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Introduction 

The engineer examining a control system is always compelled to disregard 
some circumstances and to make several simplifications, as the dynamical 

systems occurring in practice are too complicated to be examined by con
sidering each of its characteristics. ::\ egligences and idealizations are naturally 
permissible only if real conditions are depicted by the faithfully idealized 
model. This sphere of problems is closely connected with the perturbation 
theory of differential equations. The engineer making negligences and ideali
zations empirically, is frequently justified by this theory. On many occasions, 
however, this is not the case, since our differential equation sometimes becomes 
singular in a certain sense, in consequence of negligences and idealizations, 
'which may have serious consequences. In this case it is already clifficult to 
decide under 'whieh conditions the problem becomes exact, not to speak of 
stability, etc. In the present paper an attempt is made to answer questions 
raised by this problem, with the aid of the mathematical apparatus described 
herein. 

The aim of the paper is to apply the results from the field of the singular 
perturbation theory of differential equations in control engineering, and of 
the asymptotic expansion of the solution of singularly perturbated differential 
equations. This theme has been the subject of intensiYe mathematical research 
,\-ork in the last 15 to 20 years. A good summary of work performed so far 
can he found in CESARY'S hook [3]. The physical applications of this mathe
matical apparatus can he found sporadically in the theory of non-linear 
oscillations [1], [2], [7]. 

In their paper [12], }IILLER and }It.;RRAY refer to certain mathematical 
articles, in ,dlieh some results of this theory (which was in the initial stage 

at that time) can be found. Lately KOKOTOVITCH and R UT.>L-\.:\" [4] made 
suggestions for the application of this apparatus in control theory, for some 
problems of sensitivity analysis. Apart from these two articles (in which 
only references can he found), the present paper is (to our knowledge) the 
first summary of the methods and results of this mathematical apparatus 
which seem to be of intcrest from the aspect of control theory. 

1 Periuuic<l I''llytechIlicu El. Xj:!.. 
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The theory of asymptotic expansions has a much greater tradition in 
physical applications. Especially the asymptotic expansion of the solution 
of linear differential equations of the second order has been examined, and the 
results obtained 'were successfully employed, first of all, in quantum mechanics, 
but in other sections of physics as well [3], [13], [6], [5], etc. This apparatus 
may have a very significant role in solving technical calculation problems. 

The other aim of the paper is to show this possibility. 

Qualitative considerations 

Let us consider the following system of differential equations: 

DCLl)~ = H(z, t"Ll), (1) 
where 

DCLl) = (2) 

z = {ZI' •• zn}, H = {HI' .. Hn}, the Hi values are bounded, differentiable, 
and ,Ll is a small positive parameter. hi is equal to zero or one and let us 
assume that hi = 1, i = 1, ... 8 and hi 0, i = 8 + 1, ... 11. In this case 
formula (1) can be rewritten in the form 

fl;~ = F(x, X' t, ,I.() , X G(x, y, t, ,u), (3) 

'where Xi = Zi, Fi = Hi: 1 <; i <; s, Xi Nz, Gi = Hi: 8 + 1 <; i <; 11. 

Examine the solution of the system of differential equations (3) in 
the case of .u -> 0, ·with the initial conditions xit to = xo, Y!t = to yo. 
If .u = 0, we obtain from (1) the system of differential equations 

0= F(x,y, t, 0) = F(x,X, t) (4) 

5' = G(x, -,v, t, 0) = G(x, x' t) , 

that has the number of dimensions n' = n 8 • 

If (3) is written in the form 

y= G(x,y,t,,u) , (5) 
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it is evident that the system of differential equations has a singularity in 
the ease of fl = O. This is the reason for the denomination by singular per
turbation. 

Let us examine, on which conditions can the solution of the system 
of differential equations (1) be approximated by the solution of the system 
of differential equations (4) and ho"w can this solution of (4) be determined. 

Let F designate the subspace F(x, y, t) = 0 of the n-dimension phase 
space. If the time figures at the right sides of the system of differential 
equations (4) explicitly, F is changing in time. In the following we shall 

Yj 

F 

X; 

Fig. 1. Trajectories in the range of "rapid motion" 

declare, following ANDRONOV, that a point (x*, y*) belongs to the surroundings 

o [g(u)] of F at the instant t*, if ! F(x*,y*, t*) I < g(u). 
Let us examine the part of the phase space outside the 0 LLl~] (0 < IX < 1) 

surroundings of F. Since 

! F(x, y, t) ! ;;;, OLLe] , (6) 
that IS 

(7) 

thus if ,u is sufficiently small, x will change very rapidly. Let us denominate 
this part of the phase space as the range of "rapid motion". 

In this range 

r dv]: 
'-"- === tU 
i dXi. 

(8) 

thus if ,Ll is sufficiently small, we obtain Fig. 1 by representing the trajectories 
characterizing the movement of the system in the projection ,"lj Xi • 

If we now examine the movement in the interval .:::It < O[pl-~], Y 
changes only in the order of magnitude of l-~, accordingly we may declare 
that the movement is taking place in the surroundings of the subspace y = 

= const. 

1 * 
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Introduce the ""rapid time" by the definition 

T= (9) 

then we may examine, in place of (3), the system of differential equations 

dx dr = F(;""),, ,Lt T 

(10) 

If, however, we examine the part of the phase space inside the surroundings 
O[fi] of F, then we may consider the system of differential equations (4) in 
place of (3), since velocities are limited in the case of ,U ~ +0 too. Let us 
denoluinate this nlovement as "slow lnotion" and these surroundings of F 
as the range of "slow motion". 

Let us examine the possible motions in the complete phase space. 
a. It may occur that all the trajectories of the rapid motion enter the 

small surroundings of F. Then the system will here move in the following 
as well, since these trajectories do not leave the surroundings. If the system 
is originally in the range of rapid motion, then it 'will be reached by rapid 
motion, during a time of jt the border of the range of slow motion. It can 

hc proved, that.:Jt 0 ,',u In ~l' From now on it will here move according 
LP. 

to (4.). In this case we may say that the Xi are such phase variables, 'which 
have no significant role outside the short interval -'t in the system. This 
means from the enginecring point of view, that certain parameters of the 
system (-which are in connection 'with the Xi phase variables) have no significant 
influence on the system. Thesc parameters will he named the parasitic para
meters. Let us examine what are the criteria of this state. 

Consider the system of differential equations (10) valid for the rapid 
motion. For the sake of simplicity we assume that the right side of (10) does 
not depend explicitly on time, that IS 

dx a; = F(x,y,li) , (11) 

and now this system of differential equations 'will be examined in the complete 
phase space. The subspace F(x,)" ,u) 0 is a state of equilibrium for rapid 
motion. Examine whether it will be stable. As is known, this question can 
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be answered with the aid of the system of differential equations 

i = 1 ... s, (12) 

which is yalid for the first yariation and "where {x y} E F are now parameters. 

The stability of (12) can be decided hy examining (e.g. ,\ith the aid of the 
Routh- Hurwitz criterion) the roots of the characteristic equation 

1 [8 Fi 'E') ° (et. -"-. - - I. = . 
. 0 Xj 

(13) 

If all the roots haye a negatiye real part, with respect to all the 

{x, y} E F, the points of F form the stable equilihrium points of rapid motion. 
In this case in turn all the trajectories are entering F, i.e. we haye 

thereby ohtained the necessary and sufficient condition of the possibility of 
examining our system by the system of differential equations, after the time 
.:::It. This means technically that after the time .:::It the effect of the aboye men
tioned disturbing parameters can be left out of consideration. 

b. Let us assume that F = F- + F+, where F- denotes those points 

where (13) has also roots with positive real part. According to the precedings 
the system may not remain continuously in F-. Either it enters F+ and then 
the moyement takes place there according to the laws of slow motion, or it 
leayes into the range of rapid motion. This latter is the case with systems 
performing relaxation oscillations. 

Let us examine 'I-hat happens if the system moying in F-i- reaches 
the boundary K between F-i- and F-. Since the roots of (13) are continuously 
depending on the parameters {x, y} E F and in F+ the real part of the roots 
is negatiYe, while in F- the real part is positive, "we shall obtain at the 
houndary K either a purely imaginary pair of roots, or a root of zero yalue. 
\Ve shall examine only this last mentioned case. Upon substituting the value 
;. = ° into (13) we obtain the condition that the J acobian determinant for 
F is zero. Thus all the conditions applying to K are 

D(x,y) _~(lj~Fs) 
8(x1 · ..• 'IJ 

0, 

Fi (x,y) = 0, i = 1 ... s. 
(14) 

Accordingly K is the n' - 1 = n s - 1 dimemion subspace of the 
phase space. By differentiating in (14) the equatiom Fi(x, y) = ° with respect 
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to t, afterwards using the original system of equations, "we find that 

From this 

Xi= 
Ddx,y) 

D(x,y) 

i = 1, .. . s. 

1, .. . s, 

(15) 

(16) 

where we obtain Di(x, y) by substituting the i-th column of the J acobian 

~~ aFi G 
determinant by the column vector;>: ". However, it can be seen 

t:::l ay" 

Fig. 2. Trajectories in the complete phase space. (1) Stable equilibrium point, b) instable 
range of "slow motion", c) closed trajectory of the relaxation oscillation 

in (16) that the Xi values become = at the boundary K. It is conceivable 
that D, and with it all the ;t~i' are changing signs on passing the boundary, 
thus the systcm cannot pass over to F- . . ·\ccordingly the trajectories are 
accommodating tangentially to K and the system moves to the range of 
rapid motion, afterwards here rapidly (the more rapidly, the smaller is ,u) 
again towards the range of slo"\\' motion (Fi!!. 2). 

v v ~ 

In the complete phase space closed trajectories may be built up (relaxa-
tion oscillations) from these trajectories, and stahle equilibrium states may 
exist. The literature discussing such phenomena (from the aspect of non
linear oscillations) is already very extensive [1], [14]. In the present paper 
only those aspects of the theory have been examined "which arc most important 
in control engineering, neglecting thereby the special problems of the exami
nation of non-linear oscillations. 
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The singular perturbation of a system of differential eqnations 

",Ve have seen that if /-1 -+ 0, the differential equation 

D(p) z H(z, t, ,Lt) (17) 

i.e. the equation 
/-1 x = F(x,y, t, ,ll) Xit=to XO 

(18) 
y G(x,y, t,,u) Yt=!o = yO 

has a singularity. Therefore, we cannot generally expect the solution of (17) 
to be expanded, similarly to the "regular" perturbation calculation, in a 
convergent power series with respect to p. This problem, as we have men
tioned, "was discussed in the last 15 to 20 years relatively often (frequently 
in such a way that the effect of the "great" parameter lip = ;. has been 
examined in the differential equation), and the problem has a very large 
literature in mathematics. In clarifying the problem, WASSILJEWA [8], [10], 
[11] has done much 'work, 'who, partly from the results of Tmo'.'<ow" [9] and 
others, has proved that the solution of (17) can be expanded in an asymptotic 
series with respect to the powers of /-1, on certain conditions. In the following 
the pertinent results are described. 

Let us consider the systems of differential equations (17) and (18), 
respectively, in a D domain. Since this system of differential equations is 
not linear in the general case, the equation 

F(x, y, t, 0) = 0 (19) 

may have several solutions. Let x = q;(y, t) designate some of the solutions 
of (19). The equations 

o = F(x, y, t, 0) = F(x, y, t) 

G(x, y, t, 0) G(x, y, t): y 1=1,) y'J (20) 
or 

x = cp(y, t) 
5· = G(x, )', t) (21) 

are called a degenerated system of differential equations and the solution 
'will be designated by z(t) (concretely by c1:.(t) and }(t)). 

The hypersurface x cp(y, t) is called isolated, if there exists such a 
value " > 0, that the equation F(x, y, t) 0 has no solution beyond x = 

= qJ(Y, t) in the subspace 'z cp(y, t) ! < " . The equation of rapid motion 
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ordered to (18) has the form of 

ax 
aT 

GY. BOTl 

(22) 

or since the right side of (22) depends "regularly" on p, we may regard in 
place of (22) also the equation 

ax 
dT 

F(x. y*. t*). 
'./ " (23 ) 

By comparing the preceding, y* )'0, t* = to' now y* and t* are handled 
as parameters. 

The isolated "curve" x = cp(y, t) is called stable, ifthe points x = cp(y;' t*) 
ordered to the values y* and t.*, pertaining to any D, are asymptoti
cally stable points for the equation (23). We designate by Dq; and call 
the influence domain of the stable curve x cp(y, t) the set of those points 
{x*,y*, t*} which have the characteristic that the solution pertaining to the 
initial condition x* tends to cp(y*, t*). Hereafter we may declare the follo'wing 
theorem, the content of "which has been discussed in detail in the qualitative 
considerations of this paper [9]. 

If the solution x = cp(y, t) of the equation F(x,)" t) = 0 is an isolated 
stable curve in the bounded closed domain D and if the point determined 
by the initial conditions of the system of differential equations (18) falls into 
the influence domain of (p(x, t) ({XO, yO, to}E D<p), further if the solution y(t) 
and x(t) of the degenerated system of differential equations (21) falls into 
D in the domain to <: t ,,;;;; To, then the solution z(t,.u) of the system of dif
ferential equations (17) tends to the solution z(t) of the system of differential 
equations (21), in the case of .u ->- O. By 'writing this in detail, 

lim .¥(t, p) = x(t) = I)"("y, t): tu < t (24) 
!'-~ 0 

and 
limy(Lp) = y(t); tu < t < T1 < Tu' 
/I~~O 

(25) 

It should be noted that convergence (25) is uniform in the domain 
to <: t <: Tv convergence (24.) in turn 'will be uniform only in the domain 
to < t1 <: t <: T 1• This is in connection 'with the fact that x(t) has a discon
tinuity at the point to' as we have already seen in the preceding qualitative 
considerations. It should further be mentioned that the stability of cp(y, t) 
is a very essential requirement, as is also evident from the foreg?ing. 

It follows from this theorem that if.u is sufficiently small, the solution 
z(t, p) can be well approximated by the solution z(t), if we omit the small 
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surroundings of to for the yariables x. This fact has already been evaluated 
qualitatively, in the following we are going to examine how the approximative 
expression for the solution can be determined by series expansion 'I\ith respect 

to the powers of II . 

Determination of the asymptotic series expansion 

Let us consider the systems of differential equations (17) and (18), 
respectiyely. We assume in the case of this system of differential equations 
the convergences (24,) and (25). Afterwards, by introducing the new variable 

t - t 
T = ___ 0 , the "rapid" time, equations (17) and (18), respectiYely, can be 

,u 
rewritten in the forms 

and 

dz ( -= uE 
dT ' 

dx 

dT 
F(x,y, to --'- ,a T, ,u); 

dy . 
-~- = ,u G(x,y, to -;- ,uT, ,u); 
dT 

(26) 

(27) 

respectiyely. (E denotes the unit matrix.) \Ve try to determine the solution 
of this system of differential equations formally by the senes 

1 1 1 1 

Z (T) = Zo (T) -:- .u Z1 (T) -;- .u~ Z~ (T) - (28) 

Since the system of differential equations depends regularly on p, 'we 
may proceed according to the 'well known rules of the perturbation calculus. 
We obtain systems of differential equations which can he solved recursh-ely, 
from which the first t\\"'o are the follo'wing. 

o. 

1. 

1 
dx 1 1 
__ 0 = F(xwYo,to' 0): 
dT 

1 

dyo = 0: 
dT . 

1 
dX1 1 I, . 1 1, I 1 

dT =FXO X 1 -:- F YO )1 1 F to 

1 

dY1 

dT 

1 1 

G( X O' )"0' t(P 0); 

1 

)'0 :.=0 =)'0 

1 

Xl ;.=0 = 0 

1 

Y ~ 1 0, (29) 
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where the first lo·wer index indicates the partial derivation, 'while the second 
1 1 

lower and upper indices indicate, that zo, or Z1' etc. has been substituted in 
1 1 1 

the argumentum of the function, as e.g. FyO = Fy(xo, )'0' to' 0) . 
The initial conditions, apart from the O-th equation, are all zero. The 

·whole system of equations (29) (apart from the O-th system) is linear, and also 

the order of the system of differential equations to be solved in a single step 
have heen reduced by this recursive solution (n' and s, respectively). Beyond 

1 

this, the equations for Yi can he soh-ed hy a simple integration. 
We will try hereafter to find the solution of (17) and (18) in the form 

of the series 
o 0 

;0 (t) -'- f~;1 (t) (30) 

formally, with the aid of the known methods of the perturbation calculus. 
The form of the O-th equation is 

o .) ., 
0= F (;;0')'0' t), that is ~'\:o = q:()'o' t) (31) 

i.e. the degenerated equation as defined in (20) and (21). The first equation is 
., 

d·~o 
dt 

.) .) ') q 

FXO;~l Fyoh -:- Pu 

0)') .).) .) 

= GXO ;;1 - (;\,O)'l -;- G" 
dt -' 

(32) 

and the systems of differential equations obtained in this way are similarly 
linear from the 1st term on, they can be solved recursively. The situation js 
different in so far, that in the first group of the equations there will he no 

differential equation and x" should be expressed from them algebraically. The 
initial conditions are determined by the follo·wing special formula: 

k = 1,2,. _. (33) 

1 

·where G(k_l)( r) is a term of the formal series expansion 

1 : 1 ') 1. 1 1 1 
G(xo I ~ Xl - ,11- X~ I' . _ ')'0 -+- ,ll Y1 -T- ~2)'2 + -.. , ,ll r -'- to' ,ll) = 

1 1 1 

= G(O) (r) -T- ,u G(l) (r) + ~2 G('l) (r) + ... (34.) 
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We have thus determined the terms of the series (30). Let us consider 
a third formal expansion of the system of differential equations (17). We 
obtain this by expanding the terms of the previously determined series (30) 
according to the powers of (t - to), and afterwards by rearranging the double 
series obtained in this way 'with respect to the increasing powers of.u and 

(t - to)' Accordingly 
., 

+ ;ij (t tu)i ,u j + ... (35) 

The partial sums of the series (28), (30) and (35) up to the Tt-th power 
1 2 ? 1 

are designated by (z)m (:;;)n and (=)n, and in (z)n in place of the variable 
r we have again suhstituted t = pr to' Consider hereafter the expression 

(36) 

WASSILJEWA has proved, that in the case of a sufficiently small ,il, (36) 
is the n-th partial sum of the (uniformly) asymptotic series expansion of the 
solution of prohlem (17) in the interval to <; t <; Tl' that is 

-( ) Z' C ne-I i'" t, P - n: < .u (37) 

'where C is a constant, independent of nand t. 
WASSILJE'iVA has also given another formulation of these results. Bv 

introducing the function 

1 

Pn (z) = Zn (T) (38) 

shp has proved, that III the case of sufficiently small .u ' 

k= 0, L ... (39) 

where C and :x > 0 are constants independent of n. It is evident from definition 

(38) that 
II .) 

Zn = 2,' ,u" (;" (t) Pdz») . (40) 
k=O 

By comparing this, however, 'with (39), 'we can see that the partial sum (Z)n 
can be used for the approximation of z(t, ,u), beyond the small surroundings 

of to' that is 
., 

,z(t, ,u) - (;)" i < C,u"-l; ( 41) 
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It is similarly conceiyable that inside the small surroundings of to the partial 
1 

sum (z)n can he used for the approximation of z(t, p). Descriptively we may 
.) 

say of (36) that if t is in the small surroundings of to' then (~)n and (~n are 
compensating each other and z(t, ,u) is approximated hy the expression for 
the "rapid motion", while if t is outside the small surroundings of to' then 

1 -;) 
(z)n and t)n will compensate each other and the expression for the "slow 
motion" will he yalid for z(t, .0). We have therehy soh-ed the prohlem of the 
"conneetion" of the rapid and slow motion. Otherwise it is conceivable that 
with the aid of the function Pn(z) the initial conditions (33) can he 'written 
in the form 

:2 1 

)'k!~tu = r P k - 1 (G) dT 
() 

k = 1,2, ... 

The examination of the performance of the system of 
differential equations in the domain to < t < = 

(42) 

This lIll'ans a qualitati\-ely ne'w problem to a certain extent, if we 
include the 'whole domain t ;> to in our considerations. Howeyer, under certain 
conditions our results can he extended to this case as well. Let us assume, 
that the (only) solution of the equation F(_-r,)" t) 0 in the domain D (D 
is hounded as regards to x and )', hut includes the half-line to < t <=), 
is x = r(y, t). Assuming that the points x* q'(Y*' t*) are asymptotically 
stahle points for the "rapid motion" equation of the form (23), that is the 
real part of the roots of the equation 

( 43) 

is smaller than zero in the interval to <; t < =. Let us further assume that 
also the real part of the roots of the equation 

IS smaller than zero, where 

-1- a 
8v 

J J 

det (A I.E) = 0 (44) 

8 8 F.)-l a F.] 
8 x)' ·t 8 x

I 

• 8\,1 _~-= 
'. J. .,. J - -

(45 ) 

This latter condition IS stipulated 1Il the interval T < t < -x:: , ,dlCre 
T may have any value, hut is fixed. 
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Under these conditions relations (24) and (25) will be ...-alid also in the 

intervals to < t < = and to < t < =, rcspeeti...-ely, and the formulae for series 
expansion are valid for the complete interval to < t < = . 

Sununary 

In practice the engineer is always eompelled to disregard certain circumstances and 
to make idealizations when examining dynamical systems. In some cases - although we feel 
empirically the idealizations to be "small" - these idealizations may cause modifications 
of such type in the system of differential equations describing the performance of the system. 
that our model will perform substantially differently from the original system. The aim of 
this paper is to describe the mathematical apparatus suitable for the examinations of problems 
of this kind. First the phenomena are examined partly qualitatively. afterwards the problem 
is formulated exactly as well. Hereafter the construction of approximatiye solutions is dis, 
cussed, finallv the conditions are examined. under which we mav include in the examinations 
the co~nplete' domain to <: t < = of the independent yariable. ' 
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