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Many fields of physics and attached branches of science (such as optics,
electron optics, geodesy, study of potential fields, etc.) work with geometric
projection. Each of these special fields has developed a particular system of
qualitative estimation of projection [7, 8, 9], however, a uniform method of
description of geometric distortions is nevertheless lacking. This lack has
moved us to introduce the distortion characteristics (ratio distortion, area
distortion, etc.) by the present paper. We have discovered that these concepts
are indeed applicable in several special fields.

Our method was first applied to characterize the distortion of television
images. It occurred to us, in connection herewith, to try to describe distortions
caused by any discretional technical means. Generalization succeeded in pro-
jections between discretionally curved surfaces, thus making it suitable among
others, even for the computation of distortions of geodesic chart projection.
The following step was the generalization to the more than two-dimensional
“images’’; no difficulties have been met with here either.

Experiments have as well been carried out to apply these methods of
distortion computation for not merely geometric problems. The question of
connection with the conform projection used for computing electrostatic
fields, e. g., was tested. The results were surprising: our method of distortion
computation is applicable even in the case of investigating potential fields,
resp. the projection of potential fields. This kind of applicability exceeds the
possibilities of conform projection, this latter being nothing but one special
case of the method.

The present paper will be divided as follows: the first paragraph presents
the concept of distortion tensor and defines the distortion characteristics.
The second paragraph generalizes the derivation of the distortion temsor to
the Riemannian spaces and derives the general form of the distortion charac-
teristics. The third paragraph deals with the practical methods of determining
the metric tensors indispensable for the computation of the distortion tensor,
whereas the fourth paragraph is reserved for illustrating examples.
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1. The concept of distortion tensor, ratio and area distortion

This paragraph is to introduce the concept of local distortion and dis-
tortion temsor by means of generalizing a simple example. The discussion
should be as easy to understand as possible, thus it is limited to Cartesian
coordinate systems and only the distortion of the neighbourhood of one single
point will be examined. After having obtained the results, the entirely general
solution of the problem will be given in para. 2.

The following definition concerning horizontal distortion of televisiocn
image reproduction is generally accepted: in a fixed point the relative deviation
describing distortion is given by the formula

“r _1]-100, (1)
J

where v, is the instantaneous velocity of electron-beam basepoint in the chosen
point and v, the mean velocity as referring to the whole length of the line {1].

If the horizontal size of a scanning element of the distorted picture is
compared with the horizontal size of the corresponding scanning element of
the original picture, no more happened there than that the above definition
has been expressed in another, slightly more generalized form. Going now
beyond this one-dimensional formulation, we should like to find a mode of
describing the dimensional change of arbitrary direction of a scanning element.
Additional difficulties arise by the fact that during distortion not only the
length is changing, but also the direction of elementary arcs and even the
angles between them. The problem which, at first sight, seems to be extremely
difficult, becomes considerably simpler by expressing the distortion of a suit-
ably small neighbourhood of a point in terms of one single quantity, finite
number of components, a tensor of second order. (The second paragraph proves
this statement for the general case.) Let us, therefore, substitute the elemen-
tary arcs taken in the n-dimensional neighbourhood of the point examined
for the vectors as defined in the point examined; now we may study the chang-
ing effect of this tensor of second order on the multitude of these vectors.

Let the relation between the arbitrary vector u; and the vector after the
change %; be

where the tensor H;; causing u; to change is called the effective tensor. Just as
every tensor, H;; may also be divided into the successive application of a sym-
metrical (Si;) and an isometrical (I1;x) temsor [2]:

HiszikSkj- (3)
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According to their definition,
Skj = Sjk » (4)
and

Ii/ijk:Ikiij:aijﬂ (5>

where 6;; =1, if i =j and 6;; = 0, if i = j, i.e. §;; is the unit tensor.

The effect of the two factors of the effective tensor may be visualized as
well: I;; causing a rotation without any change in length and angle, and Sj;
induces longitudinal and angular changes, i. e. distortions. The above property
of Ik is easily proved. Namely. data of length and angle are expressed by
scalar products:

u = Vui Uy €O8 @y = R ; (6)

uv

whereas the isometric tensor itself leaves scalar products unchanged. since

~ o~ ~ o~
(u, U)E u;v; = Il-juj],-kvk == 6]!{ u.jvh. == le’L‘j. (7)

(Here the relation (5) has been applied.)

The purpose of our study being the mathematical definition of distortion
conditions, the rigid body-like rotation is ignored. Distortions, however, are
characterized by longitudinal and angular changes, i.e. the modification of
scalar products. Let us, therefore, study the scalar product changes:

(w.v)=u;v,=H;;Hyuv,=1,8 Aig Sy uj vy (8)

ipOpj
Making use again of relation (5),

(?[e 5) - Spj Spl; UV = Vijk u/ Vg - (9)

where, as a definition,
7’]!{ - Spj Spk' (10)

y;x may now safely be called the distortion tensor, containing only tensor Sj;
which characterizes distortions, but not the isometric factor, and giving direct
information on scalar products composed by distorted vectors.

The distortion temsor y; — although fully describing distortion — is
rather difficult to be treated. Its components give no immediate information
about the degree of distortion and are, in addition, dependent on the coordi-
nate system applied. For instance, a direct answer is sought for to the question.
which maximum change of length a vector can endure because of distortion.
To express this more clearly: we look for the maximum change of length and

the unit vector a;, on which this is produced by the effective tensor [3].
1

According to (6) and (9) the distorted length square is:

T2 = gy Uy (11)
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The maximum of % should be found assuming that u;u; = 1. Applying the
method of Lagrange’s multipliers, the absolute extreme value of the function

B (1) =y — A — 1) (12)

is to be found, so the vector a; sought for should satisfy the relations
1

B (4) | R (4) |
SER o, @ (13)
au_j | uy=a; 8l | vy=a;
1 1
After differentiating
ou® (A .
o) =Yy Ty u;—24u;=0, (14)
u;u; = 1.
Since y;; is symmetric (see [10]),
Vieur —Au; =0, uu; =1, (15)

where the first equation is the eigenvalue-equation of the tensor. A non-trivial
solution is obtained only if

det [y, — 20, =0, (16)
as known in the theory of homogeneous equation systems. Equation (16) has
n real solutions, the eigenvalues:let them be A, 4, ... .

12 n

In the following, let us assume a sequence of eigenvalues always obtain-
able by appropriate interchanges of subscripts:

AL AL LA (A7)
I 2 n
By substituting in order the eigenvalues in equation (13), the sequence of
eigenvectors is obtained: a;, a; ... a;; where
1oz n
a,a,=1. (not summed for r) (18)
r r

Considering the well-known theorem according to which the eigenvectors of
symmetrical tensors are orthogonal (or, at least, orthogonizable),

a;a;=29. (19)

r s Ts
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If a function defined on a compact region is continuous, moreover continuously
differentiable, then it takes on its maximum and minimum as well within
this closed region, in particular at some of the zeros of the differential quotient.
For function (12) these assumptions are fulfilled on the closed unit sphere

uu; = 1, consequently the maximum may only be 4, the minimum A.
n 1

It can easily be proved that a symmetrical tensor transformed to the
coordinate system spanned by its eigenvectors becomes:

yij=40;; (not summed for i) (20)
1 e. |
[ 2 0.0
Vij = 0 g ’ (20a)

=)
=
Y
L

In this coordinate system x; determined by the isometric transformation
x; = ax; (11) becomes:
j ~ _ — P
=Aui+Aui L+ ..+ Aud, (21
t 2
whereby

= 1. (21&)

ats

72 1372 1 1L
ul—ruz-r...—{—u

These iwo equations determine because of the positive eigenvalues (which is
explained by [10]) an ellipsoid, the so-called indicatric ellipsoid the axes of
which point in the direction of the coordinate vectors, i. e. the eigenvectors
and with the lengths as follows: }/2, V2, ... V2.

1 2 n

Let us try to illustrate the change of neighbourhood of a predetermined
point on the basis of the aforesaid. Recent results show that — while vector
u; is running at the surface of the unit sphere surrounding the chosen point —
its distorted equivalent (#;) runs along the surface of the ellipsoid. This means
that a circle becomes distorted in two dimensions to an ellipse, the square to a
rectangle, thombus, rhomboid (see Figs 1 and 2), whereas in three dimensions
an ellipsoid is obtained instead of a sphere, a general parallelepiped instead of
a cube. (The above illustration refers as, of course, all considerations discussed
so far, to a small neighbourhood of the point.)

According to equations (2) and (3), the change of the scanning element
occurs in two steps. First the neighbourhood of the point suffers pure distor-
tion, followed by a rigid body-like rotation (Fig. 2). It may be seen that the
rigid body-like rotation does not essentially alter the estimation of distortion,
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counsequently it is really ignorable. (This problem will be referred to again at
the end of this paragraph, where a deeper reason is given for our procedure.)

It is worth observing that the informations obtainable from the distor-
tion of the scanning element may be ranged in two groups. The absolute char-
acteristies (the minor, resp. major axis of the ellipse, for example, its eccentric-
ity, its area, etc.) belong to the first group and are the invariants of the dis-

Original Distorted

tortion tensor. The second group is formed by the relative characteristics (such
as the direction of maximum, resp. minimum distortion, ete.) which are in
connection with the eigenvectors of the distortion tensor and thus dependent
on the coordinate system (on the view point). Although both groups of data are

necessary to completely describe the distortion, the absolute characteristies
are more expressive because of their independency from the view point.

riginal Distorted Distorted and rofated

u

Now let us consider the absolute characteristics, the invariants of the
distortion tensor. Such characteristics are, for example, the eigenvalues. It is

not difficult to prove that their totality forms an independent and, at the same
time, complete system. (It is sufficient to consider the form the distortion
tensoris taking after the transformation on the main axes.) It follows from this
fact that every invariant is unambiguously determinable by the eigenvalues.
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The eigenvalues have an expressive content as well, giving — following
from equations (21) and (21a) — just the square of the axes of the distortion
ellipsoid, whereas a conception of the nature and degree of distortion may be
formed with the knowledge of the length of the axes. There is, however, a pos-
sibility to form even more practical invariants. The introduction of volume
distortion (T,) is very useful; this invariant is the ratio between the volume
of the distortion ellipsoid and the volume of the unit sphere. Its connection

with eigenvalues is evident:

1

=
PN
—
(]
[3%]
-

k
A similar definition may be given on the distortion of volume element of an
arbitrary I-dimensional subspace, depending, of course, on the orientation
of the subspace as well. Its maximum and minimum may be given as invari-
ants, Relations with eigenvalues are again simple:

n

Timax= I %, (23)
k=n—1+1k
1
Ti‘Z min — 7 7. (233)
k=1f
Evidently
Tr?i max ~— T’l1 min — Trzx . (23}))

Another, similarly effective and expressive sequence of invariants is
the system of ratio distortions (A;). The [-dimensional ratio distortion is the
quotient of maximum and minimum volume distortion of an Il-dimensional

volume element:

a i
Af = 2 (<), (24)
o i
k=1 k

It follows from equation (24) that

A =4, (24a)

Let us examine how an independent and, at the same time, complete
system may be chosen from among the above derived invariants. First of all,
{Timaxts (1 <1< n) as well as {Tiy,}: (1 <1< n) form an independent
and complete system. {For the sake of simplicity, demonstration is neglected.)
Accordingly, there is an unambiguous relation between the two systems:

TI max Tn—l min ™ Tn ’ (25)
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i.e. the elements of the two systems may be conversed to each other. Because

of relation (24a), however, only {4,}, [1 <l < [—:—H forms an independent,

4

but visibly not complete system. They may be completed to an independent

and complete system in the following manner: {41} {Trmax)s 1 <1< [_’_;_J
[%}< k< n). In this case
Tkmin=T’fmax ( 1J<k<n)’]
A s 9
Tn T ‘ n k4 (26)
Tlmaxzm‘: Tlminz_—_i_. (1£l£[‘_{|)
Tt i T, max 9

respectively if n is even:

T, .
Tn/?. max ~— l An/z T,, Tn/z min = 1/ I (263)
<In/2

There are, of course, still numerous ways to produce invariants, but in our
opinion it is exactly the above invariant systems which are, in the majority
of applications, the most practical, and, from the point of view of computa-
tions, at the same time, the most simple ones. This approach seems to be par-
ticularly advisable for general descriptions of picture reproduction and trans-
mission.

After having generally discussed the distortion invariants, let us consider
which data are the most expressive to describe the distortion of the most
frequent two-dimensional images.

There are two eigenvalues of the distortion tensor in two dimensions,
hence two independent invariants may be chosen. It seems to be advisable
to mark them as the two-dimensional volume distortion of the picture —
the area distortion — and as the ratio of the major and minor axis of the defor-
mation ellipse — the ratio distortion:

P2,
.
1

[
(24b)

Ty=YAi-4, (22a) A=
1 2

These two characteristics are well applicable for the qualification of distorted
pictures, since — by specifying the limits of the ratio distortion, resp. the ratio
between local and general area distortion — there are two data giving reliable
information on the quality of the distorted image. (By all means more reliable
information than, e.g., the present index system used for the qualification of
television picture, where the image that becomes unenjoyable because of
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jitters caused by errors in synchronism or by network disturbance does rot
show any irregularity in its data of vertical-horizontal linearity and pincushion
distortion.)

Let us study how the area and ratio distortion may be determined when
knowing the distortion tensor y;;. The characteristical equation (16) may be
expressed in the following well-known form:

Al +T,=0. (16a)

I', is the determinant of the distortion tensor, [ its trace; these two invariants
may be computed in the Cartesian system as follows:

I'y=yi=yu+ Ve .27
Iy =y v — Y12 ¥
The two solutions of equation (16a) are the two eigenvalues. According to the
Vieta-formulas of the quadratic equation [, = 2 - 2, i.e.
P

T,=T,. (28)

In order to express the ratio distortion, equation {16a) should be solved.

i L _anemmans n g
A= T T 5 =37 (2RJ ‘
1 12 2 2 .
r, 7
A= ey (29)

where relation arch x = In (x - )/x® — 1) is used and where we limited ourselves
to the positive branch of the arch function. (The other branch would give the
reciprocal of 4, i/ .)

12

Computation of ratio distortion is even simpler in the special, but frequently
occurring case of y,, = y,; = 0. Here

i = V“:’I@ when Vit = Vas

{29a)
l VaolY11 when Y < Voo

resulting from (20a) and (24b).

. It is noteworthy that there is an unambiguous relation between ratio
distortion and angle distortion. The maximum distorted equivalent of a rectan-
gle, ¥ is computable as follows:

tgF = (30)
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The relations of ratio and area distortion derived hereabove will be es-
pecially useful in the following chapter since, with their help, it is possible to
obtain from the distortion tensor given in the general coordinates, distortion
data easy to be dealt with.

Limited still to a two-dimensional image and Cartesian coordinates, let
us study a view-point dependent, relative distortion feature: the seiting angle
of the distortion ellipse axes as referred to the direction of the coordinate axis

x,. The direction of the axes of the ellipse is determined by the eigenvectors

a; of the distortion tensor, the setting angles being thus expressed by their
7

components (Fig. 3):

Let us proceed from the first line of the equation system (15) serving to
determine the eigenvectors:

Yl T Vet —Aa =0, (15a)

% _ A—yn —_ I+ VI —41—2y,

k4

a 712 271
A L) [ a 2
a, P ]/ [ Va9 — /’n) e (31)
=, , = Lol ! .
ay 275 2y Y12

Considering now the symmetry (y;, = y,) of the matrix representing the ten-
sor ¥, and using the relation arsh x = In (x £ }/x2 4- 1), we obtain:
" ay = »
In tg ¥ = arsh s T 4 (31a)
2910

It should as well be considered that the arsh function is multivalued: if y = arsh
x, then j @ — y = arsh x is valid, too. For this reason, relation (31a) gives two
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data: the setting angle of the major and the minor axis — showing, of course,
a deviation of 90°.

Comparing distorted and undistorted picture elements to be found in
different spaces the rigid body-like rotation naturally cannot be defined. Let
us consider the problem in that case when the distorted and undistorted pic-
tures are in the same space. In this case the condition for the definition of the
rigid body-like rotation is that thereshould be an unambiguous procedure for
making two picture elements to cover each other; herewith the isometric ten-
sor can be derived according to the above discussed description. The problem
of the above mentioned procedure is dealt with in detail in the literature: the
conditions of unambiguous parallel displacement or with another name the
absolute parallelism are derived in detail e.g.in [5] and [6]. We quote here the
final result: unambiguous parallel displacement exists only in euclidean space.

An obvious conclusion of the aboveresultisthatrigid body-like rotation
can be defined only in euclidean space. But there are further restrictions for
the I, isometric tensor defined by (3) and (5). If we accept the criterium of the
continuous deformation then the continuous curves of the undistorted picture
should be mapped also into continuous curves in the course of distortion. On
the other hand, the relation of the arc elements of such curves is determined
by H,;:

dz; = H;;(x,)dx;. (32)
Consider the following simple case: Hy(x,) = I;j(x,) ie. Skfx,) = 0Ox;. For
the integrability of (32) there are well-known criteria in the theory of differen-
tial equations, according to which e.g. in case of the above determined Hj;
only the H;f(x,) = I;; choice can be made (I;; is constant). There are similar
restrictions, too, if Si; = &y “

After the above explanation — dispensing with the detailed proof —
it can be stated that if the isometric tensor is known at one point then the in-
tegrability conditions determine it at every other point. In other words: know-
ing the Si; symmetric component pointwise the rigid body-like rotation can
also be determined point by point to the extent of a constant rotation valid
for the whole picture. As a result of the above discussion giving the distortion
conditions for the whole picture we determine in fact the rigid body-like rotation,
too; for this reason this latter is ignored in the forthcoming part.

2. General introduction of the distortion tensor

The question arises how the concepts discussed in the above chapter
may be derived generally, without the unnecessary restrictions mentioned
there. First of all, distortion conditions of the entire image space should be
discussed instead of studying the neighbourhood of one single point. Conse-

4 Periodica Polytechnica El. X/4.
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quently, it should not be any longer assumed that the undistorted, resp. the
corresponding distorted picture elements may be found at the same place, i.e.
the distortion tensor forms a connection between spaces more orlessindepend-
ent of each other. Secondly: in order to keep the discussion general, it is
necessary to use general coordinates. Itis an essential condition that the object
space as well as the image space (in a wider sense) should be metric (this being,
of course, the sine qua non of mentioning distortion at all). This condition
means, in our case, nothing but that contravariant and covariant vectors may
be defined at every point of the studied region, and there is a symmetric metric
tensor (g;;) forming a connection between these vectors. In the course of deri-
vations, the differentiability of coordinate functions is assumed everywhere
([51, [6D)- v

Our task is therefore to submit the geometric (i.e. geometrically charac-
terizable) relation between object and image to a general study. Part of this re-
lation, the deviation between object and picture, is the difference; the quanti-
tative description of one element of this difference — the distortion — is the pro-
per purpose of our study. The other part of the relation is an identity between
object and image. The character of identity limits all further discussion; the
topologically homeomorphic property of object and image is assumed. This
means that the points of object and image correspond conversely unambiguous-
ly and conversely continuously to each other, which simultaneously results
the equidimensionality of the transformation.

For the sake of analytical discussion, the space expanded by the object,
resp. by the image is to be embedded in a coordinate system. Hereafter, we
restrict ourselves to embeddings where the correspondence between the points
and coordinates of the image, resp. of the object is always unambiguous and
conversely continuous [5] [6]. The two embeddings may occur independently
of each other as well, but in this case a special formula should be sought for
in order to describe the correspondence of object and image points. (As a
result of constrainis made in embedding, this functional relation characteriz-
ing the distortion is able to reflect the homeomorphic property of the relation
between object and image, because in this case the functional relation is
always unambiguous and conversely continuous, too.) For practical purposes
let us choose the embedding so as to express the correspondence of the object
space and image space by the relation

¥ (P) =%/ (P). (1)

(P is the point of object space, P the corresponding point of the picture space,
', resp. X' the coordinate-n-tuples belonging to the points.)

Assumption (1) does not affect generality, since — if in case of an inde-
pendent embedding — the formula describing the correspondence of the coor-
dinate-n-tuples was

F[#(P);«/(P)] =0, )
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then, introducing new % coordinates in the object space with the transfor-
mation relation

F[#(P);2 (P)] =0, (22)

the relation of the coordinates of the corresponding points is described by the
equation

¥ (P) =% (P). (1a)

The small neighbourhood (more precisely: the infinitely small neigh-
bourhood) of the arbitrary point P of the object space is transformed into
the similarly small (infinitely small) neighbourhood of point P of the image
space. In order to be able to discuss this correspondence in a simple way, such
quantities defined in point P, resp. P should be sought for, which are at least
able to describe the immediate neighbourhood of the selected points. Quanti-
ties like that may be constructed as follows. Let us draw a set of curves con-
sisting of smooth curves passing through point P and densely covering the
small neighbourhood in question of point P. Let the arc length measured from
point P be the parameter variable for each curve. (Those singular curves where
this cannot be done are excluded from our study.) From a curve as defined

above
# = 1 (s) 3)
the quantity
ui(p) =220 ()
ds

may be formed, for each curve separately. It is clear that u'(P) is a contra-
variant vector, its absolute value being 1.

The equivalent of the above set of curves covers the neighbourhood of
point P following from the homeomorphism. Since the chosen curve (3) is
mapped — according to relation (1) — to the curve

T =7F(s) = x'(s), (5)

it still holds that
dz'(s)  dx'(s) _
ds  ds

wl (P) = ul (P). (6)
‘We must consider that in this latter case, s is no longer an arc length parameter,
hence @(P) is not a unit vector. Relation (6) obtained for the contravariant
components is only the result of (1) and does not hold for the covariant com-
ponents.

In an arbitrary coordinate system the scalar product of two vectors is
produced by the bilinear form obtained by the metric tensor and the compo-

4%
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nents of the two vectors. Thus, for instance, the scalar product in the coordi-
nate system x' of the object space is

(u,v) = gi; (P)u! (P) v/ (P), (M)

where u' and o' are two arbitrary vectors, determined by equation (4).
Accordingly, in the image space

(&, 7) = &, (P) &' (P) ¥ (P). (8)
Let us form the scalar product (u, ?) in the image space by means of vectors
u', resp. v’ in the object space. Considering (6), this is easily done:

(#,%) = & (P)u' (P)/(P). 9

Equation (9) is a tensor equation in the object space, since u’ and v’ are vectors at
point P and (i, ) is an invariant scalar ordered to point P. Equation (9) is
therefore defining 2/(P) as a tensor at point P of the object space.

Our equation forms a connection between the scalar product of the unit
vectors of the object space and their equivalent in the image space. Let us
therefore regard in such a tensor relation of

(8,3) = 74 (P) i (P) o/ (P) (10)

the tensor y;; as the distortion characteristic, i.e. as the distortion tensor.
When comparing (9) and (10), this distortion tenmsor is defined more clearly:

7'ij(P)=gij(F)‘ (11)

(It is easy to see that even in case of more general postulates only the distor-
tion temsor y;; is required for describing the geometric deviations i. e. distor-
tion in the small neighbourhood of the corresponding points of the two ob-
jects. That is to say, the whole system of geometric differences is known if the
equivalent in the image space of all geometric invariants definable in the point
in question of the object space can be given. For this purpose it is only necessa-
ry to know, in the known way by differential geometry [4] [6], the metric
tensor and its derivates in the point of image space; in our case, it is equivalent
to know the metric tensor at all points of the given spaces, whilst considering
the conditions concerning differentiability.)

The metric tensor being in any case symmetric, so the distortion tensor
is symmetric as well.

Let us return to equation (10) and compare it with the relation of the
preceding part (1.9). It is clear that (10) is a generalization of (1.9), hence con-
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siderations following the eigenvalue equation are applicable by corresponding
generalization in this case, too. The eigenvalue equation now takes the follow-
ing form [4]:

(Vij_)‘-”ij) ul =0, (12)

det |7’ij~}'giji = 0. (123)

From the eigenvalues (whether real or complex) obtained by the equation,
the distortion invariants introduced in the first part may further on also be
formed, on the basis of relations (1.22)—(1.24).

Instead of the determinant of the matrix of equation (12a) the charaec-
teristic equation may read by means of the invariant determinant differing
from it only by the constant, as follows [6]:

1 .
0= ; A (Vrlsl_ A l’rm) (}/fzsz — 4 gfgsz) .. (Vr,.s,; ~ A8rusn )- (13)

Here ¢+ """ is the Levi-Civita tensor the definition of which is, in a right-
handed system, the following:

[ 0, if at least two indices equal
1, if the indices form an even

r.r T'n — pa— 3
&n t=8 e 5 & = permutation
rr rn T Te...Ta . L.
—1, if the indices form an odd
permutation
where e  1s the antisymmetric unit matrix and g the matrix determi-
Flaor

2

nant of the covariant metric tensor.
Using the binomial theorem on (13), it results in the following form:

n

0 :,%(_ 1)n-«1;_n~l]1i , (14')

where
1 r.r r e, <, ful
FI a “(‘,’L‘:WS vrrrrTmEWe MY s Vns 8rpagsper ot Brata (10)

Since there are only tensors at the right side of (15), the /', quantities are in-
variants. I, ... I, are the invariants of tensor y;;3 I'y = 1. The expression
of invariants is considerably simplified if the distortion tensor 7;; is used in
the compound form

¥ (P) = g5 (P) y;; (P) = g (P) &, (P). (16)
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In this case, one of the c-tensors has to be written in the covariant form in
(15) and the compound metric tensor representable by the unit matrix should
be substituted into the equation. The following simple relation is obtained:

1
I e Y Y (15a)

T e e
(n-—-l)!l! rll.,r;rl,‘.l...r. SIA..SH’I+1...T

Subsequently let us sum up the general method of computation of the
distortion characteristics. The first step is to embed object and image in a
suitably chosen coordinate system, noting condition (1). In both coordinate
systems the metric tensor is determined as the function of the point. By means
of relation (16), the distortion tensor is obtained as a function of the coordi-
nates of point P. After having determined the invariants I'; (15a), the eigen-
values can be computed from (14). They give the different distortion charac-
teristics as a function of the point. These latter two steps may be combined
to one single step by previously directly expressing the distortion characteris-
ties with the invariants I, as, e.g., in the preceding partin the two-dimen-
sional ratio and space distortion relation.

Finally the so obtained general results are studied concerning two-
dimensional object and image and, at the same time, it is shown that for prac-
tical computations the compound form of the distortion tensor is the most
advisable one. Forming the two invariants of two-dimensional y/;, according
to (15a),

1

e Y = Yh+ Y3 l
T
(17)

1 oaTe ol a2l a2
€ Vs Vs =VaVe—Va¥a l
s

the relation equivalent to the equation of the preceding chapter (1.27) has been
obtained. Whilst, therefore, the invariants are obtained by the covariant, resp.
contravariant form of the distortion tensor only by simultaneous application
of the metric tensor (see equation (15)), the matrix representing the distortion
tensor in a compound form gives them in itself — actually according to rules
entirely corresponding with the invariant formation in the Cartesian system.

Ratio and area distortion may thus be formed further by means of (1.28),
(1.29) and (17). The question of set-up of the distortion indicatric figure must
be studied, on the other hand, in fuller details. The matrix representing yf.j
in a compound form is, namely, not bound to be symmetric; there is nothing
known but that its two possible forms are mirror images of one another as
referred to the main diagonal:

Y= =7
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Transferring the eigenvalue equation (12) to the compound form,
(yi—2Adhul=0 (12b)
and taking out its “first line”

yiut 4+ ylu* —Aul =0

a relation of identical form to (1.15a) is obtained. The ratio of contravariant
components of the eigenvectors may thus be given in accordance with (1.31):

a? _yﬁ—y%+~1f‘ 73—l )2 n (18)

al 27} 27 i
or
a’ ? Vi — 71
In— = 0.5 In 1 —,L‘ arsh —‘7-"-—]—()* . (183)
al 7 2Vyies

With this knowledge, the direction of eigenvectors, i.e. the orientation of the
distortion indicatrix, the set-up, is determined.

3. Determination of the metric tensor on general surfaces

The preceding part specified the method of general description of the
distortion between object and image space by introducing the distortion ten-
sor. The invariants of the distortion tensor help to give a direct picture about
the character and degree of distortion. As to the computation of the distor-
tion tensor yJ': embracing all further distortion informations, however, entirely
general and, therefore, not too expressive directions for special cases were
given. Relation

Vi (P)=g"(P)%;(P)

of (2.16) is worth something only if the metric tensors are known in the one-
to-one points of object and image space, which is a not negligible requirement
in a general object and image coordinate system.

This chapter has just the purpose to facilitate the practical computation
by giving a general method for the determination of the metric tensor in the
two-dimensional surface points with an arbitrary coordinate network, embed-
ded in the three-dimensional Euclidean space. The results will be useful in a
great part of our computations, our distorted images frequently appearing at
a two-dimensional curved surface from the dome fresco to the cinerama
screen.
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As a start, the surface studied is embedded in some trivial three-dimen-
sional coordinate system as defined in the Euclidean space. First of all the
rectangular, cylindrical and spherical coordinates are taken into account; their
metric tensors being well known (Fig. 4). If the surface where the metric ten-
sor is sought for, coincides with one level surface of one of the coordinates
(further on always called the third coordinate, for the sake of simplicity), there
are no special troubles. In this case, the restriction to the surface, the “staying
at the surface” is synonymous with the statement that the third component
of contravariant vectors drawn at any point of the surface is zero. In the rela-
tions containing the metric tensor, as for instance, in the expression

(a,b) = g;;a'b!
there is no place for the third line and column of the covariant metric tensor.
By canceling these, the two-dimensional surface metric tensor is obtained.

1700 P00 d
gi =0 o gij =10 risin*§ 0
o1

rez

Fig. 4

If there does not exist the fortunate case of coincidence of the surface
studied and one level surface, this state may be produced by a suitable coor-
dinate transformation. A general solution is given therefore by the following
set of operations:

a) Starting from the alreadv mentioned trivial embedding: #*. (The
Greek superscripts mean here and further on running integers from 1 to 3.)

b) The next step is the second embedding of the surface: x*. In this
new coordinate system the surface studied must absolutely be a level surface

— 3 -1
eg. 2= 0. x

and x> may be arbitrary (it should be taken into account.
however, that they have to satisfy a relation of the (2.1) kind in the course of

further computations). If, in the system %%, the surface is represented by

B = £ (w13 ), (1)
where x' and 22, the new surface coordinates required, are parameters then
the requirements as given in b) are satisfied, for instance, by the system &~
defined by the following relation:

= f, (a1 2% + 2% m*, (2)

where vector m varies along the surface so that its component perpendicular
to the surface does not disappear anywhere and is differentiable along the surface.
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The coordinate derivatives along the studied surface x® = 0 are as fol-

lows:
o of
Ox1 0Oa2
dx* dfs Bfy —
“F————ﬁ__ P '-—% m? |. (3)
ox Ox! O«
o o o,
| Oxl 0x? |

c) After this, the known metric tensor g, of the trivial embedding x*
is transformed by means of (3) into the system x*: g,5. Since our surface in
x* is a level surface, the surface metric tensor is obtained by deleting the third
line and column of g,;. It is not even worthwhile to compute these useless com-
ponents; it is sufficient to form only the two-dimensional surface metric
tensor:

ox* 9xf _
=TT 78 (4)
Bx' Bx/

o. .
8ij

Jt may be observed that in this relation the last column of (3) has not even
been used, the transformation being thus carried out but by the 3 X 2 matrix
of the coordinate derivatives (actually, by the derivatives of (1)):

T oxt Oxl]
Oxt Ba2
Gl ox2 ox?
dx! 9x! 9a?
ox3 Ox

| Oxt 0x?

The above sequence of thoughts proved the transformation rule con-
cerning coordinate transformation inherent in dimension reduction; further,
the final results (4) and (5) just obtained will be used.

Application of this method is shown by an example. The metric tensor
of the spherical surface with radius R is sought for, together with the surface
coordinates ¢ and # as defined in accordance with Fig. 4c. (The task is so simple
in order for it to be controllable.) Nothing but the metric tensor of Cartesian
coordinates may be considered as known, thus

a) the trivial embedding takes place in the rectangular coordinates

X, ¥, 53 gy = 0,3 Our relations corresponding to (1):
x = R-sin? - cosq
v o= R-sind - siug XA = %

= R -+ coz? ¢. 0 = ',

2]
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As to relation (2) concerning embedding ), it is not necessary to note this,
but it may be sufficient to form the coordinate derivatives (5):

5 — R sin ¢ sin ¢ R cos ¢ cus ¢
g;i= R sin & cos ¢ R cos & sin ¢
0 — R sin ¢

¢) By means of (4), transformation is carried out:

8% 8% _ {Rz sin? 8 0]
0 R?

Resulting from this method, the metric tensor of the spherical surface
is obtained with réspect to the surface coordinates ¢, ?#. This result in fact
corresponds with the metric tensor visible on Fig. 4¢ if the first line and col-
umn of the same are deleted and r = R.

So far, the general method of the determination of the metric tensor
has been indicated and illustrated by way of example. Further on, procedures
derivable from the general method will be dealt with.

The method of local embedding is identical with the general procedure
included in items a}—c ), with the restriction that the new surface coordinates
x' are equal to the two coordinates of the original x* embedding. (As a
matter of course, x' and &? should meet with the general requirements concern- '
ing coordinates embedding.) In this case, (1) becomes:

al = !
% = &° (1a)

= fy (x5 47,

and the coordinate derivatives:

1 0
9x* 0 1 -
J LI e = . 2a
ai B g& % ( )
Oxl Bx?

The surface metric tensor may be, henceforward, computed by means of (4).
It is worthwhile considering which data of the surface were used for the
determination of the metric tensor: as a matter of fact, nothing but the two
differential coefficients in the last line of (5a) have been necessary. This fact
might be illustrated by the following considerations. The last line of (2)

A =B — fy (5 #) =B — f (F )
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is regarded as a scalar-vector function in the coordinate system x*. The gradi-
ent vector hereof is:

L mow) = _ 5. 9 .1]

o axt’ 8w’ ozl Ba2’

o
(%2 "
perpendicular to the surfaces m®x3 = const, thus to x® = 0 as well. Accordingly,
the first two components of the normal vector reduced to the third component
stand in the last line of (5a):

1 0
o 0 1
= . (M
ox’ n iy
n, 1,
The components n, are to be understood in the ¥* system and are — taking

into account (6) and the definition-like covariant character of the gradient
vector — covariants.

Our recent results led to interesting statements. For the determination
of g;; it is not necessary to explicitly know the equation of the surface in ques-
tion; it is sufficient to know nothing but the surface normal at the points
studied. This possibility highly facilitates the solution of some tasks. The ap-
plication is shown in example 6.

If the tangent-plane would be formed point by point by means of the
surface normal vector, and if, as step b) of our general method, a local coordi-
nate system would be drawn where the tangent-plane is the level surface, it
might be possible to determine the surface metric tensor point by point, lo-
cally. This consideration would lead to the same result as (7); the above de-
seribed procedure is called, for this reason, ““the method of local embedding”.

Method of common embedding. The methods used so far are suitable for
the computation of both g;(P) and Z;/(P). In case of object and image space
determined in the highest degree independently from each other, there is
nothing to do but to determine separately the two metric tensors in corre-
sponding points by means of effective embeddings. In the very frequent case,
however, when object and image allow themselves to be embedded in a com-
mon coordinate system; there is still another way to compute the metric ten-
sors, at least in any of the object and image spaces.

Let the coordinate 3-tuple x*(P) of the image points in the coordinate
system embedding the object and depending on the coordinates x(P) of the
object points be given, for instance, by the following equations:

a(P) = f, [«'; 22(P)]. (8)
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A new coordinate system regarding the image and meeting with the require-
ment (2.1) may be introduced by the following equations:

= (P) = f.[%: 3 (P)]. (1b)

This relation is similar to the initial equation (1) of the general metric tensor
computation method by means of which the transformation similar to that
met with there may be carried out. The results are particularly easy to be
dealt with, if (P) = x (P) — which, in turn, is valid in many cases. (E.g
in case of every projection task to the coordinate ¢ and ¢ of the spherical coor-
dinate system fixed in the centre of projection.) According to the foregoing,

(P)
2(P) 4. (2b)
)

The coordinate derivatives are:

1 0 -1 0
3x* 0 1 0 .
== ow(® o (® || ov(P) 0w (D) )
o1 (P) ev(P) 8x! (P) 8x*(P)

The new metric tensor of the image could be expressed with the aid of (4):

= B3 (13)

3 ()= 2y )+ s (P07 ) e

+ g3]( )~—————~'~g33( )

ox' (P)

8x* (P) 83 (P)
8xi (P) o/ (P)’
9)

The method is substantially the following: the well-known ‘‘trivial”

embedding serving as the starting point for the computation of the metric
tensor of the image surface is the coordinate system embedding the object.
In this way, the metric tensor of the image is obtained by a relatively conven-
ient transformation, simultaneously satisfying (2.1).

Example 5 applies the method of ““common embedding”.

The method of fitting surfaces is applicable in case of the object and image
surface not bending outwards from each other, but joining each other. Here
the third dimension is not required, computations may be carried out in two
dimensions.

Let the surface coordinates be ' and the known metric tensor gij- Let
the one-to-one mapping of the object points P and the image points P be
as follows:

2 (P) = f; [x*: 22 (P)] . (1¢)
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A new coordinate system may be introduced in the image space meeting with
(2.1): N ~
# (B) = £, [#: 2 (P)). (o)

The metric tensor of the image coordinate system may be computed from its
object space:

- o _ <P (P) 8t (P) -
2ij (P) 8}.[ (F) STJ(F) gpq (P) . (11)

Accordingly, the distortion tensor is

_ ki pva (B oy DX (P) B (P) 5
v =g (D)2 (P) = g"(P) B o) o (P),

taking the very convenient form of

Lk osF (P) &P (P)  8xP(P) ax?(P) 12)
T ew(P) e(P)  8x*(P) 8x/(P) B

in the Cartesian system x;. :
This method will be used in examples 2 and 3.

4. Examples for application

Entire generalization has been strived for so far in derivations and results,
and it is for this reason that the individual possibilities of application have
not yet been discussed. This paragraph is designed to present the applicability
of our methods of distortion computation by way of some examples. These
examples should illustrate the wide applicability of the processes of the com-
putations mentioned,

y=br

1st example. The distortion of picture B of radiolocators is studied. In
this mode of operation some sector is scanned by the locator, whereby the
individual points of the scanned surface (Fig. 5a, black space) are determined
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by distance r and the azimuth @. Potentials, at the same time, proportional
with the coordinates @, r, control the deviation x—v of the locator picture tube
and this draws it in an orthogonal system:

Xx=a-@,
y=b-r. 1)

The picture appearing on the screen will apparently become distorted (which
is clearly visible in Fig. 5h).

Our task is to determine the distortion tensor, the ratio and are a distor-
tion as well as the setting, with reference to each point of the picture. In the
first step, the object and the image are embedded in a suitable coordinate
system, whilst complying with (2.1). In our case, the system ¢, r seems to be
advisable. Further on, the metric tensor concerning the coordinates ¢, r is 1o
be determined on the object as well as on the image. ¢ and r on the object mean
polar coordinates, the metric tensor being of the well-known form

A_:rz 0 i r~2 0
& [0 1]:’ 8 [0 1J

The metric tensor of the image is known only in the Cartesian system =z, y
®') : §;j = 0;;. With its transformation, the metric tensor of the picture is
obtained in the system ¢, r (&) :

o
oxP 9x7

— .
axi axi °%

&ij
The coordinate derivatives from (1):
i
ox |0 b
Thus, in the system ¥ _complying with the relatipn?%?’) = x(P)

~[5)
Yoolope

In system @, r of the object, the distortion tensor is obtained from (2.16) as

follows:
?’L = U?jk = [au(/]ru O]'

Qagq/l

b2
Area distortion by (1.28):



DETERMINATION OF DISTORTION CONDITIONS 313

Ratio distortion according to (1.29a):

A = max [Lb— a]-

s —
a 1b

It is clear that the ratio distortion as well as the area distortion are both de-
pending on the coordinate r. 4 = 1 (i.e. there is no ratio distortion) at the

a
places r = 7} here a b-fold magnification occurs, i.e. T = b% The direction of

coordinate lines @, r is obtained for the direction of the eigenvectors, thus for
the setting of the distortion, on the basis of (2.18).

The distortion of the picture of C,resp. E type locators could be similarly
discussed. It is easy to carry out tests concerning the common distortion re-
sulting “‘officially” from the mode of representation, respectively, from the
errors of the picture tube deflecting system.

Xz ‘ X2 X2

| |
X1 f/«\'z) Xy
Fig. 6

2nd example. This image distortion is a frequently occurring phenome-
non in television receivers. If a disturbance superimposes the horizontal de-
flexion signal (for instance hum or control swing in the indirect synchronous
circuit), some lines of the picture are slipping as compared to each other; an
unpleasant distortion is observed. Fig. 6 represents the distortion of checker-
board pattern television picture, function f(x,) indicating the degree of slip of
the single lines.

When solving the example, the original and the distorted picture are
considered as lying in a plane, and the method of *“fitting surfaces™ of para. 3
is applied. Points P of the distorted image are given, according to (3.10), by
the Cartesian coordinates of the undistorted image as follows:

~ d
=% (P) +fln(P)] _, @) |1 di,

)= _
)=(P) o (P) [
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Regarding the Cartesian origin of system x;, the distortion tensor is formed by
(3.12):

- - Y

Y= 0x,(P) Bx,(P) _ dx,
B e (P) ax(P) | 4 1+(df i
dx, | dx,

The invariants of the distortion tensor are:

the area distortion therefore being (1.28): T = /I, = 1, which was to be
expected considering the figure. The ratio distortion (1.29):

I df\?
A= arch ! =explarch |1
eXP{IC 2’['2] P{IC [ T3 {dxz. ]}
. . . df
In the practically interesting case <1
Xy

4

df

dx,

el

In tg ¥ = arsh -

A~ exp
From (1.31a), the setting angle ¥ is
arsh L 1 df

df - 2 dx?_
d:L_,

Using the relations concerning the hyperbolic functions:

tg ¥ =%,

In the course of television picture transmission various forms of distoz-
tion may occur, only one of which was picked out here. The trapezoidal
distortion of the iconoscope, the pincushion distortion of picture tubes with
great angles of deflexion, the distortions resulting from the inadequate wave
form of the horizontal-vertical deflexion current, the distortion arising from
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the curvature of the display screen — may without exception easily be describ-
ed by means of the distortion tensor.

3rd example. The distortion to be tested in this case occurs with slit-
shutter cameras. Should moving objects be photographed and the speed of
the camera projection of the object (i;) is comparable with the slit-shutter
speed (v) of the apparatus, the image of the object shows a strong distortion
by the photograph. Our method of computation is now applied for this pheno-
menon.

The investigation is carried out with the following assumptions:
— the slit of the shutter is considered as infinitely small
— the ““ideal snapshot” of the object is considered as undistorted
— the rigid body-like movement of the projection of the object is assumed
— we content ourselves with the case of w0, < v.

The investigation is effected in the Cartesian coordinates x; fixed to the
photographic plate.

Let the slit moving from left to right be exactly at x; = 0 at the moment
t = 0. This instant is represented in ¥ig. 7a. The undistorted projection of the
object is e.g. a circular plane, its point F being separately indicated. The image
of this point only later gets, at the instant of Fig. 7h. in point P onto the
photographic plate.

The time passed between Fig. Ta, respectively, Fig. 7b may be described
in two wavs: _ - '

x5 (P)_ x(P)—x(P)

v w,

Using this relation, the connection between coordinates of points P and P
becomes as follows:

~ v . v
% (P) =z, (P)- — - - — 0
v — w, Ox; (P) |v—aw
5 w, ox,(P) | _w» '
%, (P) = %, (P)- + x, (P) J — 1
v - W, v w,

5 Periodica Polytechnica El X/4.
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Again applying the method of fitting surfaces as well as (3.12):

V7 4 w3 W,y
2
v—w)t v—w
= | )
2
= 1
v — w,

The invariants of the distortion tensor are:

v‘l
Iy=...=

(v —wy)?

I o— L L e wl)'% '

L

(v —wy)?
Area and ratio distortion according to (1.28) and (1.29):

T In A = arch [IT%MWJ

v—w, v (v —w)

The results obtained are valid even in case of an object of varying speed;
the distortion of the neighbourhood of each point is characterized by the speed
of the object projection taken at the moment of passing the slit.

So far, object as well as image have been, in our examples, in a plane sur-
face. Examples concerning picture distortion between wunfitting surfaces
“bending” from each other are started by the

4th example. What kind of distortion dependent on the place should be
used for a dome fresco on a hemispherical dome of radius R, if the observer
standing below the dome-zenith at a depth of R H should have the impres-
sion that the fresco is arranged on a cylindrical surface with vertical axis, the
base circle of which is identical with that of a hemisphere (Fig. 8)?

The task may be formulated in other words as follows: The single points
of the cylinderas object surface are projected to the spherical surface by straight
lines passing through the view-point. What kind of distortion has resulted?

When solving this task, the coordinate system on both surfaces is set
up so that the coordinates of related points should comply with (2.1), and the
metric tensors are separately determined.

Let the coordinates concerning both surfaces be ¢ and ¢. The metric
tensor of the spherical surface has already been mentioned above:

_[r 0 _
“7lo Reosin? 9

Oq¢
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The metric tensor of the cylindrical surface should be noted to the coor-

1 o]
Yo lo R2

Proceeding to system #, ¢, we must know the relation between the values

dinates z,¢ according to Fig. 4:

Rl

z and ¢ belonging to one point. According to Fig. 8,

<=

z
i
W
i
5 — 3, H-+ R cos ¢ -+ cos &
ctg o = = - =l
R R sin & sin ¢
H

where K = —.
R
The new coordinates ¥, ¢’ of the cylindrical surface may be introduced

by the relations of transformation:

= 5 ¢ = ¥

The coordinate-derivatives:

o R K c?s {)‘Q—; 1 0
T e sin? ¢

Ond

N 0 1

w

(&1
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Transformation of the metric tensor is carried out as follows:

(K cos & -+1)2 0
&g = sint § .

0 R®

9xP Bx7 _ R2

L e —

oij — . "
ox! ox!

whereas the contravariant metric tensor concerning #,¢ of the cylindrical surface
becomes

sin? ¢
(K cos ¢+ 1)?
0

ot

The distortion tensor is composed according to (2.16):

sint ¢
k ki T 4 1w 0
Vi=8 &;=| (K cos &+ 1)
0 sin® 9
Applying (1.27—28—29a—31):
sin? ¢ . sin

—_— ATl=——
- 1L+ K cos ¢ 1+ K cos ¢

the setting becomes coordinate line-directed.

By way of an example, the following tasks may be similarly solved:

— which are the distortion conditions between the complex-number
plane and the Riemannian sphere?

- what kind of distortion is caused on the map obtained by the pro-
jection of the surface of the Earth onto a plane (cylinder, cone) by means of
straight lines passing through the centre of the Earth?

-— how does an illumination produced by a spherical radiant light-
source change along a plane surface? (In this case, a sphere-plane projection
is to be tested where the point of projection is the spherical centre; the iHlumi-
nation is proportional to the inverse of the area distortion.)

The 5th example is, just as the above one, of a projection character. Con-
sidering the fact that calculations are tiresome because of the complex nature
of this problem, nothing but the main steps for the solution are discussed as
well as the final results.

The screen of the cinerama is part of a circular cylinder surface with the
radius R, the projector standing at the axis of a eylindrical surface. The picture
projected in this set-up is regarded as undistorted. How great will the distor-
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tion be if the projector is displaced by a distance [ towards (or in any direction
from) the screen centre? (This question would always arise if several station-
ary projectors are operating for one screen.)

In the course of computation, the position of the projector is regarded as
fixed, and the screen is displaced at a distance I as compared to the projector
(Fig. 9a). Our results will be valid for the entire circular cylindrical screen.
Let us imagine the screen centre to be at the place ¢ = 0 (just as on the figure),
the solution thus concerns the displacement towards the centre; but if, for
instance, the centre is at the point @ = 90°, the result concerns distortion
conditions of the displacement perpendicular to the direction of the projector-
screen centre (case of projectors standing beside each other).

projector o r

[N &
\\ T 4
@ ®"

== screen

Fig. 9

Considering the cylindrical screen, the introduction of cylindrical coordi-
nates @, z, r should be obvious. Nevertheless, it seems to be advisable to use the
angle of elevation coordinate ¥ instead of z, computations thus being facilitated
by the method of “common embedding” of para. 3, The metric tensor of the
obtained non-orthogonal cylindrical coordinates ¢. %, r(x%) is thus

r? 0 0
s =1|0 r*fcost r-tg Jjcos* ¢ |- (2)
0 r-tg ¥jcos® & ljcos® &

The screen being the level surface r = R of the cylindrical coordinates
in the undistorted case, the surface metric tensor concerning coordinates ¢, ¢ is

. [R2 0 ) i_ | 1/R? 0 3
8ij [O 2[cos? -29]’ 8 [ 0 cos? z‘}/Rz]' )
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The x* coordinates of the image points P are expressed according to (3.8)
by the coordinates of the object points P:

¢ (B)=¢(P)
8 (P) = 6 (P)
r(P)=1.-cos ¢ + JRE— I sin® ¢.

(The third line may be written according to the two right triangles of Fig. 9a.)
Hence,

ox3(P) _ ar(P) — lesn gl l-cos @

dat (P) Bp VRE—P sin® ¢’

ox3 (P p _

#(P) _ (P _ @
822 (P) 89