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Introduction

The engineer examining a control system is always compelled to disregard
some circumstances and to make several simplifications, as the dynamical
systems occurring in practice are too complicated to bhe examined by con-
sidering each of its characteristics. Negligences and idealizations are naturally
permissible only if real conditions are depicted by the faithfully idealized
model. This sphere of problems is closely connected with the perturbation
theory of differential equations. The engineer making negligences and ideali-
zations empirically, is frequently justified by this theory. On many occasions,
however, this is not the case, since our differential equation sometimes becomes
singular in a certain sense, in consequence of negligences and idealizations,
which may have serious consequences. In this case it is already difficult to
decide under which conditions the problem becomes exact, not to speak of
stability, ete. In the present paper an attempt is made to answer questions
raised by this problem, with the aid of the mathematical apparatus described
herein.

The aim of the paper is to apply the results from the field of the singular
perturbation theorv of differential equations in control engineering., and of
the asymptotic expansion of the solution of singularly perturbated differential
equations. This theme has been the subject of intensive mathematical research
work in the last 15 to 20 vears. A good summary of work performed so far
can be found in Cesary’s book [3]. The physical applications of this mathe-
matical apparatus can be found sporadically in the theory of non-linear
oscillations [1]. [2]. [7].

In their paper [12]. MizLER and MuRRAY refer to certain mathematical
articles, in which some results of this theory (which was in the initial stage
at that time) can be found. Lately KoxorovitcE and Rurmax [4] made
suggestions for the application of this apparatus in control theory. for some
problems of sensitivity analysis. Apart from these two articles (in which
only references can be found), the present paper is (to our knowledge) the
first summary of the methods and results of this mathematical apparatus
which seem to be of interest from the aspect of control theory.
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The theory of asymptotic expansions has a much greater tradition in
physical applications. Especially the asymptotic expansion of the solution
of linear differential equations of the second order has been examined, and the
results obtained were successfully employed, first of all, in quantum mechanics,
but in other sections of physics as well [3], [13], [6]. [5], etc. This apparatus
may have a very significant role in solving technical calculation problems.
The other aim of the paper is to show this possibility.

Qualitative considerations

Let us consider the following system of differential equations:

0w} = Hs, ), 5
where
ph 0.,
0 ha
Auy =]~ , (2)
uhn

z= {5 ...2,}5, H= {H,...H,}, the H; values are bounded, differentiable,
and x is a small positive parameter. h; is equal to zero or one and let us
assume that h; =1, i=1,...5s and h; =0, i =s - 1,...n. In this case
formula (1) can be rewritten in the form

ux = Fx,y. 6, 1), v = G(x v, 1, 1), (3)

where a; =2, F;=H: 1< i1<s,y;=2. Gr=H;;s-+1<1<n
Examine the solution of the system of differential equations (3) in

» -—,'O
» }‘?é=f0 =X

the case of u — 0, with the initial conditions xf_, = x°

o
=4

If 4 = 0, we obtain from (1) the system of differential equations

0= F(x,y,1,0) = F(x. v, 1) (4)
j‘ = G(x, v, 1 0) = G(x, v, 1),

that has the number of dimensions n’ =n — s.
If (3) is written in the form

P F(x,v,t, 1)

.y =G(x, y.t, 1), (5)

i
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it is evident that the system of differential equations has a singularity in
the case of g = 0. This is the reason for the denomination by singular per-
turbation.

Let us examine, on which conditions can the solution of the system
of differential equations (1) be approximated by the solution of the system
of differential equations (4) and how can this solution of (4) be determined.

Let F designate the subspace F(x,y,t) = 0 of the n-dimension phase
space. If the time figures at the right sides of the system of differential
equations (4) explicitly, F' is changing in time. In the following we shall

—

RO
Fig. 1. Trajectories in- the range of “rapid motion”

declare, following ANDRONOV, that a point (x*, ¥*) belongs to the surroundings
O [g(w)] of F at the instant %, if | F(x*, y*, t*) | < g(w).

Let us examine the part of the phase space outsidethe O[1#] (0 < 2 << 1)
surroundings of F. Since

| Flay.0) | > O[], (6)
that is
x> O[] (7)

thus if u is sufficiently small, x will change very rapidly. Let us denominate
this part of the phase space as the range of “rapid motion”.
In this range
&y Gilesnn)
dx; F, (ﬁ v, t)
if u—+0

< O[] 0, (8)

thus if p is sufficiently small, we obtain Fig. 1 by representing the trajectories
characterizing the movement of the system in the projection y; — x; .

If we now examine the movement in the interval At < O[;Ll_“], y
changes only in the order of magnitude of u'~*, accordingly we may declare
that the movement is taking place in the surroundings of the subspace y =
= const.



88 GY. BUTI
Introduce the “rapid time” by the definition

1,-—_—_‘___.*’ (9)

then we may examine, in place of (3), the system of differential equations

dx = F(x,y, 074ty 1)
dt
(10)
dy ,
= uG(x,y, pt -+ iy, 1) =< 0.
dt

If, however, we examine the part of the phase space inside the surroundings
Ofu] of F, then we may consider the system of differential equations (4) in
place of (3), since velocities are limited in the case of y -~ -0 too. Let us
denominate this movement as ““slow motion’ and these surroundings of F
as the range of ‘“slow motion”.

Let us examine the possible motions in the complete phase space.

a. It may occur that all the trajectories of the rapid motion enter the
small surroundings of F. Then the system will here move in the following
as well, since these trajectories do not leave the surroundings. If the system
is originally in the range of rapid motion, then it will be reached by rapid
motion, during a time of i the border of the range of slow motion. It can

1
be proved, that At - Ojuln—|. From now on it will here move according

L "
to (4). In this case we may say that the x; ave such phase variables. which

have no significant role outside the short interval ¢ in the system. This
means from the engineering point of view, that certain parameters of the
system {which are in connection with the x; phase variables) have no significant
influence on the system. These parameters will be named the parasitic para-
meters. Let us examinc what are the criteria of this state.

Consider the syvstem of differential equations (10) valid for the rapid
motion. For the sake of simplicity we assume that the right side of (10) does

not depend explicitly on time, that is

dx _ F(_x', }7 :I"’> . (11)

dt

and now this system of differential equations will be examined in the complete
phase space. The subspace F(x,y,u) == 0 is a state of equilibrium for rapid
motion. Examine whether it will be stable. As is known, this question can
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be answered with the aid of the system of differential equations

£ s {x
A& _ SBEym e g, (12)
dt e Ox,

which is valid for the first variation and where {x y}< F are now parameters.
The stability of (12) can be decided by examining (e.g. with the aid of the
Routh—Hurwitz criterion) the roots of the characteristic equation

L —LE
\oxj

det. = 0. (13)

If all the roots have a negative real part, with respect to all the
{x, v}£ F, the points of F form the stable equilibrium points of rapid motion.

In this case in turn all the trajectories are entering I, i.e. we have
thereby obtained the necessary and sufficient condition of the possibility of
examining our system by the system of differential equations, after the time
i, This means technically that after the time ¢ the effect of the above men-
tioned disturbing parameters can be left out of consideration.

b. Let us assume that F' = F~ - F7, where F'~ denotes those points
where (13) has also roots with positive real part. According to the precedings
the system may not remain continuously in F~. Either it enters F'¥ and then
the movement takes place there according to the laws of slow motion, or it
leaves into the range of rapid motion. This latter is the case with systems
performing relaxation oscillations.

Let us examine what happens if the system moving in F* reaches
the boundary K between F¥ and F~. Since the roots of (13) are continuously
depending on the parameters {x, y;¢ F and in F'7 the real part of the roots
is negative, while in F~ the real part is positive, we shall obtain at the
boundary K either a purely imaginary pair of roots, or a root of zero value.
We shall examine only this last mentioned case. Upon substituting the value
/. = 0 into (13) we obtain the condition that the Jacohian determinant for
F is zero. Thus all the conditions applying to K are

D(x.y) = ':E?m% = 0,

(14
Fi(x,v)=0, i=1...s.

Accordingly K is the n” — 1 =n — s — 1 dimension subspace of the
phase space. By differentiating in (14) the equations Fy(x, v) = 0 with respect
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to I, afterwards using the original system of equations, we find that

s BF, . 7 3 F, } .
:m—lxj+2n LG, =0 i=1,...s. (15)
j=109%; k=1 9k
From this
. D (x, vy .
S L 1G5 ) R (16)
D(x,y)
where we obtain D;(x, y) by substituting the i-th column of the Jacobian
n 3F.
determinant by the column vector — Z L G, . However, it can be seen
k=1 0¥y

Range of rapid moticn”

Zn
Z

Fig. 2. Trajectories in the complete phase space. ) Stable equilibrium point, b) instable
range of “slow motion™, ¢) closed trajectory of the relaxation oscillation

in (16) that the x; values become ~o at the boundary K. It is conceivable
that D, and with it all the x;, are changing signs on passing the boundary.
thus the system cannot pass over to F~. Accordingly the trajectories are
accommodating tangentially to K and the system moves to the range of
rapid motion, afterwards here rapidly (the more rapidly. the smaller is u)
again towards the range of slow motion (Fig. Z).

In the complete phase space closed trajectories may be built up (relaxa-
tion oscillations) from these trajectories, and stable equilibrium states may
exist. The literature discussing such phenomena (from the aspect of non-
linear oscillations) is already very extensive [1]. [14]. In the present paper
only those aspects of the theory have been examined which are most important
in control engineering, neglecting thereby the special problems of the exami-
nation of non-linear oscillations.
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The singular perturbation of a system of differential equations

We have seen that if g — 0, the differential equation

Q)i = Hisutop) ===, (17)
i.e. the equation
pxo=F(x,y,t, 1) x_; =0
(18)
v=Gx,v,t,u) ¥,_,=73°

has a singularity. Therefore, we cannot generally expect the solution of (17)
to be expanded, similarly to the ‘“regular” perturbation calculation, in a
convergent power series with respect to w. This problem, as we have men-
tioned, was discussed in the last 15 to 20 years relatively often (frequently
in such a way that the effect of the “great” parameter 1/u = . has been
examined in the differential equation). and the problem has a very large
literature in mathematics. In clarifving the problem, Wassirgewa [8], [10],
[11] has done much work, who, partly from the results of Trmoxow [9] and
others, has proved that the solution of (17) can be expanded in an asymptotic
series with respect to the powers of i, on certain conditions. In the following
the pertinent results are described.

Let us consider the systems of differential equations (17) and (18).
respectively, in a D domain. Since this system of differential equations is
not linear in the general case. the equation

Flx, yv,1.0) =0 (19)

may have several solutions. Let x = ¢(v, f) designate some of the solutions

of (19). The equations

0= Flx,y,1.0) = F(x, v, 1)

v =G, ¥ 0) = Gx. v, ) vy =+ (20)
or \

x = g(y. 1)

vy =06 y.1) 3 (21)

are called a degenerated system of differential equations and the solution
will be designated by z(t) (concretely by x(r) and 3(z)).

The hypersurface x = @(y, f) is called isolated, if there exists such a
value & > 0, that the equation F(x.y, ) = 0 has no solution beyond x =
= ¢(y, 1) in the subspace |z — ¢(y,t) | << ¢. The equation of rapid motion
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ordered to (18) has the form of

d" .
L Floy.pt -t ), (22)
dt

or since the right side of (22) depends “regularly” on u. we may regard in
place of (22) also the equation

dx .
— == F(x,y", t:":). (23)
dt

By comparing the preceding, v* = y°, t* = 1,, now y* and t* are handled

as parameters.

The isolated ““curve” x = ¢(y, t) is called stable, if the points x = @(y} t¥)
ordered to the values »* and t*, pertaining to any D, are asymptoti-
cally stable points for the equation (23). We designate by D, and call
the influence domain of the stable curve x = ¢(y,t) the set of those points
{x*, ¥*, t*} which have the characteristic that the solution pertaining to the
initial condition x* tends to g(v*, t¥*). Hereafter we may declare the following
theorem, the content of which has been discussed in detail in the qualitative
considerations of this paper [9].

If the solution x = ¢(v. 1) of the equation F(x, v.1) = 0 is an isolated
stable curve in the bounded closed domain D and if the point determined
by the initial conditions of the system of differential equations (18) falls into
the influence domain of ¢(x, 1) ({x% % t,}€ D,), further if the solution y(t)
and x(f) of the degenerated system of differential equations (21) falls into
D in the domain ¢, << t < T, then the solution z(f, 1) of the svstem of dif-
ferential equations (17) tends to the solution 3(¢) of the system of differential
equations (21), in the case of g — 0. By writing this in detail,

lmox(e, i) = () = ¢(y.1): f, <t << T, < T, (24)

=)
and
}11_113 vty =) t,<e<<T, T, . (25)
It should be noted that convergence (25) is uniform in the domain
to < t < T, convergence (24) in turn will be uniform only in the domain
Iy < t; < t < T;. This is in connection with the fact that x(¢) has a discon-
tinuity at the point #;, as we have already seen in the preceding qualitative
considerations. It should further be mentioned that the stability of ¢(¥,1)
is a very essential requirement, as is also evident from the foregping.
It follows from this theorem that if u is sufficiently small, the solution
z(t, u) can be well approximated by the solution z(¢). if we omit the small
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surroundings of i, for the variables x. This fact has already been evaluated
qualitatively, in the following we are going to examine how the approximative
expression for the solution can be determined by series expansion with respect
to the powers of u .

Determination of the asymptotic series expansion

Let us consider the systems of differential equations (17) and (18),
respectively. We assume in the case of this system of differential equations
the convergences (24) and (25). Afterwards, by introducing the new variable

t—1 . . - .
1 = —2, the “rapid” time, equations (17) and (18), respectively, can be
o

{

rewritten in the forms

& (B 00 Heerty 75 2oy = . (26)
and
% = F(x,y,t, — p» 1, 1) X o=
i 27)
—(i—f =puGla, vty = pr, u); v =7y",

respectively. (E denotes the unit matrix.) We try to determine the solution
of this svstem of differential equations formally by the series

1 1

(1) = 5, (1) - 12, (1) = (220 (1) — . .. (28)

Since the system of differential equations depends regularly on u, we
mayv proceed according to the well known rules of the perturbation calculus.
We obtain systems of differential equations which can be solved recursively,
from which the first two are the following.

1
dx 1ot iy
0 -y : g 2
0. d = F(-\m YosLys 0)- Tg z=0 = 0
T
dl
Yo 0 . 0
—= = U Yoiz=0 = ¥
dt
1
d-’\‘-l = L oL ! ; : x|
L TZF\oﬁl*Fyowltho Fui almg=10
T
1
dy, 11

dz 1
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where the first lower index indicates the partial derivation, while the second
1 1
lower and upper indices indicate, that z,, or z;, etc. has been substituted in
1 11
the argumentum of the function, as e.g. Fyy = Fy(x5, 0. 15: 0) .

The initial conditions, apart from the 0-th equation, are all zero. The
whole system of equations (29) (apart from the 0-th system) is linear, and also
the order of the system of differential equations to be solved in a single step

have heen reduced by this recursive solution (n’ and s, respectively). Beyond
1
this, the equations for y; can be solved by a simple integration.
We will try hereafter to find the solution of (17) and (18) in the form
of the series

a

(1) =200+ pa () + @ n () - (30)

formally, with the aid of the known methods of the perturbation calculus.
The form of the 0-th equation is

0=F (xo,;'m t), that is ;x.o = ¢(¥y 1) (31)

2

dv, 2 2
= Gy, Vo
py (x9: Yo- 1)

i.e. the degenerated equation as defined in (20) and (21). The first equation is

9

-d—ﬁ = Fxoi.] °~— F\'O,\'L — F“

dt . ‘
D1 _ Gy = Gy = G (32)
ai '

and the systems of differential equations obtaimed in this way are similarly
linear from the lst term on, they can be solved recursively. The situation is
different in so far, that in the first group of the equations there will be no

o

differential equation and v, should be expressed from them algebraically. The
initial conditions are determined by the following special formula:

2 (DR .
Yi= )’k':z::fu:**‘l‘bl d G(/\ y T dr, k=1.2.... (33)

0
where G_1)(7) is a term of the formal series expansion

1 1 1 1 1
. T SV Vo g L A L
Glxg— px; + 120 . ¥y Uy WY+ BT s u) =

o

= é"(0)( T) - @ G(l) (7) +u? G(v)( )+ ... (34)
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We have thus determined the terms of the series (30). Let us consider
a third formal expansion of the svstem of differential equations (17). We
obtain this by expanding the terms of the previously determined series (30)
according to the powers of (f — 7). and afterwards by rearranging the double
series obtained in this way with respect to the increasing powers of y and
(t — t5). Accordingly

2 2 2

s=ag b ag(f— ) g =) (35)

The partial sums of the series (28), (30) and (35) up to the n-th power

1 1
are designated by (z)p; (s)n and (3),. and in (z), in place of the variable
7 we have again substituted ¢ = utv - #,. Consider hereafter the expression

Gr- (36)

Lty

Zn == (;)n -+ (g)n -

WassiLjewa has proved, that in the case of a sufficiently small u, (36)
is the n-th partial sum of the (uniformly) asymptotic series expansion of the
solution of problem (17) in the interval ¢, <t < Ty, that is

() — Zy | < C ! (37)

where C is a constant, independent of n and ¢,
WassiLyEwa has also given another formulation of these results. By
introducing the funection

1 n L2
Po(z) =z (7) — Z T (38)
i==0

she has proved. that in the case of sufficiently small u .,

dlc
| d.[]{

P, () <Ce*  k=0.1,... (39)

where C and z > 0 are constants independent of n. It is evident from definition

(38) that
Z,= 3t (50 + (). (40)

By comparing this, however, with (39), we can see that the partial sum (z),
can be used for the approximation of x{t, ©), beyond the small surroundings
of t,, that is

T (41)

A\

2
%Z(t.’ ILL) - (‘:")n1 < CALLIZf-l; tO < tl \: l 1
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It is similarly conceivable that inside the small surroundings of ¢, the partial
1

sum (z), can be used for the approximation of z(t, u). Descriptively we may

say of (30) that if ¢ is in the small surroundings of t,, then (z), and (3),1 are

compensating each other and z(z, u) is approximated by the expression for

the “rapid motion™, while if ¢ is outside the small surroundings of t;,, then

(i:)n and (3), will compensate each other and the expression for the “slow
motion™ will be valid for z(t, #). We have thereby solved the problem of the
“connection” of the rapid and slow motion. Otherwise it is conceivable that
with the aid of the function P,(z) the initial conditions (33) can be written
in the form

o= Py (G)dr  R=1.2.... (42)

0

e 1o

The examination of the performance of the system of
differential equations in the domain 1, <t <

This means a qualitatively new problem to a certain extent, if we
include the whole domain ¢ > ¢, in our considerations. However, under certain
conditions our results can be extended to this case as well. Let us assume,
that the (only) solution of the equation F(x, v.f) = 0 in the domain D (D
is bounded as regards to x and y., but includes the half-line 1, <t < =),

i+
ur

x = @(y.t) . Assuming that the points x* = @(v*, t¥) are asymptotically
stable points for the “rapid motion” equation of the form (23), that is the
real part of the roots of the equation

det[3F: 2E| =0 (43)

L Olr},‘

is smaller than zero in the interval f; <{ 1 << =c. Let us further assume that
also the real part of the roots of the equation

det (4 — 2E) =0 (44)
is smaller than zero. where

o F,

[
¢ o.\,] ]

4= Pfi _ 86, (45)

3y 3 x;

-1 GFi]
8)'/: :

This latter condition is stipulated in the interval T < t < >, where
T may have any value, but is fixed.
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Under these conditions relations (24) and (25) will be valid also in the
intervals £, << t < > and t; < t < =<, respectively, and the formulae forseries
expansion are valid for the complete interval 1, <t < =~ .

Summary

In practice the engineer is always compelled to disregard certain circumstances and
to make idealizations when examining dynamical systems. In some cases — although we feel
empirically the idealizations to be. “small”™ — these idealizations may cause modifications
of such type in the system of differential equations describing the performance of the system,
that our model will perform substantially differently from the original system. The aim of
this paper is to describe the mathematical apparatus suitable for the examinations of problems
of this kind. First the phenomena are examined partly qualitatively, afterwards the problem
is formulated exactly as well. Hereafter the construction of approximative solutions is dis-
cussed, finally the conditions are examined, under which we may include in the examinations
the complete domain t, <t < = of the independent variable.
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