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Introduction 

The aim of the present paper is to examine some problems of plane, 
straight and static ally indeterminate beams. 

A structure is called static ally indeterminate if some of the internal and 
external forces cannot be determined from statical equations. Statical indeter~ 
minateness may have its origin e.g. in the statical indeterminateness of the 
supports of the structure, i.e. the reactive forces cannot be determined from 
statical equations. In such cases some of the internal forces cannot be deter­
mined either, consequently the structure is indeterminate both externally 
and internally. It may, however, occur that all the external forces are known 
or can be determined from statical equations, but the same is not valid for all 
the internal forces. In this case we may speak of internal indeterminateness. 
If the number of independent statical equations is k, the number of unknown 
forces ll, then the degree of statical indeterminateness is the difference of the 
above t·wo values, i.e. 

n-k = H. 

The other equations necessary for determining the unknown forces are 
to be set up on the basis of the correlations for the deflections of the structure. 
The so-called work theorems, such as those of Castigliano and of Betti, are of 
general validity and have a great significance on examining indeterminate 
structures, just on account of their general character. The Theorem of three 
moments (Clapeyron's equations), which has an important role in the theory 
of continuous straight heams, can also he derived from the ahove-mentioned 
work theorems. 

1. The Theorem of three moments in its form, valid for statically deter­
minate heam structures, expresses that the displacement of some point on the 
heam structure is in a determined direction, or the angular displacement of 
some heam cross section around a given axis is equal to the partial derivative 
of the deflection work with respect to the force acting at the examined point 
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in the direction of displacement, or with respect to the couple having a moment 
parallel to the axis of rotation, respectively. If we wish to employ the theorem 
for statically indeterminate structures, the constraints which are redundant 
from the aspect of supports, should be eliminated and in their place suitable 
forces and couples are to be made to act on the structure. Let Xl. Xc • ••• , Xi 

designate these forces and couples. Since the eliminated constraints were 
destined to prevent linear or angular displacements at certain points of the 
structure, we may "write for these points, by force of the thcorem, that 

au aU au __ ° --=0, --=0, 
aX1 ax~ aXi 

As a final result, we may write in this way as many equations as the degree of 
statical indeterminateness. 

2. According to Betti's theorem, if the suitably supported structure is 
loaded by two differcnt systems of forces, then, depending on the sequence of 
loads in time, the work Ul~ performed by the first system during the deflec­
tion caused by the second system of forces is equal to the work U21 performed 
by the second system during the deflection caused by the first system. 

Let e.g. lE< denote the deflection caused by the load at point J( of a heam 
which has a static ally determined and frictionless support. "We shall regard 
the system of forces loading the heam as onc of the force systems. The sccond 
force system consists of the unit force acting at point J( in direction e, and 
of thc pertaining reactive forces. In the absence of friction, the reactiYe forces 
do not perform any ,,"ork during the deflection. 

If the unit force, i.e. the second force system is applied to the beam fiTst, 
and the actual load of the heam afterwaTds, then the unit force "will perfOl'm 
the work 

U ~l = J;;e 

while the actual load is being applied. The scalar projection of the required 
displacement jle in the direction e can thus be easily calculated with the knowl­
edge of U21' which can be determined by the aid of Betti's theorem (U:.l = 

= Ui!) on the one hand, and on the basis of the fact that the work of external 
forces is accumulated in the beam in the form of potential energy (spring eneTgy), 
on the other hand. 

The angulaT displacement of some cross section around a certain prescrib­
ed axis can be determined in a similar way. 

If we want to employ the theorem for static ally indeterminate structures, 
then we have to make first the structure static ally determinate, as in the case 
of employing Castigliano's theorem. In the place of the removed constraints, 
linear and angular displacements have zero value. Accordingly the work of 
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unit forces and couples employed here in the suitable direction will be zero: 

U 21 =];;e = 0 
or 

U"21 = ?If) = O. 

We may write just as many equations with the aid of Betti's theorem as the 
degree of indeterminateness. 

3. The theorem of three moments (Clapeyron's equations). Clapeyron';,: 
equations serve to determine the bending moments at the vertical plane of 
the intermediate supports of a continuous beam. By each Clapeyron's equation 
the correlation between moments arising in the vertical planes of three subse­
quent supports is established. In the case of continuous beams one support is 
a joint, while the others are roller supports. The force arising at the joint is 
determined by two data, ·while those at the other supports by one value each, 
consequently n + 1 equations are neccssary for determining the reactivc forces 
of an n-support beam. In the case of a beam with n-l supports 'wc may write 
n-2 Clapeyron's cquations, thus thcse are sufficient, together with the three 
equilibrium equations, for the' determination of the reactive forces of a multi­

support beam. 
4. Whichever of the' described methods is being applied, we obtain a 

system of equations consisting of as many equations as the number of un­
known forces. In the general case the solution of the system of equations requires, 
even for a relatively small number of unknown values, a tedious and lengthy 
work. 

The' solution will he simplified if ·we succeed to reduce the system of equa­
tions to smaller groups of equation,:, indepen dent of each other. The most favour­
able case is when each equation contains only one unknown valut', that means 
that all the unknown quantities can be determined as the solution of a single 

equation, independently of the others. 
Statically indeterminate beam structures can be made statically deter­

minate by inserting joints, and the moments of couples, made to act at the 
place of the joints as a substitute for the undone material coherencc, can be 
determined e.g. with the aid of the 'work theorem. By employing this method, 
joints used to be inserted above the supports of continuous beams. This method 
leads to the Theorem of three moments (Clapeyron's equations). If, however, 
the beam is transformed to a static ally determinate Gerber's beam, with the 

aid of suitably arranged joints in the individual spans, then we obtain such 
a system of equations in which each equation contains only a single unkno·wn 

quantity. 
5. In the following we calculate for the case of a straight flexural mem­

ber the value of the ·work U~l = U 1~ which is necessary for the application of 
Betti's theorem. 
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In the case of bending 

(1) 

is the deformation work (the x axis being the neutral axis of the cross section, 

and NIx the scalar projection in the x direction of the moment vector acting 

on the cross section). 
By employing Betti's theorem, the beam is loaded by two systems of 

forces. Accordingly the moment function will also be the sum of the moment 
functions originating from the two loads. Let 1'vlx denote the bending moment 
pertaining to the actual load of the beam, while m the second unit load. The 

total moment is 

(2) 
and 

Thus, if lvI and ill are parallel, 

(3) 

It is obvious that the first term is the work Un performed by the first 
system of forces during the deflection caused by itself. Thc last term is U2~ 

and thus 
L 

.

,\. Alxmxd __ f U ~l =, I xE ~ -- yk' 

In the case of a beam with constant cross scction the term 

brought in front of the sign of integration. 

can be 

On calculating the deformation 'work, the work originating from tension 
and shearing is generally neglected beside the work originating from bending. 

*** 
The aim of thc present paper is to show that for an arbitrarily taken 

part 'with n supports on a continuous multi-support beam an equation, similar 
to Clapeyron's equation, can be written "which establishes a correlation be­
tween the support point moments of the beam section, and which results in 
Clapeyron's equation in the case of n = 3. This equation may be named the 
generalization of Clapeyron's equation. 
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The generaliiation of Clapeyron's equations 

A beam with n supports (Fig. 1) is (n+l) - 3 = H = (n-2) fold inde­
terminate. To make it determinate we must remove a corresponding number 
of constraints, e.g. by removing n-2 roller supports and by simultaneously 
making the suitable forces act at the place of the removed supports. 

A2~ 
i 

~L - ~t Ln-z 

Fig. 1 

Assuming a constant cross section, let us express the displacement at 
the place of one of the removed supports 'with the aid of Betti'stheorem (Fig.2). 

J.-" 
I j 

Fig. 2 

At the place of the support the displacement is zero, therefore 

By writing in sections and by calculating 'with the vectors 17 

mi = .4ix'i) (0 <1 < L,.) 

m j = - A jX~- (- L j < , < 0) 

m = rn (z) is the moment function pertaining to the unit load e. 
Upon substituting from (6) into equation (5), 

o. 

(5) 

(6) 

(7) 

The integrals represent the moments of the moment systems .i'f:i pertain­
ing to the individual sections, about points Ai and Aj respectively. 

Qi = \' lYlds = Q,.z. 
L·. 

J 

and 
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denote the resultant of the system of moment vectors on the sections L; and L j , 

respectively, ?];o = 7J;ok is the moment arm of Q;, and tjo= CjOj That of Qj, 

3), then 

(In Fig. 3 7Jio is positive, tio negative.) On the other hand 

Qi 
N=frz} 

Qji 
J----_ 

I . K 
AiG--------------~--------------~-----

. ~ 
I Li 
,..---~-

Lj 

Fili:. 3 

Accordingly, upon substituting into (7), 

or 

\
'Jixl11ds + --'--­

Li 

From thi~, hy considering (8), 

J J JixiVIds Ij ill 
Li 

and on the basis of 

we obtain 

or 

tJioQi = Li 

~joQj L j 

J txMds = 0, 

(8) 

(9) 

(10) 

(11) 

(12) 
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By equation (12) the following is expressed: The moments of the moment 
vector systems on the sections Li and Lj , - the beam sections to the left 
and right of the examined support, respectively, - about the supports Ai 
and Aj , respectively, are in proportion to the lengths of the corresponding sec­
tions. In the course of the deduction we have had no restrictions as regards 
the supports to be removed, with the exception of their number. This means 

that the remaining supports Ai and Aj may be any two of the original supports. 
The support. for the displacement of 'which Betti's theorem has been employed, 
had similarly been chosen arbitrarily. All this means that equations (11) and 
(12), respectively, are valid for any section on the beam between two, not 
adjacent, supports. Correlation (12) may be regarded as the generalized form 
of Clapeyron's equation. To verify this assertion let us apply correlation (11) 
for the arbitrarily taken section 'with n supports from the examined beam. 
The beam is transformed, with the aid of the joints inserted above the supports, 

to a statically determinate Gerber's beam, as shown in the figure. In the place 
of the individual supports, the material continuity is substituted by introduc­
ing suitable couples. These couples are just equal to the support point moments 
of the original beam. 

The moment function of the beam, as obtained by superposition, can be 
written in the form 

M=Ma 

where iv{, is the moment on the Gerber's beam originating from the load, mi = 

= mi(z) which denotes the moment function pertaining to the unit couple 
loading applied at the i-th joint. These are shown in Fig. 4. So as to apply 
equation (11), the heam is cut into thc t·wo sections as shown in the figure. 
The moment of the system of moment vectors should be calculated on the 
lines 1 and 2, in the left side section of length Ll and the right side. l'espectively. 
With tll(' notations of the figure, 

Q~l 

.iVI2 L 2 

2 

Q.,., = ---='----"--
2 

_~I~ L3 
2 

Q.," = M3
L

4 • _., 2 

1 
().'1 = -L., - 3-

2 
L2 1)12 

3 

L2 
1 

L3 17~2 
3 

1723 L2 
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~_----.:k~b ----ll Qab 

L, 

Fig. 4 

Q 
_ M4 L 4 

14 - 2 ' 

;"15 

. t 

1 
--L-3 0 

Let Qab and Qaj denote the resultant of the moments lyla , originating from the 
external load, on the two beam sections, respectively, while kb and k j the 



GEiYERALIZATION OF THE THEOREM OF THREE MOMENTS 185 

distance of these resultants from the lines 1 and 2, respectively. (In Fig. 4 
Qab and Qaj are negative, kb is positive, and kj negative.) With these values, 
equation (11) takes the following form: 

3 4 

L * (Q k ' "" Q ''''' Q ) - L * (Q k 2 ab b ,''';;;;;' 2i 'fJZi I ";;;;;;'li 'fJli - 1 aj j Q ~ 'Q:-) 
24 S:!.4 T 15 ~15 . 

i=l i=:!. 

Upon arranging the terms with unkno'wn quantities on the left side, we 
find that 

3 

L *(",' Q :; .;;. 21 rb 
i=l 

.1 :t Q1i'lli) - Lt (Q24 '24 
i=2 

Q .~) L*Qk 15 ~ 15 == - ::! ab b 

Or, with the former values of Qvi, '/}vi and !;vi, substitute the previously express­
ed Q,'7 and' values, as well as the L~ and L~ values, and multiply the equation 

6 
by 

L~ L~ 

6Qab kb -L 6Qaj k j 

L2 + L3 + L4 L5 

By the equation a correlation between the support point moments of the exa­
mined beam section is expressed. Its character is obviously similar to that of 
the Theorem of three moments (Clapeyron's equation), which can he written 
for the three-support beam. If the equation is employed for a three-support 
heam section, in the manner described ahove, we ohtain just Clapeyron's 
equation. Accordingly, equation (11) can actually be regarded as the general­
ization of the Theorem of three moments. 

Summary 

In the present paper the well-known Theorem of three moments (Clapeyron's equation). 
which relates to a beam section defined by three subsequent snpports, is generalized for a 
beam section defined by arbitrarily chosen three snpports and divided into two by a middle 
support. The character of the equation is evidently similar to that of Clapeyron's equation 
written for a three-support beam. If the equation described in the paper is employed for a 
three-support beam section, we obtain just Clapeyron's equation. Accordingly equation (11) 
can actually be regarded as the generalization of the Theorem of three moments. 
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