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1. Mean-square errors

A current method of the analysis and synthesis of linear control systems
is the statistical method. When employing this, the input signal (r = s--n) of
the system is regarded as stationary and ergodic stochastic signal. In this
case the output signal (c) itself is also stochastic. A required (ideal) output signal
(i) is ordered to the control input. The error signal (¢} is the difference of the
ideal and of the actual output signal,

e (1) = i(r) — c(d). (1)

One of the characteristics of the quality of the system is the mean of the square
of the error signal, shortly the mean-square error.

Our task is the interpretation and calculation of the mean-square error
in the case of a linear sampled-data system. It is assumed that the sampling
period T is constant and the duration of sampling T, is much shorter, thus
the sampled signals can correctly be approximated by Dirac impulses. The
weighting function () of the closed system and the ideal weighting function
+v(t) are regarded as given.

Two mean-square errors can be defined for sampled-data systems. The
calculation is more simple, but the informatiou is less in the case of the discreie
Imean-square error

1 N
e Hm ——— N 2T =M, e (nT)}. (2
Ne= 2N+ 1 ,==x (nT) ( )} @)

The calculation is more difficult, the information content, however, is greater
in the case of the coniinuous mean-square error
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It is known from the theory of continuous systems that the mean-square
can be easily determined in the knowledge of the correlation function of the
signal. On examining a sampled-data system, however, the difficulty is that
the output signal ¢(f) is not stationary, consequently its correlation function
depends not only on the displacement time 7, but also on the examined moment,
thus being a function of the latter only in the sense modulo T [8]. Accordingly
the output signal is not ergodic, i.e. the correlation function can be interpreted
only as an ensemble average, whereby its application and measurement are
further made more difficult. This fact is often left out of consideration, thus
faulty results are obtained [6, 9, 10].

2. Correlation sequences
The modified and simple discrete functions,
clnml=c(T —T+mT),cn]l=cn+1,0]=c{nT -+ 0) (1)

of the output signal c¢(t) of the sampled-data system with stationary input
signal, respectively, have the following characteristics: In the case of ¢ [n]
and fixed m (0 m < 1), the sequence ¢ [n,m] is stationary.Thesignal ¢ [n,m]
itself, however, is not stationary. A signal of this type will be denominated as
quasistationary. We shall assume that the sequences are not only stationary
in n, but also ergodic.

Let u and v designate quasistationary signals. The simple correlation
sequence of these can be defined on the basis of the ensemble average as follows:

(o2}
—

M
1= 1 NG ‘ = E, [y Ll .
Ve lk] = A141m > u® [n]-v® [n + k] = E, J[u\z)[n] @ [ L k]}- (:
- =1
On using the assumed ergodicity, we may also go over to the mean with respect
to time:

Yur [E] = M, {u[n]-v [n + k]| (6)

The generalized correlation sequence of the couple of signals is defined in thsis
manner:

Yuolksm h] =E; {u® [n,m] v [n + k, k]}. (1)

On taking the assumed ergodicity in n into consideration:

Y lkim, k] =M, {u [n.m]-v[n -tk h.]}» . (8)
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Two special cases of this are
Yulk, ml=yu, [k ;m,m]. ©)
Yuo K] = 9o [ 5 0) = e[k 5 0,0]. (10)
The two-variable correlation function of the quasistationary couple of signals is
Puo (7,8) = E; {uD (1) o (1 4~ 1)} (11)
This is periodic in ¢ with respect to T. It can be easily realized that
Vi [k] = @y (KT, 0) , (12)
Yool sm, h] = @y (kT + AT — mT, mT). (13)
If in turn u = x, v = y are stationary, their correlation function is
Pey (1) = B {ul® (1) o0 (t + 7)) (14)
Let ¢t = nT, and t = nT — T + mT, then it can easily be realized that

Vuy [l = ¢y [K] - (15)

(o lsh—m 1], —1<h—m <0,

wlkm,h
vl = ke Th—m]. O<h—m<1,

I
&

Yo [Bsm] = 9y [k + 1, 0] = ¢, [K]. (17

Thelast relation is conceivable: In the case of a stationary couple of signals y.y
depends only on the difference m — m = 0, not on m.

In the knowledge of the simple and generalized correlation sequence the
mean-square errors can easily be expressed: On the basis of (2) and (3), on

considering (6), (8) and (10), we obtain

F=M, {e [n]} = P, [0] , (18)
1 1
2 zdf M, {e‘z fn, m]} dm =6f Wee [0 : m] dm. (19)

Both correlations are analogous with the relation €*(t) = ¢..(0) customary
in the case of continuous systems.

¥
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3. Output signals

Our task is to express the discrete functions and correlation series of the
two terms of the error signal e = i — ¢ with the aid of the corresponding funec-
tions of the input signal r = s 4 n and of the weighting functions.

The output signal ¢(z) is the result of the input signal T ;r*(¢), thus it
follows from the definition of w(t) that

c)=T, 3 w(t—nT)r(T), (20)
clkym]=T, 3 wlk—n,m]r[n], (21)
clk] = TO,I:‘:im w[k —n]rin], (22)

where, on account of the causality of the system,
w() =0, t<<0; wlk,m] =0,k <L 0; wlk] =0,k <0. (23)

The ideal output signal i(f) can be ordered in three ways to the control
input s(t):

Problem I. The ideal output signal i(f) is ordered to the sampled input
signal T, s* (1) with the aid of a continuous weighting function. Then i(r) is
quasistationary. The previously given correlations are valid in this case too,
only (23) is not unconditionally satisfied:

oa

(=T, 3 y(—nT)s@T), (24)
i [kym] = Ton;}zxy[k — n.m]s[n], (25)
i[k] = T0n=§,‘;w y[k—n]s[n]. (26)

Problem II. The ideal output signal i(f) is ordered to the continuous input
signal s(t) with the aid of the continuous weighting function v(t). In this case
we have a continuous system, thus i(t) is stationary:

i) = fy (t—1') s(t')dt . (27)
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By using this, i[k,m]and i[k] can be expressed, however this will not be
necessary.

Problem III. The ideal output signal i(t) is ordered to the continuous
signal s(t) with the aid of a discrete operation. Then y(t) is a sampled function

yo= Sy, 8(t—pT). (28)

In this case i(z) is stationary (the system is invariant) and

i) = 3 yps(t—pT). (29)
ilbml= 3 yyslk—p.ml= 3 yislnm]. (30)
ik = 3 yiaslnl. (31)

Problem IIT is in fact a special case of Problem II, from the aspect of calcu-
lation technique, however, it is nearer to Problem I. The grounds for the se-
parate discussion of this problem are given also by the fact that important
problems, such as the follow-up system (ideal filter). for which y(f) = 0(z).
the system advancing or retarding by atime pT, for which y(¢) = ¢ (t = pT),
etc., also belong to this group.

4. The correlation sequence of the output signals

On the basis of the relations in the preceding two sections the correlation
sequence of the output signals ¢ and 7, and of some quasistationary signals u
and v, respectively, can easilv be determined. Thus e.g.. on the basis of (0)
and (22),

Ve lE] =M, {u [n]ecln h]} =

—M, {u[n]TDq_S wln+k—qlrgl} =

—=—ca

=T, M,{u[n] 3 w[k—p]lrin+p]}=

p:-—oa

=T, 5 wlk—p]M,{u[n]r[n=p]). (32)

p=—rco

As a final result we obtain from this (in a similar way) that

v 1=T, 3 wlk—plyulpl. (33)

P
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vl =T, 3 wlp—Hyalp), (34)
el =T3 5 3 wlp—kluwlp—av,ld. (35)

D=— o ==

where ., [q] = @rr[q], since r is stationary.

The relations are quite analogous to the index-changing rules known for
the case of continuous systems.

The relations for the ideal signal in Problem I are similar, only the sub-
stitutions ¢ — i, w — ¥, r — s should be carried out. In Problem IT the simple
correlation series will not be necessary, while the relations for Problem III
are identical with those of Problem I by substituting y[n] — ya.

The generalized correlation sequence can be obtained in a similar way.
E.g. on the basis of (8) and (21),

Yo [k sm, h] =M, {u [n,m]c[n 4k, h]} =

:Mn{u[n,m]TU S wln+k—gqh]lrql}=

gm=—- oo

=T, 3 wlk—p+ LM, {u[nm]r[n+p—1]). (36)

p:—:u

The final result is

Ve lkim h] =T, Z wlk—p+ 1,k y,[pim, 0], (37)
pe=—- oo

o lk:m k] =T, 3 wlp—Fk+ Limlw,[p:0,h], (38)
p:——:c

Yelbimh]=T3 ¥ 3 wip—k+Lmlwlp—q+ 1,4 p,[q:00] (39)

P o0 gm=m—

where w--[g; 0.0] = vr[gq] = wr[q]. The formalism of the index-changing rule
is quite evident.

The relations for the ideal signal are identical with the above in the case
of Problem I, only the substitutions ¢ -+ i, w — ¥, r — s should be carried out.
The relations for Problem II will not be necessary. In Problem 11, on the basis
of (8) and (30), a transformation similar to that carried out in (36) can be
performed, thus as a final result we have

pu lkim,hl = 3 yi_, 9, [psm,h], (40)

e 2
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violksm bl = 2 yoivelpsm.hl, (41)
lpu [A m. h] “p Z 2 .)p- p—q wss [‘1 s, h] * (42)
=—e fm=—

If u and v are stationary, then the correlation sequence on the right side of the
relations can be expressed on the basis of formulae (15)—(17) in terms
of the correlation functions. In formulae (40)—(41) this is feasible even on the
left side since i is stationary here.

5. Transformed correlation sequences
The calculation of sampled-data systems is facilitated, as is well known,

by the application of the discrete Laplace transformation. Let the variable
of this be denominated by

I

Z=s1=¢" (43)

where s is the variable of the Laplace transformation, while z = e’T is the
variable generally used in the literature. Since at numerical calculations the
expressions are generally to be ordered in terms of the powers of z71, it is more
advantageous to employ the variable Z. The two-sided simple and modified
discrete transforms ordered to the function f(¢) satisfying the respective
mathematical conditions are

F(Z)=%f()=Df[K]=%F ()= 3 flk] 2", (44)

g—_m
o

F(Z.m) = Zuf() = D flkom] = %u F () = 3 flkm)ZF.  (43)

== e o

The transforms of the simple and modified correlation sequences are inter-
preted on this pattern:

Y, (2)= 3 k2", (46)

fm=— oo

Vo (Zimh)= 3y [ksm, k] 25, (47)

Ko oo

where, in the sense of (9) and (10), respectively

Vu(Zsm) =¥, (Z;m,m), ¥ (Z) =¥, (Z50,0). (48)
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If u = x, v = y are stationary, then by force of (15)—(17)

Oy (Zh—m+1), —1<h—m<0,

Txy(z;m,h)::Z_l@xy(Z,h—~m), 0<h—m<l. (49)
The special cases of this are
Vo (Z5m,0) = D,y (Z,1 — m) = i, By (5). (50)
Y (Z30,h)=Z71D (Z,h)y=Z71%,D,,(s), (51)
Vo (Zim) = ¥,y (Z) = B (Z) = %' Dy (9). (52)

Here attention is drawn again to the fact that ¥y (Z, m) =¥, (Z;m,m) does
not depend on m, thus @.(s), or @x,(z) are equal to the simple discrete trans-
form.

On dimensional grounds, the discrete transfer functions are defined as
follows:

W(Z,m)y=T,Z,W(s), W(Z)=T,Z W (s), (53)
and similar to it is the interpretation of Y(Z, m) and Y(Z) in Problem I, while
in Problem III,

Y(2)= 3 n7- (54)

k=—

One of the important advantages of introducing the discrete transforms
is that the convolution sums discussed in Section 4 go over to the product of
the transforms. Thus, e.g., the transform of (33) is

Ech (Z) = k;.. TO p_'.:”‘.-fl w {k —P] Pur [P] Zh=

= 2 X Towl[q]y.[p]ZF 2. (55)
g=== p=-=

As a final result

Y N(Z) =W (Z)¥ (Z), Y (Z)=W(Z)Y,, (Z). (56)
Analogous correlations are valid in Problems I and III as well:

V(D) =Y (D)¥(2), ¥u(2)=Y(Z) ¥, (2). (57)

In the case of Problem II these relationships are more complicated.
The transform of the generalized correlation sequences, on the basis of
(37) is found to be
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Tuc(Z;mvh): 2 TO 2 10{k_P+13hJWUr[P;m70]Zk=

ge=— o pa=— oo

=3 ) Towlg.hly, [p;m,0]12ZF 292, (58)

g=—o pm==-—oco

as a final result

I‘puc (Z 5 M, h) =Z"tW (27 h) gjur (Z ym, 0) » (59)
Y (Z;mb)y=ZW(Z1,m)¥,,(Z;0,k), (60)
Y. Zsm,hy=W(Z L m)W(Z,h) ¥, (Z;0,0), (61)

where ¥,.(Z; 0,0) = ¥,(Z) = D,{Z). Analogous correlations are valid for
Problem I, while in Problem III,

Vo (Zsmh) =Y (2) W5 (Z3m, h). )
YAZsmbh)y=Y (Z7YW¥, (Z;m,h). (63)
From relations (56)—(63) the formalism of the index-changing rule is evident.

If u and v are stationary, the transformed correlation sequences can be express-
ed by the transformed correlation functions.

6. Calculation of the mean-square errors
The diserete mean-square error can simply be expressed in the knowledge

of the simple correlation sequence of the error signal. It follows from relations

(18) and (46) that

=M, [e[n]} = q;.z VW (Z)ydZ: T2 =1. (64)

2aj

Since e = i — ¢, thus
Yoo (2) =¥ (2) =¥ (2) = P4 (2) + ¥ (2). (65)
The index ¢ can be changed to index r on the ground of formulae (55)—(56).

Y, (2) =¥, (2) — W (2) P, (Z) — W (Z7) ¥, (2) +
LW (ZYW(2)E,,(2)- (66)

The problem is to eliminate index ¢ with the aid of index s. This can be realized
in different ways in the three problems. At the right side only the indices r
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and s figure in this case. The correlation sequences of the stationary signals,
in turn, can be expressed by their correlation functions, and with the aid of
the Laplace transform (power spectrum) of these, respectively. Since r = s + n,
we obtain with any variable,

®sr = ®ss + @sn s ers = @55 4+ (pns >
gzjr,r = st -+ an + Pps + Dy - (67)
If the control input and the noise are uncorrelated, then @y, = @,y = 0.

In the case of Problems I and II1, relation (57) can be employed. thus
it is easily conceivable that

Vo Z) =Y (Z)Y (Z2) Dy (Z) =Y (Z)Y W (Z) D, (Z) —
—W(Z )Y (2)Ds (2) + W (27 ) W (Z) Dy (). (68)
In Problem II signal i is stationary, thus at the right side of (67) @ can be

written in place of ¥ and the index-changing rule valid for continuous sys-
tems can be employed:

Vo (2) = 2 [Y (=) Y (5) Doy ()] — W (2) X' [Y (— 9) By ()] —
— W (Z) L [Y (5) B,y ()] + W (27 W (2) @, (2). (69)
The continuous mean-square error can be calculated in a quite similar

way. It follows from relations (19) and (47) that

1

1
F£=M, { (eﬁ [r,m] dm} == 1 - d; Z‘1J VY, (Z;m)ydmdZ (70)
. .
r

2
Q
where

gyee (Z 5 ﬂl) - gjii (Z ; m) - z:pic (Z 5 m) _ ,:pci (Z Qm) + S-Ucc (Z : 'n)' (71)
The index ¢ can be changed for the index 7 on the ground of (59)—{61).
V(2 im) = W (Z 3m) — Z2W (Zom) W, (Z 2, 0) —
— ZW (2 m) V(2 10,m) +
W (2 m) W (Zom) ¥, (Z). (12)

The changing of index i to index s should be examined separately for all three
problems.
In Problem I, by employing the sense of relations (59)—(61),

o(Zsm) = Y(Z-Y, m) Y(Z, m)Bs(Z) — Y(Z~1, m) W(Z, m) D (Z) —
—W(Z~Y, m)Y(Z, m) B(Z) + W(Z~L, m)W(Z. m) D,(Z). (73)
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In Problem II, by force of relations (50)—(51) and of the index-changing
rule relating to continuous systems,
Vo (Z im) = X [Y(— ) Y (8) Ps ()] — 2 W (Zym) £, [Y (—5) @y, (5)] —
— WA(Z72m) 2, [Y (5) Dps ()] +
+W(Z,m)yWI(Z m)D, (Z). (74)

In the first term really £’ (and not Zp,) figures, since i is stationary, thus
Yfii (Z, m) = @,’,‘ (Z)

In Problem Ul formulae (62)—(63) can be employed, then upon consider-
ing that i is stationary, the correlation functions can be deduced on the basis

of (49):
W, (Zim) = Y(Z ) Y(2) Dy () — Z7' Y (Z-Y) W(Z, m) Dy (2,1 — m) —
—W(ZY, m)Y(Z) Do Z, m) + WAZ~Y, m)H(Z, m) DAZ).  (75)

If in relationships (70)—(75) m = 0, then our results naturally go over
into the relations (64)—(69).

The relationships given in this section are the solutions of the task of
analysis: If the weighting functions (or the transfer functions) of the real and
ideal systems, further the correlation functions (or the power spectra) of the
input signal are known. then either the discrete, or the continuous mean-
square error can be calculated on the ground of the given relationships.

7. Some critical remarks

As has been shown, there are theoretical and practical reasons for giving
the expression of the mean-square error for six different cases separately. In
the relevant literature the detailed discussion of all six problems cannot be
found. Zyexin [5, 15] and Kuzix [7, 8] have interpreted the ideal transfer
function in a too general way, thus their results are inconvenient in concrete
cases. On the other hand, Kuzi~n has discussed only the calculation of the
mean-square error in detail, while ZyPrIN has determined the mean of € [n,m]
with a fixed m value, of which [ is obtained in the case of m = 0, while its
integral with respect to m is intuitively identified with &. Tovu [6, 9] has given
the discrete mean-square error only for Problem II.

For characterizing quasistationary signals, the correlation sequences were
employed, while in the literature the correlation functions are used. On cal-
culating the discrete mean-square error (especially in the case of Problem I),
formal analogies supply correct results, since both ¢[r] and i[n] are stationary.
In connection with the examined continuous signals only Kvzin has correctly
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recognized the problems caused by the quasistationary character, therefore,
he has employed a correlation function with two variables. His designations,
however, are not consequent and not quite fortunate. The method of Zyprin
is suitable for circumventing the problem, thus his results are faultless, but
containing many arbitrary definitions and inconsistent designations; his
results are difficult to employ in practice. CHANG [10], though he has recognized
the quasistationary character of ¢(t), but in spite of this he regards it as ergodic.
Tou has produced the expression for Problem II on the basis of a formal
analogy and his result is trivially incorrect. Thus e.g. in the first term of (72)
the operation X/, figures according to him, i.e. @;(Z,m). If we have e.g. a
follow-up system, then D{Z,m) = P (Z,m) and the integral of this with
respect to m evidently does not supply the value of s*(t). It is very interesting
that Nismimura [13] has obtained formally correct results without recogniz-
ing the essence of the problem, even by operating with a function which can
evidently not be interpreted. His formalism is, however, complicated and un-
usual.

Further publications on the synthesis, such as [17, 18, 19] are generally
based on the resuls of Tov, or criticize those. These are correct in respect to
{2, but as regards to £ these are incorrect both on the theoretical bases and the
final result.

Summary

An important quality characteristic of sampled-data systems is the quadratic mean of
the difference between the output signal arising in consequence of the stationary stochastic
input signal and the ideal output signal ordered to the control input, i. e. of the actuating
error. A discrete and a continuous mean-square error can be defined. The ideal signal can be
ordered to the control input in three ways. Formulae for these six cases can suitably be given
by introducing the correlation sequences and employing the diserete Laplace transformation.
On deducing the expression for the continuous mean-square error the fact that the output
signal is not stationary should be taken into consideration.

References

1. BErRTRAM, J. E.: Factors in the Design of Digital Controllers for Sampled-Data Feedback
Systems. Trans. AIEE. pt. II. 75, 151—159 (1936).

. Cmaxg, 8. S. L.: Statistical Design Theory for Strictly Digital Sampled-Data Systems.
Trans AIEE, pt. 1. 76, 702—709 (1957).

3. Cmaneg, S. 8. L.: Statl:tlcal Design Theory of chrltal Controlled Continuous Systems.
Trans. AIEE, pt. IL. 191201 (1958).

4., Racazzini, J. R.~FRANKLI_\', G. F.: Sampled-Data Control Systems, Chap. 10. Mc-Graw-
Hill Book. Comp. Inc. New York, 1938.

. ey, S, 3. Teopust nwnyabeHsx cucrem. [, I 3., TT1L 9. Puavarrus, Mocksa,
1958.

6. Tov. J. T.: Statistical Design Theory of Digital Control Systems. IRE Trans. AC. 5.
200— 297, (1960).

. Co1010BHIKOB, B. B.: CraTiicTHueckas JHHAMIKA JHHEHHBIX CHCTeM aBTOMaTHUYeCKOTo
ynpasiedust. 'n. XIL, XIII. dusvatrus, Mocksa, 1960.

[

L

~1



10.
11,
12,
13.
14,

THE STATISTICAL ANALYSIS OF SAMPLED-DATA4 CONTROL SYSTEMS 263

. Kysun, JI. T.: Pacuer H npoeKTHpPOBaHHe IHCKPETHHIX cucTem ynpasienus. . VIIL,

I1X. Mawrus, Mocksa, 1960.

. Tou, J. T.: Statistical Design of Linear Discrete-Data Control Systems via the Modified

z-transform Method. J. Franklin Inst. 271, 249—262 (1961).

CHANG, S. S. L.: Synthesis of Optimum Control Systems. Chap. 6. McGraw-Hill Book
Comp. Inc. New York, 1961.

Jery, E. L.: Optimization Procedures for Samped Data and Digital Control Systems.
Scientia Electrica 7, 2—12 (1961).

Crang, 3. S. L.: Optimum Transmission of Continuous Signal over a Sampled-Data Link.
Trans. AIEE. pt. I1. 80, 5383542 (1961).

NisEiMURA, T.: On the Modified z-Transform of Power Spectra Densities. IRE Trans.
AC 7, 55—56, (1962).

Csixi, F.: Simplified Derivation of Optimum Transfer Functions in the Wiener—-Newton
Sense. Periodica Polytechnica, Electr. Eng. 6, 237—245, (1962).

. Hebinkiu, §1. 3.0 Teopia anuefiHbIX HynyabcHeX cucTesm. [N IL 8., IIL 8., V, 10, V. 11.

dusmarrus, Mocksa, 1963.

. Jury, E. I.: Comments on the Statistical Design of Linear Sampled-Data Feedback Sys-

tems. IEEE Trans. AC 10, 215—216, (1963).

. Stercritz, K.—Fraxaszex. P. A.—Haopap, A. H.: IEEE Trans. AC 10, 216—217

(1963).

. Fanoycxosa, A.: CHHTe3 MHOTOMEPHBIX JIHHeJHBIX HMIIYJbCHBIX CHCTEM peryHpoBaHMHs

M0 KBajpaTHUeCKHM KpuTepusim. Tpyasl MesxkayHapoinoii Kougepenuun no Muoro-
MepHbiM ¥ Hnckpersbiv Cilcremasm ApTomaTtiueckoro Y npasienus. Cexunsi B (129—
140). Tlpara, 1965.

. Fopor, Gy.: Laplace-Transformsi n Engineering. Chap. 38—41, 47. Akadémiai Kiadé,

Budapest, 1965.

. Csiki, F.: Optimum Pulse~Transfer Functions for Multivariable Digital Stochastic Proc-

esses. Periodica Polvtechnica, Electr. Eng. 9. 353—376 (1965).

. Csiky, F.—StEIicLITZ, K.—FRANASZER, P. A.— Happap, A. H.: Discussion of “Comments

on the Statistical Design of Linear Sampled-Data Feedback Systems”. IEEE Trans.
AC 11, 149150 (1960).

Dr. Gybrgy Fopor, Budapest XI., Egry Jézsef u. 20. Hungary



