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To introduce theoretical considerations let us inspect the single two-
machine system (with one degree of freedom) shown in Fig. 1. Each of the
machines have their neutral point grounded, the machine parameters are the
same; machine 1 generates P, electrical power, which is consumed totally by
machine 2 operating as a motor. The three-phase connection plan correspond-
ing to the system of Fig. 1 is shown in Fig. 2. According to graph theory the
synchronous machine is a multiterminal electromechanical component [8]
and this way the graph of the system on the basis of Fig. 2 is shown in Fig. 3.
The vertex r is regarded as reference vector; one must refer to the shaft torsion
angle of machines 1 and 2 — caused by the mechanical power delivered
(branches b—r and r—Fk). Let us now inspect the star-like subgraph with six
elements and four vertices, containing the topelogical informations of the in-
terconnected three-phase stators. It can be seen that the subgraphs of stators
1 and 2 are both representing a tree; if we regard subgraph 1 as a tree of the
six elemented graphs studied, then subgraph 2 is forming the chord system
belonging to it and vica versa.

Let us now select subgraph 1 as a tree; in this case the fundamental
circuit equations for the stator phase voltages in matrix notation are as
follows:

B'UZO: (la)

where B is the fundamental circuit matrix belonging to the selected chord
system.
Writing (la) in detail:

Ula
U
Ui
100100 Us,
010010 U,,
001001 | U, _|=0. (1b)
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After introducing the column vector of the stator phase voltages: U; = [ b}
we can simplify (1b) as follows: U

Uls
[E E]- ,UJ=0- (1)

On the basis of quite similar considerations we can write the cut-set
equation for the stator phase currents; regarding the selected tree it has the
form:

]
Al=[E—E] -|L,|=0, (2)

where A is the cut-set matrix, while I, signifies the column vector of stator
phase currents. Equations (1) and (2) are completely describing the topology
of the two-machine system shown in Fig. 1. However, for the determination of
phase voltages, phase currents and the relative angles of the rotors whether
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in static or in transient state it is necessary to write down the terminal equa-
tions of the synchronous machines as multiterminal graph elements. The tran-
sient voltage equations of the three-phase circuits and the rotor field circuit
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—neglecting the effect of the damping circuits and in view of the symmet-
rical structure of the machine—are as follows:

Ua- RG =+ pLaa PLab PLab pLga Ia
U, pLy R + pLsa PLa pLy I,
Ul |(PLw____PLe __ Ro+pPluple | |1y
Ué’ = PLQG PLgﬂ PLga Rg + png : Ig E (3)

where all of the induction coefficients are trigonometric functions of the 20
angles except Lgy; that is to say equation (3) is a system of differential equations
with time varying coefficients. Expounding equation (3) according to the indi-
cated partitioning (along the dashed lines) and using the introduced notation
we obtain:
Us= (R +pL) I, +pLg,-I, (3a)
U= ¢P (Lsg)t ' Is - (R.g -+ Png) ' Ig' (31))
(All the notations are clear on the basis of (3).)
One can now apply the Park transformation, i.e.:

U, I,
U,| =Up=Te-U, and |I,|=Ip="Te I, (4)
U, I,
where the transformation matrix:
[~ D 2 ]
cos 6 cos(@%——“g’l—] cos {6~ij
2 27 2 ‘
Tp=— —sing ——«am{@—‘,———T —sin | — =2 (4a)
3 3 3
s L 1
L 2 2 2 i
while the inverse matrix:
[cos — sin 0 17]
. 5 9
cos 0—{~i — sin 9+-TJ 1
Tl = 3 3 (4b)
97 9 ;
cos [0—:1] — sin [Q—i} 1
— L 3 3 3 p—
here: O = @, + wt + 4.
Substituting (4) into (3a) and (3b) the result is:
Up= [Tp-(Rss 4+ pL) Tpl] I, [Tp pLSg] I, (5a)
and
Uy = [P(Lge):- Te*] Ip 4 (Ryg + pLyg) - I, (5b)

2 Periodica Polytechnica El. X/4.
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In equs. (5a) and (5b) the products in brackets give the impedance
matrix of equ. (3) — the latter being written in the original three-phase system
—transformed to Park’s reference frame. After completing the indicated
operation we obtain the transformed voltage equations; in matrix notation:

U
Uq
UO -
U,
R, + pL,, — (o + dw) L, 0 . pM,, I,
(o + dw) Ly, R+ pL,, 0 - Ao+ dw) M, I,
0 0 R, -+ pL, .
-l S MK
3
—PMy 0 0 . R,+pl, I,

where dw = pd, while the elements Lyg, Ly, and Mgq of the new impedance
matrix can be computed from the mean and absolut values of the Ly, Ly
and Ly, elements (being functions of 20).

We have te add the mechanical hunting equation of the synchronous
machine to equ. (6); the mechanical power transmitted by the shaft of the
synchronous machine is as follows:

PrrzszId_I—Uqu'%"(D‘:‘PTo)Pa (7)

Equations (6) and (7) are the terminal equations of the synchronous
machine regarded as a multiterminal graph element. The transformation
equation (4) can be written for both of machines 1 and 2:

Up,=Tp- Uy Up=Tp Uy
Premultiplying the fundamental circuit equ. (1) with Tp the result is:
TP[EE]{%T:?‘:TPEUYS—!' TP'E'UQS:E'TP'Uls_:—E'TP'UZS:
U
= [EE]- Pl =0 (8
© x| e )
and similarly in the case of equ. (2)

T,-[8 ~E]| {5 [= [E —B]| Lir | = 0. (9)

IZs . _IQP
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That is to say, we can apply the fundamental circuit matrix and the cut-
set matrix as well for the voltage and current vectors transformed into Park’s
reference frame, on the basis of equs. (8) and (9). But since equs. (6) and (7)
can be written for both of machines 1 and 2, the transient stability of the two-
machine system shown in Fig. 1 can be studied by substituting these equations
into equs. (8) and (9). In relations (8)—(9) the Park transformation could be
directly applied to the original three-phase graph-equations because the six-
branched (three-phase) subgraph showing the stator connections (Fig. 3)
had its fundamental circuit i.e. cut-set matrix composed of two unit matrices.
However, one cannot transform the graph itself, since the submatrix of
d—q—o quantities in equ. (6) is not diagonal — and is not even symmetric—
i.e. there is an interaction between the d and g quantities at all the synchronous
machines (and at the passive elements, too). Thereby one should always have
to determine the A and B matrices from the three-phase graph, which is very
complicated by more composed systems. To avoid these difficulties it is
practical to apply a further variable-transformation, according to the following
equations (the general variable is v, which can designate voltage and cur-

rent as well):

1 .

v, =—(v; +Jv

0 Vj( d J q)

~ 1 .

Vo= T (vy — Jv) (10)
2

vy = vo.

In accordance with that, the transformation matrix is:

L qo
T,— 2|15 o (10a)
P2lo o2

After which we can write (9) in matrix notation:

v, =T,.vp. (10b)
One can also easily realize the following:
1 1 1 0
Tl=— . |—Jj Jj 0}, (10c)
2 0092 |

Let us further assume that the synchronous saliency is negligible
{which will not cause great error, the biggest part of the machines in the system
being turbogenerators with cylindrical rotors); in this case in equ. (6): Lgg ==

IE
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=L, It is now practical to expound equ. (6) according to the marked partition-
ing:
Up=1Zp-Ip+Zp,- 1,
(10a)
Ug=Zp-Ip+2,1,.
(The notation is evident after comparing with equ. (6).)
We can now apply the transformation (10b) for the voltages and cur-
rents:

U= [T Zp-T,]-Ip -+ [T71 - Zp,] -1, (11a)
Uy =1ZpT)Ip+2Z,-1,. (11b)

Computing the products in brackets we obtain: -

1 1 j O {R,+pLy — (o + do)yL,, 0
[T Zp - Ty)=— 1 —J 01| (o + o) Ly, R+ pLy, 0 :
2 lo o y2ll o 0 R,~pL,
1 11 0 Zyy+ pLyy 0 0
00 )2 0 0 R, + pL,
Which is already a diagonal matrix.
Similarly:
173 3
[Zgp-T,] = 75 [—2--ngd -?'pIVIgd 0}
and
1 PMg + jX gy
[T Zpg] = = | PMyy — X |- (12b)
r2 0
where:
Zyy=R,+joLly+jdo Ly and Xy=0 M, + 4o M. (12c)
After substituting equ. (12) into equ. (10) the result is:
- o - - T e
Ug Zyy+p Ly 0 0 . V? (p Mgy +jXg) 1,
. R 1 o .
U, 0 Zga+p Ly 0 ‘ ﬁ (p Mgy — j Xga) I,
U, N 0 0 R, +pL, 0 I,
U 5. M S . M 0 R,+pL i
—O_ _ljf6—p‘gdv6—.p-gd gngg_ __‘g_
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By using equs. (7) and (10) and completing the prescribed operations we

obtain the following expression for the mechanical power:

o+ Uy I+ (D +pT)) pd=U, 1, +U,I,+ (D +pT.) do.
(14)

P, =(U

Equs. (13) and (14) are the terminal equations of the synchronous machine
in the new reference frame. Premultiplying now the fundamental circuits (8)
and (9), respectively, cut-set equations by T, the result is — on the analogy
of (8):

[EE] - l Ul] =0 (15)
and

[E — E] -[?J:o. (16)

2

Equs. (15) and (16) are the fundamental circuit and cut-set equations of
the system shown in Fig. 1. after accomplishing the new (*¢”") transformation.
It is also possible here to directly apply the fundamental circuit (B) and cut-
set matrix (A) to the voltage and current vectors transformed into the new
0" system, on the analogy of the considerations made in the case of equs.
(8)—(9). However, we are now in a much more advantageous position, since
according to (13) the submatrix of stator quantities (in the left upper corner)
is a diagonal matrix — that is to say, the g, 5 and 0 quantities are independent
of each other. It is possible now to draw the subgraph belonging to (15) and
(16): we accomplish in this case theinverse of the usual procedure: we have to
seek the graph and its formulation tree suitable for the fundamental circuit
and cut-set equations — these latter containing the same topological infor-
mations as the graph. This graph is shown in Fig. 4. In the studied case we
were able to transform the graph itself. The subgraph could be divided into
three separate parts, since the ¢, 9 and 0 quantities are independent of each
other. If the neutral point of the generator is not earthed (corresponding to
the general practice, then the subgraph of the zero sequence variables and
with that the proper row and column of the impedance matrix must be
cancelled.

In writing equ. (13) as a hypermatrix-equation for both of the syn-
chronous machines, using the relations (15) and (1) and adding to that

19 029 1@ OZ§ fo OZO
Fig, 4

74
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equ. (14), their result is a six-order system of differential equations (with the
following variables: Uy, Uyps I, flg, I Adw, — Adw,; there are no zero-sequence
quantities because of the symmetry of the system) which can be solved in
the knowledge of the initial values. These latter can be determined for U,,

2?9
‘——-—-J PO
%
fgg 1‘/9 fgg 7

}/Z »pMgd + Jxad) I,
Zg_ =Zgq + pLua

N

'y

gu == Zgy + pLy,

Fig. 5

U, I, and I,, respectively, in transforming the phase voltage and current
values of the steady state; theinitial value of the field current is: I, = —IIJ;- s
while Aw, = 0 and dw, = 0, since in the steady state the machines are rot;’t-
ing with synchronous speed. The §,(z) and 6,(¢) time-functions can be computed
by integrating the Jdw, and Adw, relative angle velocity values for the studied
time interval, beginning at the moment: ¢ = 0.

The lower limit of the integral is the initial value of 0, which can be taken
as zero.

The following procedure is the same as in the case of more complicated
power systems, i.e. we have to draw the (equal) ¢ and p subgraphs — on the
basis of the normal single-line connection scheme of the system. According
to equ. (13) there is a voltage source in the connection scheme of both the g
and p components; the equivalent scheme of the generator according to (13)
is to be seen in Fig. 5. We have now to inspect the transformed equations of
other elements which the power systems are composed of.

1. Transformers

The T equivalent scheme of single-phase transformers — regarded as
four-poles — is widely known; this has to be repeated three times by three-
phase transformers ensuring the topologically correct interconnections. Since
the open circuit impedance of transformers is by 2—3 orders greater than
other (series) impedances occurring in transient stability studies, the neglec-
tion of those — i.e. the omission of the cross branches in the T equivalent
scheme — causes, but very little, error. Further, if the computations are made
in per unit system, then the transformer ratios will not figure either in the
equivalent scheme, which is simplified thereby to symmetrical three-phase
series impedances. (One can easily realize this latter statement by star/star
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connected transformers; however, if one of the windings is delta-connected it is
always possible to determine the equivalent star winding.) On this basis the
terminal matrix-equation of three-phase transformers (taking into account the
phase-symmetry) is:

du, i, i,
duy | = onE | | =2 [ |, a7
Au, | i, i

where Au is the longitudinal voltage-drop, while r and w! are the resistance and
inductive reactances, respectively, (all of the quantities are expressed in a p.u.
system, signified by minuscule notation); Z is the diagonal impedance matrix
of the transformer.

Transforming equ. (17) directly into the g system on the basis of App.
1 we obtain:

Aue Ze
dd, =T 2 Tp) - |3 | (18a)
du, i, '

where the triple product in brackets can be computed using equ. (17):

T3 Z Tp=(r+0l)THET,=(+awl)E=2Z (18b)

i.e. the impedance matrix is invariant to the T, transformation, and therefore:

A u, iQ
da, | =2, (18)
A uo io

Relation (18) is the terminal equation of the transformer in the p system;
the suitable graph of the transformer is shown in Fig. 6.

The graph is composed of a forest containing three separate trees, simi-
larly to the subgraph of the synchronous machine phase quantities. One can
ascertain from equ. (18) that the transformer is represented in the o system by
identical impedances in all the three component networks in the same way as
in the case of the ordinary symmetrical components. On this basis the zero
sequence equivalent scheme (the third equ. of (18)) can be determined in accord-
ance with the connection group from the theory of symmetrical components.

2. Transmission lines

Neglecting the shunt admittances (which cause, but very little, fault in
the case of not too long transmission lines in transient stability studies)
transmission lines can also be represented in every phase by series impedances.
The terminal equations of transmission lines symmetrized by phase-change
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can be written on the analogy of equ. (17); after transforming with the matrix
T,p- we obtain equations corresponding to (18) in the ¢ system; the graph is
the same as that of Fig. 6. An essential difference compared with the trans-

Fig. 6
formers is that in the zero sequence equation we obtain impedances differing
from the other two (because of the earth return circuit); this Z,canbe com-
puted from the Carson—Pollaczek relations.
According to the above considerations the transformed equations and the
eraph of the other three-phase network elements (choke, consumer etc.)
can be determined in exactly the same way as in Chapters 1 and 2.

3. The algorithm to follow in the case of complicated
systems

We have seen in the former paragraphs that the advantage of transform-
ing the transient voltage equations of whatsoever complicated symmetrical,
three-phase power systems containing synchronous machines with cylindrical
rotors is, that the resulting equations for the 0,5, and zero-sequence components
are completely independent of each other. The zero-sequence component
appears only if there is an asymmetrical shunt or series fault in the system,
that is to say, in case of symmetrical (whether steady state or transient)
relations there exist only gand  voltage and current components, resp. How-
ever, these two component systems being independent of each other and their
graphs identical (Figs 4 and 6) one can draw two separate identical graphs for
the power system studied, the structure of which is equivalent with the usual
single line connection scheme of the same system.

Let us now inspect, for instance, the four machine power system shown
in Fig. 7 (which has 3 degrees of freedom). Let us assume that in steady state
operating conditions of the system at one of the busses there occurs an abrupt
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consumption-change and by that electromechanical transients arise. To deter-
mine this we have to construct the graph of the system in accordance with the
above principles; only one of them is shown here, the subgraphs of three phase
quantities transferred into the o and 0 systems being identical.

For the sake of simplicity the subgraphs representing the field circuit
and the mechanical connections, resp., of the synchronous machines (in this
case forming a forest composed of 5 trees — on the analogy of Fig. 3) were
not indicated on Fig. 8. The number of vertices in the graph of Fig. 8 is five,
while that of the elements is nine (the graph vertex designated by 0 is the
neutral-bar of the ¢ and ? networks, resp.), according to which the rank of the
graph is four and its nullity five. Since the rank of a graph is equal to that of
its cut-set matrix, while its nullity gives the rank of the fundamental circuit
matrix, here it is more practical to use the cut-set equations for the compu-
tation as this way the inversion of a smaller matrix will be needed. We shall
regard the busbar-consumers as those having constant current (Ig) de-
mand, that is to say. they are represented as current sources. Consequentl}'.
the generator and the consumer of whichever busbar can be regarded as con-
centrated graph elements, the terminal equation of which on the basis of
Kirchhoff’s laws written for Fig. 9 is as follows:

IH‘"“‘IF:YV\?(A UQ*ES)' (19)
£o
. T -
from the neulrai bar O’L‘(ﬁ_:; ]/'L
Iy (into the network)
+ Al
T
-/
oo
Ir
Fig. 9

where:
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(That is valid both in the system of the o0 and § components, resp.)
Let us select the (Lagrangian) tree seen in Fig. 10 of the graph of Fig.8

Fig. 10

for writing the equations. The cut-set matrix is the following:

0-10~20-~30—-41—-21-32-32—43-—4
0—1 11 0 0 0 —1 —1 0 0 0

A=0—210 1 0 0 1 6 —1 —1 0
0—-3 10 0 1 0 0 1 1 0 —1
0—4 L0 0 0 1 0 0 0. 1 1

(20)

The E; electromotive force and the Y, admittance appearing in equ.
(19) are, for example, on the basis of the ¢ component network in Fig. 5 as
follows:
(1 T
and Eg———- ﬁp -”VIgd i 'ng Ig (21)
Zo=Zyu+pLy.

The branch equations corresponding to equ. (19) can be written for every
branch of the network with the only restriction that in the equations of the
complement (the chords) of the chosen trees E, and I are equal to zero. In
accordance with that the branchmatrix equation of the network has been
given by equation (22a) (omitting the p indices for simpler notation)

T Ir
Trig—s I,
Trio—s Iry
IHo—a IF4
T |+ 0 =
Ipi—g 0

oy 0

oy 0

IR S T
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Ugl + Egl
ng + Eg2
Up +Eg
Ups +Eg
U,+0
Uy5+0
Uys+0
U, 4+0

LT3—'4 + 0

<

!
oy
o

©ooooooov:<
H
OO OO OO

OOooooqﬁoo
w

C OO OO

L -1 1 -
(22a)
or more shortly:

Iy+Ir=Y, (U+E). (22b)

After premultiplying this with the cut-set matrix and rearranging, we
obtain:

A-T=A(, U+ Y E, —Ip). (23)
But according to the cut-set equations:

AT,=0 (24)
In this way:
AY, U=A(I,-Y,E,). (25)

Introducing now the column vector of the cut-set (or with another
terminology: node-pair) voltages (U,), where:

U=A,U,,

and in using this latter in equ. (25) there results the node-pair system of equa-
tions of the network for the chosen tree:

(A'Y, A) - U,= A(Ir — Y, E,). (26)

The triple product in brackets on the left side of the equation is the node-pair
admittance matrix of the network for the chosen tree:

Y,—A-Y,-A, (26a)

at the same time the quantity in brackets on the right side is the column vector
of the resulting cut-set (node-pair) currents:

I,=A(Ip—Y, E,). (26b)

The Y, matrix is in our case:
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Yo+ Y+ Yig —Y,,
Yu — - Yil_,, Yg2+yl—‘+y_2—3+y'l—l
— Y3 - Y2_3
0 — Y:—z
—-Y,, 0

~ Yoy Y,

Ygs =+ Yl—»s + Yo g+ Ys—; Ys—;

-Y 34 Yg4 - Y2—4 + Y3—4

That is to say, a matrix of the fourth order, which is nonsingular and,
therefore, in solving equ. (26) we obtain the cut-set (node-pair) voltages:

U,=Y;11,. (27)

(One has to count the Y, ' inverse matrix at the beginning of the transient
stability studies.) The elements of the column vector U, are equivalent with
the tree branch voltages, i.e.:

U, = U, where: i =1,2,3,4.

But since the 0 vertex of the tree in Fig. 10 is the neutral point of the compo-
nent network studied (o or 5), Ug is the voltage of the i**busbar. The o and v
components of the generator currents can now be computed from equ. (19) (the
value Iy + I being the stator current of the synchronous machine). The fol-
lowing has still to be mentioned:

The terminal equation of the synchronous machine (13) transformed into
the o reference system was deduced from those written in Park’s reference
system, l.e. in a reference d—q frame fixed firmly to the rotor of the synchro-
nous machine. It is well known that there is an angle difference among the
d—q frames of the single generators of the system in steady state, too (the so-
called load-angles); in transient state these angle differences vary periodically
in time. The effect of these phenomena on the equations transformed into the o
system is that the @ relative angles occurring in the expression of the & argu-
ments which appear in the elements of the T,p transformation matrix {see
Appendix 1, equ. (f2) — the variable being: O - wt -+ 0 according to equ. (4c)].
are different for the single synchronous machines. One has therefore to carry
out the computation in determining the pretransient steady state still in the
system of the symmetrical phase quantities. For symmetry reasons the sys-
tem can be represented by its well-known single phase equivalent scheme:
this way (on the analogy of the concrete example of Figs 7—10) the node-pair
admittance matrix will evidently be the same as matrix Y, in equ. (16¢). It
became evident, namely, in paragraphs 1 and 2 that the impedance of pas-
sive network elements is invariant to the T,p transformation; on the other
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hand, it is to be seen from equs. (13)—(12¢) and from Fig. 5, resp., that one
can represent the synchronous machine in steady state by its open circuit
terminal voltage and synchronous reactance after the T,p transformation, too.
We have to form the inverse of the Y, matrix already for the steady state
computation — and by storing this we shall be able to use it for the transient
state computation supposed the members like pL and dwL (Fig. 5 and equ.
(12¢)) are negligible. In the knowledge of the steady state (and of the single
O, angles) one can determine the initial o and p values of the parameters by
applying the T,p transformation. On the basis of App. 1 and equ. (4¢) the
U, and U, components of whichever synchronous machine are as follows (it
was mentioned above that zero-sequence voltage and current will not arrive
to the generator):

/9 . - . _jgi ; P2
U=-"2|U; e+ Uye /e '3 LU,-ei9 ¢/ F | =

o

- . . 2z
— e—J9. Ua~e‘1(9°*‘””+U(~,'e_“‘5'”*‘“”-e_] 34
2
T o—J(O@g+wt) gl 57| — g—id. 7 :

L U,e— i+, 3}41 Uy » (28)

where U,, is the initial value of U,; quite similarly: U, = e - (790.

Which means that the U, and U, values of any of the synchronous
machines can be computed during the transient state from the initial values of
the o components by applying the rotation according to equ. (28) with the
prevailing 4(z) angle.

The terminal equations (13) of the synchronous machines are differential
equations: but since the coefficient matrix in the o system contains complex
numbers it is impossible to solve them on an analog computer. System tran-
sients can be studied, therefore, only on a digital computer with the aid of
the Runge — Kutta integration procedure. It is practical to accomplish the com-
putations in one time step according to the following program:

1. One has to solve the node-pair matrix equation of phase quantities
in the pretransient symmetrical steady state — on the analogy of equs. (22)—
(27) — i.e. there is to be formed the inverse of the Y, matrix. It is the same task
as that by the usual load-flow study of the network; we can do this by an
iterative procedure after having the Y; ! matrix.

2. In the knowledge of the initial values of node voltages and generator
currents from step 1 one has to determine the initial values of

a) the generator open circuit voltages and the field currents,

b) the quantities transformed into the o system on the basis of App.1 —
i.e. in the knowledge of the generator phase currents and node phase voltages.

3. We have to determine the new o and p graph of the network modified
by the cause producing transients (network-modification, short circuit etc.),
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and after this we have to form the Y, and the Y; ! matrix, respectively, both
in the ¢ and ) systems. (App. 2 describes the manner of connecting the g, ¢,
and 0 component networks in case of asymmetrical shunt faults.)

4. The ¢ and p components of the busbar voltages have to be determined
and after that the (Iy + Ir) column vector (the generator currents) from
equ. (22b).

5. One has to compute the change in

a) the current I, and then the Eg, and X, voltages, resp.

b) the angle 0
from the differential equations (13) and (14), resp. during the time step studied
at each of the synchronous machines.

(We have to mention that if the effect of the damping coils is to be
accounted for the change in the Eg, and Egg voltages must be determined from
the (£7) differential equation of App. 3.)

6. The modified values of E,; and E,, (caused by the change of angle)
can be computed from the new value of the § angle — which is determined for
the end of the time step studied — by using equ. (28).

7. Finally one has to count the I, node-pair current vector; for the next
time step the computation is repeated from point 4.

The above computation program consisting of 7 points can be regarded
as a part of the block scheme of the digital algorithm.

Itis still to be mentioned that the graph of multinode, multiloop power
systems formed in accordance with Fig. 8 is generally nonplanar, and has
therefore the disadvantage of possessing no dual graph; however, the cut-set
and fundamental circuit equations can be written and the computations com-
pleted in the same way as above.

4. The manner of considering the effect of voliage and turbine governors

According to literature in many cases it is expedient to take the effect
of voltage and turbine governors into consideration by transient stability
studies. As a starting point of solving the problem on the basis of graph theory
we have to regard Fig. 3 again, which contains the complete graph of the two-
machine system shown in detail on Fig. 2. The six-branched subgraph in the
middle is here characteristic for the stator connections;subgraphs u—v and
¥ —1w, Tesp., give information on the topology of the field-circuits, while sub-
graph b—r—k on that of the mechanical relations. However, the subgraph
of stator quantities was influenced by the transformation into the g system,
while that of the latter quantities remained unaltered. Let us now inspect one
by one the possibilities of taking into account the voltage and turbine governor,

respectively.
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a) As long as the excitation voltage was assumed to be constant the
subgraphs of the excitation circuits had no part when writing down the equa-
tions. Our task has, however, increased now as we have to complete that part

.of Fig. 3 which is related to the excitation circuits. The excitation voltage of
the synchronous machine is supplied by a direct current generator, while the
execitation circuit of this latter is supplied by a separate auxiliary generator
in the case of bigger synchronous machines. Further wehave to take intoaccount
that the voltage-regulator — the input quantity of which is the terminal voltage
of the synchronous machine (or in the network of Fig. 7 the voltage of busbarl
characterized by the graph-element 0—1 on Fig. 8) — is acting on the field-

As SAS A s A

3 2 i z
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Fig 11

g: field circuit of the synchronous machine
gg: main exciter d. ¢. generator

sgg: auxiliary exciter d. ¢. generator

fsz: voltage regulator

circuit of the auxiliary exciter; on this basis the field-circuit subgraph (z—v)
of e.g. synchronous machine 1 (in the system of Fig. 7) must be completed
according to Fig. 11.

In Fig. 11 the main and auxiliary exciter and the voltage regulator
equipment, respectively, are regarded as two-port networks — having input
and output terminals; according to which their graph consists of two separate
(input and output) elements.

Two-port networks — as is well known — are characterized by their
transfer functions, which give the response of the system for a unit-step
stimulus, and which can be expressed in terms of the Laplace operator, or —
after inverse transformation — as a time-function. The graph of the synchro-
nous machine given in Fig. 3 is now modified in the way that the number of
vertices is increased by four, the number of non-connected subgraphs by two,
and accordingly the rank of the graph has grown by two while its nullity by
four. The rank of the graph being, however, equal to that of the matrix A,
the rank of the problem (its degree of freedom) is augmented by two at
each of the synchronous machines owing to the consideration of voltage
regulator, — if using the method of investigation proposed in connection
with Fig. 8. In this case the steps written in the 3’ paragraph have to be
evidently completed by the step-by-step solution of the differential equations
deseribing the two-port elements of Fig. 11.

b) Similarly, in so far as the mechanical power, i.e. the driving moment
— transmitted through the shafts of the synchronous machines — is assumed to
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be constant, the b—r—k subgraph in Fig.3 — in which synchronous machine 1
is characterized by the b—r element — can be omitted. However, if we wish to
take into account the effect of the turbine governor the subgraph describing
the topology of mechanical relations has to be completed. The mechanical:
power received by the generator is delivered by the turbine. This latter can
also be regarded as a two-port transfer-element, characterized by its specified
transfer function.

The power delivered by the steem streaming in, can be regarded as the
input quantity of the turbine, while its output quantity is the mechanical
power given to the synchronous machine. On the other hand, the steem stream-

ing into the turbine can be regarded as the output parameter of the governor,

gov-input

i gov-oulput

turb~input

turb-
output

= o
gen-input
Fig. 12

gen: generator

turb: turbine

gov: turbine governor
the input of which is the A angle velocity deviation. (The turbine governor
itself is also a composed transfer element, consisting of a centrifugal measurer,
hydraulic amplifier and operating element — this latter is the steem inlet
valve of the turbine.) On the basis of the above considerations the subgraph
of mechanical relations of machine 1 (in the system of Fig. 7) must be completed
in accordance with Fig. 12.

The rank of the graph is increased by one, its nullity by three. In using
the mathematical model based on the cut-set equations the rank of the prob-
lem (the degree of freedom) has grown by one at each of the machines, and
the steps given in paragraph 3 must be completed with the step-by-step inte-
gration of the differential equations describing the transfer elements of Fig. 12.

Appendix 1

The combination of the “¢p”° and the Park transformation.
In three-phase systems we can change over from phase quantities to
the 0"’ reference frame quantities, by using equs. (4) and (10) followingly:

v, =T, vp =T, Tp-v, =T v,. (f1)
Which can be expounded on the basis of equs. (4a) and (10a):
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2 7 2
1 50 cosf cos [9 + —FEJ cos [9 — —7,
2 _ 3
1 2 2 7 2 @)
T Tp,=Tp=—-=—1—F 0 |l—sinfh —sin|f L+ —] —sin{fd — | |=
L T / [ 7] 3
0 0})2 S 1 1
L 2 2 2 _
- s, 27 . 2a
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:VTZ' S Jlerw) Jle-F) (£2)
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Similarly, according to equs. (4b) and (10b):
el ? el 12
. 2 s, 27
T Tol = Tod — % ST ) s (£3)
2
B ‘o 27
ej (@—' _3_) ](O 2 \’ VE_
And the inverse transformation: vy = T;3-v,. (f4)

Appendix 2

The representation of asymmetrical shunt faults in the ““¢” reference
system.

Asymmetrical shunt faults create connections among the g, 9 and 0
sequence networks at the point of fault; for their determination we have to
take only two points into account — the point of fault and the neutral bus
(the vertex 0 in the graph of Fig. 8) — of the o, p and 0 sequence substitution
schemes of the network studied. Let us now inspect the main types of asymmet-
rical shunt faults:

a) Phase-to-ground short circuit (in phase a).

The column vectors of voltages and current at the fault location (index
h) are:

0 I,
U,=|U,|ad I,=|0o]|. (£5)
Upe 0
Applying (f4) to (£5) we obtain: Ups =Tz U, (6)
After expounding (f6) the first scalar equation is as follows:
Upy e +Upyed 4+ Uy =0. (£7)

3 Periodica Polytechnica El X/4



284 L. Rdcz

Applying (f1) to (£5) the result is: Iy =Typ" Ip;. (£8)
Expounding this latter:
Ih:IhaE'e—Joth :Iha' l—--elo
3 2 3
and 1 (£9)
Iy=—1,.

3
On the ground of equs. (f7) and (f9) we can sketch the substitution scheme of
phase-to-ground short circuit in the g ref. system; this is shown in Fig. 13. (In
this figure there are “ideal induction motors” connected to the ¢ and § net-
works, while an ideal transformer is connected to the 0 sequence network.)

i I]%-Ej'a 1 %eﬁ
- 0 ———n |
e [l i ]
1 /—%e‘” 7 V% g4
§ P S é\ J -
T (| B
1:3 1:3
o - ‘ ] K
s - f { [ e U <
Fig. 13 Fig. 14

b) Two-phase-to-ground short circuit (in the phases b—¢)
After quite similar considerations we obtain:

Iyl 4 Iy e + Iy = 0; (f10)
- - Vﬁ—‘ i6 VTZ_ j6
U}z = Dha'—g'e-" . Uh = U}za'—g"ej
and 1 (f11)
UhO = Uha

The suitable substitution scheme in conformity with these latter equa-
tions is given in Fig. 13,
c) Phase-to-phase short circuit (in the phases b—c)

i is easy to realize analogously that.one can now derive the substitution
scheme from that shown in Fig. 14 by opening the zero sequence network
between the points i and n (that is to say, in this case only the p and p net-
works are connected in parallel).

Appendix 3

The o system terminal equations of synchronous machines with cylindri-
cal rotor, taking the damping coils into account.
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Equ. (6) gives the terminal equations of synchronous machines trans-
formed into Park’s reference frame, neglecting the damping coils. If we wish
to consider these, too, we can derive the well-known equation (f12),
where index 1d means direct axis, while index 1¢ quadrature axis damping
coil quantities.

Expounding (f12) according to the marked partitioning and using the
notation presented above, we obtain:

Up=7Zp-Ip
U, =

ZPr'Ir
2ol L7 -1

—+
!
i

(£13)

r r r r

where index r means rotor quantities.
Applying now the transformation (10b) for voltages and currents we

obtain:
P
Q] IP+Z,,-I,. (f14)

The value of the triple product T, " - Zp - T, was given in equ. (12a). Building
similarly the two other products in bracket< — on the analovy of equs. (10a)
and (10c) — we obtain:

PMyy + X PMura +jXpnar  — Xqg +7PpMyy,
Tgl ’ ZP’ - —1—/—:7: P‘WIgd - ngdv P‘fwdld —j-X_dld’ - quq “jp‘n/[alq ’ (fla)
& v 0

0 0

where

Xgg = (0 + dw)- My, and Xpig= (0 + Aw) My,
Further:

_ 3 3 -
?ngd ?p_Mgd 0
1 3 3
ZpT,= ﬁ ?P—’Wduz ?Pﬂfdld 0. (f16)

.3 .3
—1] szwaq J T/pzwaq 0

Using equs. (12a), (f15) and (f16), we can transform (f12) into the o system
followingly:
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Equation (f17)is the ¢ system terminal voltage equation in matrix nota-
tion of the synchronous machine if making allowance for the damping coils.

Symbols

U and I: voltage in volts and current in amperes, resp. :

L: Self-induction coefficient (and also mutual induction coefficient in the system of phase
quantities) in henries

M: Mutual induction coefficient in henries

R, X, Z and Y: Resistance, reactance, impedance and admittance, resp., in ohms

P: Power in watts :

D: Damping factor in W(rad)sec.

T: Moment of momentum in Wseec.

p:

w:

0

differential operator (—;t——)

synchronous angle-velocity
== 0o+ wt +0: The angle between the d axis of the synchronous machine and a reference

vector at standstill

E:  unit matrix, T: transformation matrix
Subseripts:

a, b, c: phase quantities

s, r: stator and rotor quantities, resp.

g:  field circuit quantity

d,q: direct and quadrature axis quantities, resp., (in Park’s reference frame)

1d, lq: parameters of the direct and quadrature axis damping coils, resp.

o: initial value or zero sequence quantity.

Summary

In this paper the graph theoretical relations of transient stability studies are discussed
and a new coordinate transformation method is expounded. This method joins in itself the ad-
vantages of Fortescue’s symmetrical component system with those of Park’s reference frame,
if the need arises for the exact digital calculation of the electromechanical transients in three-
phase power systems containing synchronous machines with cylindrical rotors.
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