energy of the scattered SS waves
depending (besides other quantities) on the direction [L, M, N]. E.g. the energy

3 Periodica Polytechnica El XI/4.
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scattered in the direction of the incident heam is proportional to

F=pfiniad 280 a8, (L=1,M=N=0)

1.2. The scaitering coefficient xzgg

Let ¥ be a thin cylindrical layer with hase F. thickness dx. The energy
flux of the herein incident beam is
E; = yFA* (y = const, 4 amplitude) . (27)
The scattered energy is the surface integral

E.=v { lugr dF (28)

extended to a sphere of radiusr with Py <1 (viz. so the approximation
yll g

1
522
number of integrals. One of them is

14 == 1 applied above is justified). Then we have to compute a

RE -4

$ L,dF =t h{'o‘\' (M? = L*N® — L2 M?* — 2 L* MIN + L#) r*sin 6 d0 dg
F?’

(L =sinflcosg, M =sinfsing, M = cosf).

The energy left after traversing the layer

E,—E,=E; e -, E{l — adx)

whence
E E, E
g o— s — : — s . (29)
E; dx »F A% dx A2V
Finally we have
1 /:‘/ N
e = T L (55 1t 4 22 ). (30)

R
105 5%
This is the energy scattering coefficient. The amplitude scattering coefficient

5
is half this value.
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1.3. The scattered PP wave and zpp

This means a P wave which arose from an incident P wave

v

i, = Ae, eitk=x=o0, g —[1,0,0], k, ; o=2af, 2=_0_ (31

Replacing this value into (9) we have (instead of the incorrect value on p.

340 of [1]) the value
GLJTA

dx

P Haﬂ S0 — K2ow L 2ik, ik a/] Aeitkax—ol) (32)

Now the first term of (7) must be evaluated. Omitting the details we obtain

BV A2V FE
Cuppg®y = = VzLVf* oy 1oyp (33)

38 2
BT

where
P=xnal— 222 (1 — L)nj, ad, + L*nja’ + 222 (1 — L)n;, a; +
4 (1 — 20){(1 — L»n3, a8, -+ (1 — L*)nd a§ .

On the other hand uppy = L | upp |, therefore
el AN ]' /i 2. 34
GUpp = = E SUPPyYT/ ( )

which shows the fact that corresponding to the P character of the scattered
wave it depends only on the angle included with axis x. For xpp we have

8]z f4 3 .
oy = | f[lOz nyad— 502°ni, a, + 4niad -
PP 1503 o8 o (35)
3
- 12 0*n%; ay, —+ 10n3, a3, -+ 6n%a? ]
or replacing 7 by » — 2u (in a correspondent former fermula)
8atyzft ) .
Xpp= __}_nf [10 xtngad 4 16 n7 af
15 0528 (36)
— 240} o), —44n;, dd, + 6n ai] .

1.4. The SP wave and «gp
Starting out from (11) the first term of (7) gives (as in 1.3.)

. 37 21 F4 X
Usp®> $~——f——— [r’p’ nya; — 4 xfMn;, a3, + 431%1?,(13] (37)

V4 —

| =

) 6 32 2 2u
0f 28 5% r

o
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and

4mhy T [

15 038 3

Al

o= 502 8nlal -+ 4nlal|. | (38)

1.5. The PS wave and «ps

By evaluating the second term of (7) with F given in (32)
Yy A2V f*
TVRAV I (| 1) (2 rza — dxfLnd,ad, +
0§ g1t S R (39)
+4L*nkal
and

Rl AN E S ” .
ocPS:__J..E;f__(bzgﬁzngag—}—4n;aﬁ). (40)

15 gg o2 38

Remark 1. A more exact approximation can be obtained for the values
of (| = (*) and « provided the exponent
K2 a2 12 g2

- = 5 (1—1L)

ay

in (23) will not be neglected. In this case in the formulae of {(Jul?) ’s every
term of the form n°a® must be multiplied by a factor of the form ¢~ . The
evaluation of the «’s necessitates the computation of more involved integrals
containing this factor. On the other hand the results will be valid for larger

ka values too. — The integrals in question are of the form
. A7t
T = ¢ Lkel d F = ) ) cosk fe 1 ¢in 0d 0 dp — 27 .7,
¢ 50
, 7. e 7
[L =cosf, u= (kf)“} T = | cos® O sin 0 enc0¥ d 0,

0

c=0,1,2,3,4,5.
By integration by parts

u__ (. 1Yk p—u A
= (e ko

u K22

which gives .7 to < inturn. For u>1 (i.e. kas 1) and fluids and gases we
obtain the asymptotic expression

= 2;&7[ s (Eﬂ i

0

fel i

az® -+ 4k (—'C)Z a;d I (_"_ '
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This formula differs greatly from the corresponding one of [3] (p. 55) viz.

x:;/ﬁkﬁ(ﬂ"
[

Remark 2. The measuring process gives immediately the attenuation
coefficient only

the first term of which corresponds to the absorption, the second to the
scatter. By measuring » at two frequencies 4 and B can be determined and
the value Bf?is to be compared to the calculated values zg, etc.

Remark 3. The correlation coefficients n> and distances a (altogether
6 —6 values) appear in each formula in the same connection na®. Therefore
given the four «’s perhaps four such values can be determined, but separately
n and a not at all. Further considerations are needed for their separation.

Remark 4. A pulse modulated incident beam is not monotone, hut has
an involved Fourier-spectrum. E.g. if it has a triangle shaped envelope
(consisting of straight lines), then approximately

[ 0 , 1< 0

PU — f(t) ei(wz‘—-kl’), f(t j— I mit . 0 < t < o
[m .41‘0—1) 10£t<210

° t22t0

provided that the medium is a fluid or a gas. Then it can easily be seen that
in our scattering formula A4? must be replaced by

j Fit)S_ Fit)

2{\\/ S\ ,

272
i k

where ¢, is the velocity of the propagation, while the scattering coefficient
remains unchanged.
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2. Discretely distributed inhomogeneities

In this part we shall deal with the case of diseretely distributed random
inhomogeneities, where inside the grains p. 4, 4 are constant and on the
surface they suffer a jump. Here belong the metals, which are polycrystalline
materials and their structures depend, beside composition, greatly on the
process of production and heat treatment. This may be very different within
the same work piece according to welding and e.g. the heat treatment may
be limited to certain parts, in most cases to the surface of the pieces. This
can be seen very well by the microscopical investigation of the polished surface
of the metals, or by X-ray or neutron ray diffraction technique to a maximal
depth 1 or 10 mm, respectively. On the other hand the ultrasound may be
applied for investigations of very thick specimens.

The inhomogeneities may be of two sorts according to the circumstance
that either the single grains are isotropic with characteristics different from
the environment or their values may be the same, but the grains have a
crystalline structure and their crystallographic axes are randomly oriented.
Of course, these two factors can also appear together. The problem was first
treated by BaaTia [5]. The present paper gives more exact results in a different
way, slightly correcting certain equations of [5] and showing that its formulae
are approximately valid only for ka < 1 (e is the radius of the grain), while
the formulae obtained here hold for some larger ke too.

MerkuLOV [6] has expanded the work of LirsmiTs and ParxHOMO-
vsKiI [7] to hexagonal and cubic crystals, with similar results as Bratia [5]
and BrATiA—MOORE in a more recent work [8]. However, the agreement of
the results in [8] with the measurements is not better than those in [5].

Papapaxis [9] summed up the results in the most important work in
this field and gave a method to determine the average grain size.

2.1, Determination of the SS wave

Let us assume ¥V as a small sphere S, (small compared to the wave-
length) with radius a, centered at 0 and g, 2, u to be constant having values
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0g: Ags Yo in the bulk medium and g, + 60, 4, 4+ 0, ty + Ou in the grains.
We provisionally assume g, 02, éu to be contmuous and vanishing on the
boundaries of the grains together with their derivatives which appear in our

00
formulae? In addition we assume — <€ 1 etec. now too.
%0

. «a
If the incident waveis again of the form (8) and — << 1, every formula
r

related to the SS waves so far obtained in 1.3 up to (22) remains valid, only
the correlation functions IN,, N, N, of (22) must be replaced by the (ensemble)

aVerageS
<b 62>5 /O GOy, /\é “2/

which also satisfy (20). So we obtain instead of (22)
[ fify emiRR Ay = k2 | [(06%) +2(1 —- L) (duda) + (41)
v (1 e )26 5] KR v,

Now e.g. in the integral

.= | (o062 e~iKR gy
let {60*) be substituted by its value at a suitable point of S,. Then?®
T =002 I, T = [ KR dv’.

Sa

This value {6¢®, can then be regarded as the constant value of 6c® which is
valid in the grain. The value of .7 is as follows:

2rx a a
P ] j e~iKR 06 R2sin §dR dO dy — 3% Rsin KRR —
000 @
= 7 s Ka).
K3
But for o < 1
a8 %P ) { %2 }
SING — ZEOS L = o — —— = = — = L, ——»x'l———-—-—;—___ 2 =
T I TREY
1 - .
e —— 7_1; N _:_ /’/(7.').
3 30 ’

Thus

=1 1_...1-_(1{(1)-’} L G(Ktal). V:i ad .
. 10 3

# 8. the analysis of this assumption in the Remark after 2.5.

3 Being | KR | < 1 sin KR. cos KR. is of constant sign in S, and the mean value theorem
may be apphed
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If Ka <1, the relative error of 7 is less than

4z 6, . 4 Ka)! ,
10 47 6 payi b BT L 004 — 049
K1 3 350 250

and this error decreases with Ka. Being K = 2k*(1 — L) [s. (17')] we have

T =V [1 ~ (—l“‘:-)— (1— L)}.

This approximation also remains valid for not too small values of ka, while
(23) doesnot. (There the significance of a is different). The more exact calculation?
thus carried out, gives the scattering formula for a unique grain

T A2 )R

2 28,0
95 7°T

S=L,700" +L,01, — L, 00du

[1—%(1{(1)2(1—11)‘]5 (42)
5

where L,, L., L,. are the values of (26).

2.2. The scattering coefficient o,

The total SS energy scattered by a unique sphere S, is proportional
to the surface integral

E,=y{<uy?* dF, y=const {43)

;

1 < 1.
2,2

If grains of number NN are situated in a layer with cross-section F, thick-
ness dx and volume 7" = Fdx, the size of which is small compared to r, then

extended to a sphere of radius r around S, with

the total energy scattered by them is

&, =3 E. (44)

The (| uss |2) and with it E; are quantities proportional to V2 If the volumes
Vi@=1.2,...,N) of the grains are nearly equal, i.e. V; ~ ¥, then

SV:i=NIV=NV-1" =(4q?)V (45)

where 0 < ¢ < 1, viz. the whole volume of the grains contained in 7 is a

4 This can be regarded as the branch point between Bhatia’s and our calculations.
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fraction q of Z* only. The total incident energy of the beam (the flux)
gyi = :‘-’ F .42
and the energy remaining in the layer

& —F, =& e A &1 — zdx)
whence

9

r =
& &

% = et S, (46)
&, dx  yA*Fdx v A

Therefore first E; must be evaluated. By (43) and (42) we have
4 A2 V2 78 4
E . =~» i_"_l_I__ZL [5 BT — u) (002 -
105 g5 8
4 22(1 — u) Louty - 62 5 u oo r)y}]
1 )
g = (kga)

U=—1luUy,=
b

and by (45) and (46)

3 74 -
SRLLE LA P IC S pOr Yo (47)
105 03 8
- 22(1 — u) {Louy + 62p%u “(dodu ]

8§35

where ((6p>) etc. is the average of the ensemble average (6p*, over the
different grains.

2.3. The PP wave and wspp

In the sequel the argumentation may be greatly abbreviated. We obtain

AR (1 —Ly[1— %_(/fla)'l(_l — L) P (48)

o5 28 12 5
P =t 00%) — 2x*(2 — L) {dp vy +
>

Lo, L 202(1 — L) 000k, -

Vi
4 (1 —2L)(1 — L3704 ov., - (1 — L?) <072
and
~3 afi
Xpp = 8 TqL [524(2 —3u)(o0*,, —
15 pggad
— 16ux?{Bpdvy: - (16 — 21 u) < 2y —

— 8a%(3 — du) 7700 du — 44 (1 — u) {{dudvy; +
(k, ay

]

{49)

2B —4u) o] u=u, =
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2.4. The SP wave and zgsp

2 42 4 2 (k2 1 k2 L o2
Cugpl = ”r A2 V_f_ o] ¢ (k2 h@) . k. kga Llp. (50)
0'(1, o8 5% 2 10 3
P=o2p>700> —4xf M dodu. + 4 M2 {ou2, .
473Vqft | -+ - ‘ L \ .
Agp= T Vef 1 — uﬁ] (527 ((00% 4 - Jou*yy)y  (51)
15 pZ b 32 2 ‘
a* ki a’ k3
U, = ug = ——=t
5 5

Upgits = _ K ’”f" L](l — I P (52)
P = 22000t — 4Bl (0pop — AL/0u2,
o5 = on o LS (59
S = ql—i:")' (101 G2 74007 4 56 {out ) —-

+ 2822 ki a* ({00 du> .

Formulae (42), (48), {50), (52) hold for a unique grain. The scattering formulae
valid for a medium of volume 7 containing many small grains of volume I~
will be obtained from these provided ¥*is replaced by g7’V and {$p%) etc. by
[(80%) ete.

Remark. In 2.1 it was assumed that g, 0/, oy with all their derivatives
playing a role in the calculation are continuous and vanish on the boundaries
of the grains. Thereafter (at the end of the evaluation) we have taken bp.
ete. constant, which would involve dp = 64 = du = 0 within the grains too,
which is impossible. In fact, instead of this ““working hypothesis™ the following
more exact hypothesis must be assumed. Let 69 be zero on the surface of the
grain and depending on the distance from the center only, on the other hand
its derivative (or derivatives) large near the boundary and vanishing elsewhere
but in such a way,. that on a line parallel to the x axis let 4p be of opposite
sign leaving the grain and entering it. Then e.g. in

D= [ (90)yy e KR du’
S
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the expression obtained by integration by parts vanishes

[(0)y e«ikié]:z =0
because KR = KR cos 6 and x} and x} belong to the same value of 6. The
same statement holds for similar integrals.
It would also be a conceivable assumption that the first, second and
third derivatives vanish on the boundary, but among the higher derivatives
there are non-vanishing ones too.

3. Discussion of the results
3.1. Case of metals

Our results [(47). (49)] slightly differ from those of Bhatia as the following
comparison shows:

xgg = __’ﬂ.[ Bt ({82, + 3 {{ou2>>] (Bhatia)
150548
31/ f4
spp = VT 5 s oy, 15 2ioun, —
15058

— 40 < {ou dv 2 7401y >] (Bhatia).

Disregarding the factor ¢ and some numerical coefficients, these formulae
are almost identical to (47) and (49) provided u is taken as zero. The more
interesting is the circumstance that in formulae

4:13 I"v : = < § o s B B
“sp = —*f— (5ot p* ({00, + 4 {Cop*) )
1503
8 a3 V1 ) o ‘
ZPS N f ( 1) 09 //OO /‘/ e &(.3LL‘1>))
15 0% 3 3

of BHATIA even the constants are the same as in (51) and (53) but the denomi-

nators differ slightly (in the ratlo—;and — respectively). Recalculating the
I %

data of [4] (pp. 417, 423,424}, we partly obtain a better approximation. Taking

puremetals orsome alloys{{dp*>) can be assumed to be zero, the scatter depends

only on the anisotropy and the grain size and our formulae may be simplified,

because now (s. [3], p. 21)

16 . . e -4
£ L0V mm e DU == (v ou {54}

wlqa
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284
and so for an incident S wave without correction [taking u, == u; =0 in

(47) and (51)]

o ATVA
15 g3 B 15 0f x5 32
4 -3V g ft I RN A \6
%g = dgs T Lsp = L Vaft Loy 1‘5*1 £ (55)
1544 u? 3\ x]

and with correction correspending to the actual values of u, and u,

48 Vgft <{out,, |22 ' -+ p|s -
Ao = -1:[ I q’f h \O,U L2 —_— (1 —Uu ) —f— -L 1— %u: uﬁ —P (36)
Se = 21 3 - 8 5 -
1552 3 i | 2 % |

1° For aluminium
AL
—~—‘\ \f)l' 77 = 3 -104

2
¥a

L0 55107,

ILL%
vy = 11.20- 101, g, = 2.62- 101 dyne/em?
Q4 = 2.71 g/Cm:‘, q =< 1
and a test sample with 2¢ = 0.130 mm (grain’s diameter) (55) gives

% _ ) .
- = 6.17- 1073 neper/cm/cyelel.
21 T

xLs - —n 2y
= = 61079, = 3-10¢
o ,<f )

while the measured value is 9.4 - 10 -39, and that of [53] is 9.9 - 10 3% which

is a better one.

For an incident P wave
3 gV 4 . e
ML [8 (0w, — 22 (8 dvy, 4+ 3 C{0u™ 5]

Lpp =
PP -
15038

31/ 4
) . 167 I/qf 2
2 ysrereral R
15 g o® °

and by (54)
. 1603 Vgft ovyy [ 109 | 9 (6]
Op == Upp 7 %Lpg = - aft < _)// — I
15 ¢ i 16 8 ﬁ
L 16TVt o) [_, 109 15w, |
Pe 1514 1‘,’(_7, 16 ; ) T
-—‘,-__9../1__ u, +ug) ()¢
i
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which gives for the same sample as above

Zp
2 f4

&

(in [5] 1.46-10%0)

= 0.905-10-3

and

P 0.89-10—% and 0.714-10-%0
24

(for f = 3 - 10° and 9 - 10° respectively) which agrees better with the measured
value 0.695 - 10 —%% than that of [5]. Herewith the discrepancy mentioned
in [5] (p. 21) may be regarded as explained.

At the same time the question arises whether the measured value

%s

2 f4

results) to have a value under 6 - 10 %7,

=9.4-1073% js not too high. It seems better (according to the above

Table 1
1030 . gp’;’:f‘! ? 1099 .z gaft
measured l Bhatia Present work | measured ‘ Bhatia ;] Present work
S R : . -
0.905 6.17
Al 0,695 1.46 0.89 (f=3-10% 9.4 99 | 6.10 (f=3 - 109

0.714 (f=9 - 10%

0,582
Mg 0.46 © 0.362  0.525 (/= 107) — — —

2° For magnesium (s. [4]. pp. 417 and 524)

vo = 5.88- 101, yy = 1.77-10%1, S 999,104, 0 = 1.75. g~~1

P 5,82 1075

21

2 el N4 o 7
_Z.jj._ =5.25-10-% (for f = 107)

while the measured value (s. {4], p. 425) is 4.6 - 10 - (BmaTia’s value is
3.62 - 10 —31). For lack of a measured value o; the corresponding theoretical
%, has not been evaluated.



286 I. BIHARI and J. SZILARD

3.2. Remarks concerning liguids and “mixed” media

The deductions and formulae, which concern only P waves. are also
valid for fluids and gases, only the material constants must have appropriate
values: p = du =0, v = A, o = 62, where 2 = J, - §J is reciprocal to the
adiabatic compressibility. Here mode conversion cannot take place. Scatter
is determined by o, 64 and the droplet size.

However, none of the formulae so far obtained are valid quantitatively
for “mixed” media as solid particles suspended in fluids or gases, fluid or gas
filled pores in solids, gas bubbles in liquids, or fogs and a few special cases,

00 .
— <€ 1, etc.
9y

like emulsions of mercury. etc.. becanse our main assumptions

are not satisfied in these cases.
Even in these cases the results may be of some use, but only in a quali-
tative sense, showing the character of the scatter functions.
Returning to liquids we have now for the velocity of the propagation
R ’ : , . ) o
¢ = . A=t 0, 04 =2¢,00¢ - ¢;00
I5)

whence by (49) the (unique) scattering coefficient will have the form

J ST 4 . . </O 2 .
oy = 16 = qu 13(1_211);9‘))) 4+
15¢2 o} o
o (57)
CLopdcyy ]
04 €
! ka)* .,
(1 — L)‘—’ll o AheF g L)] P (58)
by
where
002 e
P= (2L} —3L=3)—% —4[1 — (1 — L)1 — 2L)] —— =+
9% €5
4L oL L2y 020
Co 9o
Here L = cos . 0 is the angle of the scatter.
.. o, oc*
According to the measurements the term containing —— 0T - —
€5 €y

dominates. The influence of the variation of ¢ is larger than that of p.
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If in formula (36), which relates to continuously distributed inhomo-
geneities, a similar transformation is carried out, we get for fluids and gases

L4 1/~ 2 [
BV g (M| ap v 32 [
15 0

A

V2 ( 2 2
, ad - 32 "CQ] a . k= “:Ti {59)

co
¢ co

and by the above remark

Tad (60)

which is double the value on p. 55 of [3] provided that [i)‘ is identified
c

with the mean square value of the fluctuation of the refraction coefficient.
In faet

Co ém oc
m=—, —— = — ——
c m c
Om*,  {oct,  ng
m? c* c*
Summary

The authors attempt to treat the problem of scatter of elastic waves in heterogeneous
media from a fairly general standpoint. The treatment is separated for media by continuously
and by discretely distributed inhomogeneities (I. and II. part respectively). The novelty of
the I. part consists of obtaining a general scattering formula (not limited to a given shape as
in [1]) giving the dependence of the scattered encrgy (beside other quantities) on the direction
and the scattering coefficients too, which are more suitable for the measurement. As to the
I1. part the wave equation was solved in a higher approximation giving more precise results
than the former works (s. [5]).

At first, continuous wave operation (monotone or ““monochromatic’ waves) will be
discussed, but later it is shown that pulse modulation does not affect the results.

Only the following assumptions are made: a) the inhomogeneities are approximately

2a .
spherical and of the same size and kind: &) ka or o s small compared to 1. In the second

a
- - e - . . . ~( .
part for 0.5% accuracy it is sufficient (theoretically) to have ka <{ 1. 1. e. e =< 1.32 as a more

exact analysis shows®: ¢j the parent material and the inhomogeneities do not greatly differ
either in density or in elastic moduli. The results are valid for solids, liquids and gases, only
for the latter two media the rigidity modulus is zero.

The formulae obtained are compared with those of CHERNOV, KNororr and Hupsow,
and BHATIA.

In the literature measurements with all the necessary details are very rare. o up till
now only experiments of Masox and McSKmMIN were used to check the theory. and a good
agreement was found. ’

& 8. the value 7 in 2.1.
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