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1. Introduction

In most cases, power transmission lines and systems are horizontally
conducted over the dissipative ground.

The accepted calculation method for over-ground three-phase power
transmission line systems is based upon the resolution to reduce it to its sym-
metrical components [1]. The method of symmetrical components may be
applied, in addition to three-phase lines, to syvstems of any optional number of
lines which, however, are considered theoretically accurate only within such
symmetrical layout types — as demonstrated underneath, — where the ground
effects are meglected.

Fundamental work with respect to the theory of aerial power line sys-
tems has been conducted by Hayasar [2]. In his calculations, however, ground
effects are incorrectly takeninto account, thus necessitating the further devel-
opment of this theory. This method applies, nevertheless, well enough to
power transmission line systems consisting of lead pairs with the presence of
the ground neglected. The theory could be developed, however, for application
to power transmission line systems other than those consisting of conductor
pairs, such as three-phase power transmission lines. The results permit the cal-
culation of reflection and input impedance as well.

The solution thus obtained appears to complete satisfactorily the approx-
imate results rendered by the eleciromagnetic theory of the power transmis-
sion line [3] as the latter may be successfully employed with informationcon-
cerning the electromagnetic field available failing, however, to permit reflection
and input impedance calculations.

The present paper deals with the ground effects by making use of the
well-known theory of ground return power transmission lines [4], [5]. [6].

First the electromagnetic field of aerial power transmission line systems
will be determined and then, by combining the two theories referred to above,
the projected problem will be solved.
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The generalized Kelvin equations of coupled Lecher wires

Let us investigate a power transmission line system consisting of parallel
located round wire pairs of —n number (Fig. 1), with the ground effects
neglected. The current flowing in one of the leads of a conductor pairreturns

in the other one.

The magnetic flux, @,. enclosed by the unit stretch of the k-th wire pair
in a given system may be expressed by the i; current of each wire pair, and by

]

means of the external induction coefficients per unit length,

where
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If j = k. L;; represents the coefficient of self-induction.
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The meaning of the symbols b, b,. d, d. ay, and ry involved in (3)
and (4) is explained by Fig. 2.
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Expressing (1) for each conductor pair, the equations obtained may be
summarized within the following matrix equation:

=20 (

T

v
—

where ® and i are column vectors consisting of @, and i, elements, respec-
tively, and M is a quadratic symmetrical matrix as follows:

r T r
In b In 22, In-—32
), a, Qin
r. .. T,
: In -2 In =22 ., In—2C% 6
M= a,, a,, o (6)
In 1oL In 1n2 o
anl an')_ alm -J

Let us apply the induction law to the surface extended by the unit
element of dz-length pertaining to the k-th conductor pair (Fig. 3). The cal-

culations are restricted to phenomena sinusoidally varying in time. The usual
complex method of expression is emploved:

@ E-ds = —u, + (u,__% duy d:l -
dz

+ 24, Z,, dz = — jod, dz. (7)

Z,. is the internal impedance of one of the leads of the k-th wire pair per unit
length as determined by the skin effect. In determining Z,,, it may be assumed
that its value is affected by the electromagnetic fields of the adjacent leads
only to a negligible degree.
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Formulae (1) and (7) reveal that

du, = NZ,i; E=1,2,....n (8)
dz =1
where
joo Ly, ==k
Z,= f Je J )

IJO)LIA 22y, j=k

The matrix equation obtained through (8) is:

——u=2Zi (10)
dz
where u is a column vector composed of u, potentials.
The impedance matrix per unit length Z involved by (10) may be ex-
pressed by the sum of two matrices:

Jou

Z= M- (11)

7T

where the internal impedance matrix Z, is a diagonal matrix.
Z, 0 . ..0
0 Z, .. .0
:" b .
0o o ... Z, }
Expression (10) represents a differential equation system involving the com-
ponents of u(s) and i(z) However, to define the solution, a further relation be-
tween u and 1 is needed. For this purpose, the potential of the k-th conductor

pair should be expressed by means of the charge g; per unit length of the con-
ductor pairs

f‘l
u, = 2 puq; (13)
171
where
1 Tj;{
= —— In D& (14)
Z'CE;_: a;’z’:

¢ is the complex permittivity of the dielectric between the leads:
G
g =¢ 1 —] 2
we !

where ¢ is the permittivity, and ¢ the specific conductivity of the dielectric.
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Using (13), and taking (14) as well as (6) into consideration, the following
matrix equation may be written:
L
u=P.q=—DMagq. (16)

e,

The elements of matrix P are the pj figures involved by (14), and q is a column
vector composed of the g, figures.
On grounds of (16)

q=e, M~ tu. (17

The relation between q and i as based upon the equation of continuity is

Jogq - i=0. (18)

Substituting ¢ from (17) to (18) reveals that

— —dé-i = jog, aM1lu=Yu (19)

where Y is the admittance matrix per unit length
}' = j(/)é‘/_: S’EJI—l. (20)

Equation (19) and (10), together, represent a differential equation system with
u(z) and i(z) being readily determined thereof. Using the derivative of the equa-
tions corresponding to z, a differential equation for u and i, each. can be ob-
tained.

2

4 u=2¥Yu=1I"u
dz?

d*

d:?

i=YZi="r%.

These equations represent the Kelvin equations generalized to the given ho-
mogeneous power transmission line system [7], [8], [9]. The relations concern-
ing the transmission matrix I" involved by the equations are:

rr=zy Ir==yz
r=\yz&zv  rx=\|yz (22)

(The asterisk indicates the transform of the matrix.)
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Solution of the equations and its interpretation

The solution of the first equation under (22) is:
u(z)=e U~ 4+ e~U- (23)

The explanation of the matrix functions ¢=7%) in (23) will be dealt with later.
The figures U™ and U~ are constants and, as it will be seen later, column
vectors composed of potential values transmitted to directions -z and —=z.

By substituting (23) into (10), then differentiating in correspondence
with =z, and by multiplying the equation from the left side on by Z~%, the
solution for i is obtained.

i(z) =Z5 (e-T-U~ —eT2U7). (24)
Z, is the natural impedance matrix

Z,=(Z'I)'=TI"Z. (23)

The expression e*7”

in (23) and (24) may be determined on the basis of the
general relations concerning matrix functions. First the characteristic values
of the matrix F? should be calculated. Let us indicate these by »*. The equation
relating to 3* is:

where E is the unit matrix. Subsequently, the investigations will be restricted
to that case where the minimum equation of F* has only simplex root values.
Generally, (26) has n root values. One mode pertains to each of the different
roots. The modes should be indicated by Greek key-letters in the suffices («,
By ...

Expression (26) may be re-written, by using (11), (20), and (22), to the
below form:

M- E = G—¢E =0 27)
where
G* = jos, nZ, M1 (28)
and
P= G+ RE (29)
furthermore,
;,!2 B g2 —_ E* (30}

where k is the propagation coefficient of the plane wave travelling in the given
dielectric. The g* values are the characteristic values of matrix G?. Generally,
the expression of G* is much simpler than that of I, its characteristic values
are, therefore, more readily determined.
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Knowing the 7? values, the Lagrangian polynomes of n-th order [9]
can be obtained these being the functions of y? and of the following charac-

teristics:
1y =] |
L, (% = . . (31)
’}1' pod '}ln
7]:a7/g'}"'71y 7]#;{'
The Lagrangian polynomes are expressed as follows:
FRCINL
In (32), let us now substitute * with the I? matrix
E ,
(%) = [[ R (33)

s
1,~—(1 7

5

Matrix I'* may be broken down in accordance with the Lagrangian polynomes
defined by (33):

r=3yL, (1. (31)

P17

Similarly to (34), an £(I'”) function of matrix F* may be obtained as well [9]:
(7)) =2z L (7). (35)
On the basis of (35), the propagation matrix I' can be determined:

=

k4

L (I?). {36)

1 s

By making use of (35), with (25) as a basis, the natural impedance matrix
expression Z, is obtained.
Furthermore, (35) reveals that

o=t X SR L (I, (37)

A==

Substituting (37) into (23), the function of u(z) and i(z), respectively, may be
determined:

w(z)= 3 L(I*) [ U™ + U] (38)

and

i(z) = Z: § L, ([ [~ U — e U-]. (39)
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On grounds of (38) and (39), the solution of the generalized Kelvin equations
may be interpreted. The solution concerning either potential or current con-
sists of two parts. One is composed of generally damped waves travelling
to direction 3, and the other of those to direction -z: the terms of the sum
correspond to different modes. Each mode has one pertaining ;° and two
propagation coefficients different only by sign according to the wave travel-
ling to direction 4z or —z. Generally, the number of modes is in agreement
with that of the conductor pairs. If the characteristic equation of I'? (26) has
coincident root figures, the number of modes will be lower than that of the
wire pairs. Both U* and U~ progressing to direction -z and —z, respectively.
can be broken down to the sum of individual modes. Actually, (38) contains
this resolution, The U,(z) potential column vector pertaining to the #-th mode
is the #-th term of equation (38).

u, (z) = L, () Ule™ = — &% U] = e * U + U7 (40)

Potential column veetors U, and U_ are the eigenvectors of matrix F2 In
other words. equation (39) presents the resolution of u(z) by eigenvectors
mathematically, and by modes physically.

If the number of modes is in agreement with that of the conductor
pairs then, according to (40), the relation of the potential of individual wire
pairs is of a given value for a given mode, that is, by assuming the potential
of one conductor pair the potential of the rest of the wire pairs is determined.
If a mode has coincident root figures pertaining, then the given mode can exist
for optionally assumed values of as many potentials, as manifold the root is.

On grounds of equation (39), i(z) can be broken down by modes identi-
cal to u(z). and this might be commented in exactly the same way as the reso-
jution of u(s) had been explained.

Power trapsmission line system termination. Reflection calculations

The values of U and U~ can be determined from the limit conditions
specified by the termination of the power transmission line system.

Let us define the relations in case of the limit conditions referred to un-
derneath. The wire pairs are of equal length. At the initial section of the power
transmission line system, given U, tension is switched onto each power trans-
mission line pair and, at the end of the power transmission line system, each
conductor pair is terminated by a given impedance Z; (Fig. 4).

First the limit conditions specified by the terminations should be inves-
tigated. For simplicity’s sake, the initial point of co-ordinate z should be as-
sumed at the point of the terminations (Fig. 4). By means of the termination
impedance values, let us construct a diagonal matrix Z; having, along its main
diagonal, the individual termination impedance values, Zy located.
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The Ohm law as expressed in a matrix equation form applying to the
individual leads at the point of termination is:

U= u(0) = Z,i(0) — Z, I (41)
| b 2
1] te ; E Zip z

Fig. 4

It should be taken into consideration that the sum of Lagrangian polynomes
in the matrix defined by (33) represents the unit matrix E.

3 L(r*)=E. (42)

He=q

From (42) and (38), at the point of z = 0, it appears that

U=TU*+U". (43)
Similarly to (43), on the basis of (39) and (41) it is seen that
[=Z;1(U+—TU"). (44)
Substituting (43) and (44) into (41) reveals that
U+ U =Z2Z,7Z,(U" — U). (45)

The relation between U™ and U~ is offered, in a definition-like manner, by
scattering matrix S applying to the tensions:

U- = SU*. (46)

By transposition, (45) can be written in a form similar to (46) resulting in the
value of S:

S =I[ZZ;' - E][Z,Z, — E]. (47)

The scattering matrix relating to currents can be determined by using (24)
as a hasis. Current column vectors I* and I~ are defined for the = = 0 point:

I+ = Z;1 U+
I- = —Z;1 U~ (48)
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By utilizing (46) and (48), a relation between I™ and I may be written:
I"=Z;*U = — Z,SU* = — Z;18Z,1". (49)

The scattering matrix S; relating to current is expressed, with (47) being made
use of, thus:

Si=—2,82y= — (2, + 2,)"' (Z, — Z,). (50)

Knowing the scattering matrices, the reflected column vectors U~ and I~
existing at the termination of the conductor svstems can be determined by
using equations (46) and (48).

Now the conditions existing at the initial part of the power transmission
line system will be investigated. Assume the initial section of the power trans-
mission line as the supply point at the location | = —z (Fig. 4). With respect
to (23) and (46), the value of column vector U, created by the supply tensions

1873
U,=U(— 1) = (" + " 8) U~. (51)

According to the previous assumption, U is a given value, thus (51) may be
used to determine U*:

U™ = (7 + ™ 8)11,. (52)

Knowing U™, (46) permits the determination of U~. By now, the value of each
quantity included by the expressions of potential and current column vectors
described by equations (23), (24), (38). and (39) could be determined.

In addition, the possible relationship between the potential column
vector U, and current column vector I existing at the supply point should be
examined. The expression of I is obtained from equation (24):

I =i(=l)=Z5t (" — ' S) U~ (33)
Substituting (53) into (32), it will be seen that
L =Z5 (e — e S) (M - " 8) U, = Yo, U= Z5' U, (54)

The input admittance matrix ¥,,, and the input impedance matrix Z,, are
expressed from (54) thus:

Ybe — ZO—I (eI’l _ eFl S) (el"l L el"[ S)“l
Zy, = (" + e S) (' — €7 §)1 Z,. (55)

In case of a given U;, and knowing the input impedance matrix, I; can be de-
termined.
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The ideal power transmission line system

Now the system consisting of ideal power transmission lines will be
studied. The internal impedance Z; of all conductor pairs amounting to zero.
the internal impedance matrix Z; as defined by equation (12) is similarly equal

to zero. With respect to equation (28), G| = 0 and, therefore, all charac-
teristic values of G* amount to zero: g = 0. Thus, from (29) and (30), the values
of I'? and 2 are:

= (56)
I = kB

that is, I'> is proportional to E having only one characteristic value: k2. All
U-vectors are eigenvectors, This means that only one mode will exist, and the
pertinent propagation coefficient will agree with the propagation coefficient
existing within the given medium in case of plane waves. In the line system,
the ratio of tensions propagating to the same direction is independent of co-
ordinate =z.
It follows from relation Z, = 0, on the basis of equations (11) and (20),
that
Z =Y. (57)

The characteristic impedance matrix of the power transmission line is expres-
sed, with respect to (11), (25). and (56), thus:

1 1y u -
Z,=I"Z=-2Z=~| “n1. (58)
k T e
In case of a perfect dielectric, there is a real permittivity obtained: g = &,
g, and, in this instance, Z,, is similarly a real value:
120 -
Z,=——=2M. (59)
Ve,

The scattering matrix S of the ideal power transmission line may also be cal-
culated by utilizing (47). The expression of Z, included by the formula can be
obtained from (38) and (59), respectively.

The expression of the input admittance calculated by means of (53) is
somewhat simplified if (54) is made use of:

Yoe=Z; (" E — " S) (e E + e 8§)-1. (60)

In connection with the calculation of the ideal power transmission line system,
it might be noted furthermore that certain authors failed to ohserve the fact
according to which all roots of equation (26) coincide in this case and, therefore,
only one 3?* will exist [2], [7].
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Three-phase power transmission line without neutral wire

The three-phase power transmission line does not consist of wire pairs
may be, however, retraced to a system composed of such. Systems with or
without a neutral wire demand separate discussions. First the system without
neutral wire will be studied (Fig. 5).

Corresponding to practice, assume for simplicity’s sake identical radii
for all three conductors (calculations for different radii may also be made).
Consider the wires as a system consisting of two wire pairs where one of the

wires (No. 3 in this example) is common, that is, wires 1—3 and 3—2, respec-
tively, form two wire pairs. Tension u,(z) is created between leads 1—3, and
that of uy(z) between wires 3——2. The propagation of only these two phase
voltages must be studied, as the third one uc(z) may be determined with them.

u o{z) + up(z) + ufz) = 0. (61)
In wires 1 and 2, currents I, and I, are, respectively, flowing whereas lead 3

has current I,—I; flowing within.
The value of the mutual inductance between the two wire pairs is:

u. VR.a .
L,="In2_ (62
” T 1 R13 Rgﬁ » )

In Ry In —-—-—-———1 ,1%1}” a
a ‘'R.; R,
M= B (63)
In %————VRH ¢ In Ry
L VRll} R:S a

When determining Z,. it must be taken into account that currents I, and I,
are flowing through wire 3 causing there a voltage drop. Correspondingly,
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equation (8) may be written in the following form:

- d g =1; (jo Ly + 2 Zy) + iy (jo Ly, + Zy)
du, .. ‘ C s .
- 1 =iy (jo Ly + Zy) + 1, (jo Ly, + 2 Zy). (64)

Based upon equation (64), the expression of matrix Z, is:

2 —1
Z, = 7, . (65)

1 2

Knowing matrices M and Z, as given by equations (63) and (65), respectively,
the characteristics of the power transmission line system (G2, I'?, Z,, g%, and
/2,) can be determined by using equations (25), (27), (28), (29), and (30).

The termination of three-phase lines without neutral may be represented
by either star or delta connections. As the neuntral points of the star connec-
tion have no separate terminals. it may be converted to a delta connection.
Thus, an investigation concerning only the delta connection appears to be
quite sufficient (Fig. 6).

In order to simplify caleulations, terminations will be taken into consid-
eration through admittance. The node equation for each branch point may
be written as follows:

Il = 112_113 = Ul (Ym - 3_13) -+ Uz Yr:
IL=1I,—Iy =1, Y, + U, (Y, + Yy). (66)
Summarized in a matrix equation:

I=Y,U (67)

where

Y, = ‘ ‘ =77 (68)
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Knowing matrix Zf, scattering matrix § can be obtained from (47), and thus
all characteristic terms required for the calculation of a three-phase power
transmission line without neutral have been determined.

With respect to the above statements, now the conditions existing with
the three leads symmetrically arranged will be studied. The leads are equally
spaced (Fig. 7).

l In In l f’_}
v
M= 4 LA R L
a

o [ (69)
llnl/li In-z—J [—}-— IJ
T a 2
and the inverse of matrix M is:
1
1 il
4 1 >
M 1tT=— = (70)
3 In r i 1
a 2

As for matrix G*, with (28), (6), (65). and (70) taken into consideration, it

will be seen that
2

G* =" jowe, aE. (71)
s
In —
a
The two eigenvalues of G* coincide:
N 2Z, joe, -
gt = 22T (12)
N
In —

a
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With respect to (30), likewise one value for 3? is obtained:
gt = ZLIPNT e o (73)
In
a
This means that only one mode will exist, and the amplitude ratio of the surge
voltages travelling in the lead to the same direction will not depend on the
z co-ordinate. Voltages may be arbitrarily broken down to the sum of two dif-
ferent components as these travel with identical propagation coefficients.
The usual calculation method of three-phase power transmission lines is
represented by the resolution to symmetrical components [1]. Mains without
neutral {(without ground) have only positive and negative sequence symmetri-
cal components but none of zero sequence. Consequently, if wave phenomena
should also bhe taken into consideration, calculations with symmetrical com-
ponents render, theoretically, correct results only in case of a symmetrical
layout. With the presence of the ground taken also into account, however, the
svmmetrical component method does not ensure correct results, even in case
of symmetrical arrangements.

Three-phase power transmission line with neutral

Now the three-phase power transmission line system with neutral will
be discussed (Fig. 8). For simplicity’s sake assume that the three outers have
identical radii (a). The radius of the neutralis ay. The currents of the three outers

(I;s I, and I} return in the neutral wire, that is, all three outers constitute
wire pairs with the neutral, the latter being the common lead of the three wire
pairs.

Values r and a in matrix 3 are transformed as follows:

. i , I /
= Ry, 'y = 1 R,y Rsy Ao = l R» a, Ay = 1 aa,

. -
T = Ry ris = I Ryy Ry, A3 = l'Rls. ag Ao ZV‘I- a, (74)

T3 = Ry Ty == VRzo Ry, ay = | Ry, @y 33 = Va. RO

6 Periodica Polytechnica EIl IX/I.
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The meaning of the symbols Ry, R;3, Ry, Ry, Ry, and R, are understood
through Fig. 8. Substituting (74) into (6), it will be seen that

[ In 1_{_10_ PRN Rlo In VRloRso ]
Va.a, VR,,q, VRy3 a,
M= 10 R B In 2 n I Ran Rao (75)
VRI'?. 4 Vaa, VR23 e,
VR4 Ry In Ry Ry, ln 1_{_3_0_
VR a, VR,s a, Vaa, |

When expressing matrix Z;, it must be remembered that all phase currents
flow through the neutral and cause there a voltage drop.

du .. L. ‘ ..
— =0, (jo Ly + Zy + Zy) + 1, (jo Ly + Zoo) -+ 15 (joo Lyg 4 Zeo)

du, .. X .o ..
- = =1y (jo Ly, + Zyo) + 1, (jo Loy + Zy + Zpg) + i3 (jo Loy + Zy)

dz

duy .. ‘ e g ( Ry -
L = 1y (jo Ly + Zeo) 1 1y (joo Loy — Zio) + 13 (joo Lyg + Zp + Zy). (76)

With respect to (76), matrix Z, may be expressed as follows:
Lot+Zw Zy  Zy
Z, = Loy Zy+Zy Zy
Zey Zyy Zi+Zs

Knowing M and Z, as introduced by (75) and (77) respectively, the charac-
teristies of the power transmission line system (G, I%, Z, ¢, and »°) can be
now determined by using equations (23), (27), (28). (29), and (30) as bases.

When calculating loading impedance, it must not be forgotten that the
termination may be of star or delta connection as well. Hence, the general
example will be studied when consumers of star as well as of delta connection
jointly load the power transmission line system (Fig. 9).
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The admittances of star connection will be indicated by Y,,, Y,,, and

Y,, while those of delta connection by Y3, Y,, and Yy, respectively.

On grounds of Fig. 9, the node equations may be written as follows:
L=I,+I,—Is=U(Yy+ Y+ Yi5) = U, Y, — U; Yy
Iy=1T+ Iy — Ly = — U Yy, + Uy (Yyy + Yy + Yyg) — Uy Yy (78)
Li=I+ Iy — Iy=— U Y3 — Uy Yog + Uy (Y + Yi3 + Yy).

Equation (78) presents the expression of loading admittance matrix ¥;:

Y10+ le‘:‘ Y13 - Ym - Y13
Y, = —Y, Yo+ Yot Yo — Y, =Z71. (79)
- Yls - Y23 Y30+ Y13+ Yza

In case of star connection it reads:

[ Y,, 0 0
Y,=10 Y, 0 (80)
l 0 0 Y,

whereas in case of delta connection:

Y‘m‘f‘ Y_ls - Y.l'.’ - YIB
};z = - }713 Y‘y_)% }’-‘.’3 - Y.Q:B ) (81)
- Yls Y_23 }_13 =+ Yv%

By this method, the calculation of the three-phase power transmission line
with neutral has been traced back to the calculation of a power transmission
line system composed of three transmission line pairs.

Now let us discuss the layout of a three-phase power trasnmission line
with a symmetric neutral (Fig. 10). The phase leads are equally spaced.

Ry =Ry =Ry =R

R
VRm Ry, = VR, Ry, = VR:«; Ryy=r= “]FS
The outers are at equal distances also to the neutral:
R

=Ty =TIy =R,=Ryy=Ryy=r=—=

73
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The other quantities included by matrix M are:

ap=ay;=a;=b=|Ra,

i)

Fig. 10

Substituting the aforeasaid figures into {6), the expression of matrix

B is obtained:

[ In r In L In T
a b b
r r r
M= In— o — In —
I b a b
In L In L In r
L b a
From equation (82)
[ In i —In—
a .
M=l ™ In ——
L b a-b
— In — —1In L
b
where
2 )
L=lnl ln'— —2m="
a a-b b
and

)-U
I
l

In

(82)
— In— |
g L (83)
a
o
a-bh |
(84)
(85)
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Matrix Z, may be expressed, on the basis of (70), by means of matrices E
and P:
£, =2,,3P - Z,F. (86)

By substituting (83) and (86) into (28), the expression of G*is arrived at:

2 AT e — 7, In fm} 3P—Z,In_—E|. (87)
i b* a ab?
Now I? can be termed with (87) and (29) being made use of:
4 B B
MP=G"+-FKFE| B 4 B (88)
B B A
where
4=2Z,mnE 7 In i] Sy
b b
B=2Z,ln— —Z,In L. (89)
b? a

The equation suitable to determine the eigenvalue of I?, with (81) and (26)
taken into consideration, is:

A4—* B B
rP—wE = B 4—y B =
. B B d—p
—(d—B— 22 (442 B—1%=0. (90)

Equation (90) reveals that two of the three eigenvalues coincide, that is, only
two different eigenvalues are obtained:

=4 B (91)
vi=A4-1+2B.

;i

Using (33). (88). and (91), the matrix Lagrangian polvnomes are determined
thus:

[ -2 1 1
Lﬁ(rﬂ):——;—ﬁ;i:m-[ 1 -2 1
Fa T Vs L1 1 -

1 11

r:—E 1

Lﬁ(pz):_q_’}_}%_:— 1 1| (92)
Ve~ Va 3



86 I 1" 4GO

Now the surge voltage u(z) travelling to the -z direction should be broken

down to the two modes with (92) and (40) being made use of for this purpose:

e 2 1 1 Ur
w,(z) =L, (F)e U7 = — 1 -2 1 Uy | =
1 1 =2 Uy
— @~ ¥af - ZUf - ; - U—‘;—
= U —2Us = Uy (93)
Ur+-Us; —2U7
and
—ype 1
- . e P - ) - ) -
Uple) = L (I em# U™ = —— (Uy = Uz + Us)l1 (94)
1

Studying the resolution of u(s) to u,(s) and uy(s). respectively. it may be
stated that us(z) corresponds to the symmetrical component of zero sequence,
whereas u,(z) represents the sum of the components of positive and negative
sequence types. In other <words, the calculation using symmetrical components
will result, in case of the symmetrical layout as illustrated by Fig. 10, in such
a resolution where there is only one propagation coefficient pertaining to the
components of positive and negative sequence, respectively. In addition, the
calculation shows that the sum of the positive and negative sequence compo-
nents may be resolved in some other way as well (such as to components «
and j). If the wave phenomena are also to be taken into account, that is, when
the power transmission line is studied as a network of divided parameters.
then the resolution to svmmetrical components will, theoretically, not give
correct results with an asvmmetrical layvout employed. The calculation correct
also theoretically is performed by resolution to modes as referred to above.

With the ground taken into consideration, asymmetrical components
do not ensure a correct result for a symmetrical arrangement, either.

Ground-return type power transmission line

The scheme of a ground-return type power transmission line is illustrated
by Fig. 11. The loading impedance is cut in hetween a lead parallel to the
ground and the ground proper. Thus, the conductor and the ground jointly
represent the power transmission line. In calculations, ground is assumed as
limited by a horizontal plane and being homogeneous. Its characteristic parame-
ters are: specific conductivity oy, permittivity ¢;, and permeability u,.

Electric and magnetic fields must meet different limit conditions on the
surface of the ground. More exactly, Ey, (¢ + jos) E,, E,, H,, H,, and H,
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must be continuous values. The electromagnetic field may be defined as the
sum of a field pertaining to a conductor located in an open space and of an
additional field existing due to the presence of ground. The conductor field is
represented by a Sommerfeld surface wave [10]. Limit conditions can be
satisfied by expressing the additional field existing, due to the presence of
ground, in the form of the Fourier integral [4], [5]. [6].

<
benO { O
1 ~ .
1 =

With the limit conditions satisfied, for the component of the electrie
field conforming to the direction of propagation, at a point characterized by
given co-ordinates x and v, the following expression as written in the Fourier
integral form is obtained:

g 1

joe, 27a HY (ga)

E.=1

HY (2 /T30 —

2 o (=g

E—— J T {at) ———=———— cos ax du
aj ‘ Ja? — g

=)

(95)

0

where I is the current flowing in the lead, while HP and H{" are the Hankel
functions of zero and first order, respectively. and of the first kind, and

gtk 2k 0
a « le.zz—gz‘;"gﬂllf:“gz
Vig=-o=g ¢S 2 = by (96)
g2 k? frk: 0 ’
a o zl/az_g_‘Tg-:Vf:_gz
_ Va: — g lfa'l — f2 a(kr — k3)
where

2 . .
ki = (o7 + jowenjo u,

9

f*=*—k;.

(97)

It should be noted here that the results obtained by Carson (43) may be re-
garded as approximating (95) and (96).
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Retraction of the caleulation of an aerial lead system to that of wire pairs

Let us study the aerial network consisting of n conductors as illustrated
by Fig. 12. One end of the conductors is supplied with a given voltage as com-
pared to the ground. At the other end of the wire system the lines are terminat-
ed by given impedances. The termination impedances may bhe cut in hetween
either two conductors or one of the conductors and the ground. In order to
solve the problem, the E, value produced on the surface of the individual con-
ductors must be determined. First the E.;; value produced on the surface of

the k-th lead by the I; current flowing in the j-th lead and by the current
produced in the ground upon the effect of I; should be determined. Using the
symbols of Fig. 12, (x = §ir. I =1, and y = 1), its value is

‘m-’ == Iy

According to equation (95) and the literature

E.=Li(Zx — Zy) ©8)
where
1 g 1 . ;
Z = e H@(gR ;) — HY(go,, 99
/ 2:mj 27[80 Hq)(gaj) [ 0 (g ﬂ) 0 (c-_m)J ( )
and
1 g 1 2 ¢
Lo o= = J Via)—1)-
T 2na; jowe, HD(ga)) njo (@) —1)
~ (Y=g
. cos a &, da. (100)

Er

As a definition, Zj, is the mutual impedance per unit length of the j-th and
k-th conductors with an ideal ground assumed, that is, its value can be deter-
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mined by image formation [3] whereas Z;; is the correction due to the dissi-
pative ground. The numerical determination of Zs; will be dealt with in the
next paragraph. The approximate value of Z; can be determined by substi-
tuting into (99) the low argument approximate expression of the Hankel-
functions.

In 225, {(101)

On the basis of (98) and making use of the superposition theorem, the E.
value produced on the surface of the k-th lead may be expressed as the sum
of E_j field intensities generated by the currents flowing in the individual
conductors and in the earth. By using (101), it will be seen that

E:,f; = E Ij (Z - ij;.—) =
j=1 ’

o 0. N
= ¥ I, _;ﬁsmln;fi.——z,.,.k E=1.2.--.n. (102)
- W N 4 \ K
j=1 ..;.7{]0)80 )

Ji

The value of Ey may be expressed also by the internal field of the k-th lead.
From this:

E:I; == I.l»: Zbl: (103)

where Zy, is the internal impedance of the k-th lead as related to the lead unit
length with the skin effect taken into account. By combining (102) and (103),
the following matrix equation is obtained:

[ & M- (Z,+Z,) ]1:0. (104)

T,

The M of (104) is identical to the half matrix M defined by (6). if each lead

forms a wire pair with its image.

ln 211 _ ln g]l . . ln <1n
Rll Rl'z Rm
0 0 o
1 [In—22 In—=2_. .. ]p=2 -
M= 7— R21 RZZ R:}n . (]‘OD)
hl <nl 111 Qn? hl <nn
L ni Rn?_ nr -
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Z,, included by (104) is a diagonal matrix

Z,, 0 0
0 Zy ... 0

Z,, = : (106)
0 0 ... Z,]

The Zyj;, elements of matrix Z;, included by (104) are defined by equation
(100). The approximate value of the integral seen there will be determined in
the next paragraph. Now matrices Z; and Z,, will be combined into a single
matrix, Z,

2,=2,+Z,. (107)

Substituting this into (104), and multiplving the equation from the right-
hand side on, by jowg M1

(joe, M1 Z, — 2 E)1=0. (108)

Equation (108) represents a homogeneous linear equation system for the I
currents flowing in the individual wire pairs. This has a solution other than
trivial, only in that case when the value of the determinant obtained from the
coefficients of the equations is equal to zero. Thus with equation (28) taken
into consideration, it will be obtained that

(G*2 — g2 E) = 0. (109)

The g* figures rendered by equation (109) represent the eigenvalues of G*2.
Since the eigenvalues of matrices G and G*? are identical, equation (109)
corresponds to (27).

The calculations resulted in matrix G* instead of & as equation (108)
has been relating here to currents and not to voltages.

The results obtained so far has led back the calculation of over-ground
line systems to the discussion of power transmission line svstems. Accordingly,
the calculation of over ground line systems necessitates the formation of lead
images. The following calculations assume all conductors to form a wire pair
with their own images. Thus matrix M of (185) may be calculated. Taking the
dissipative ground into consideration is performed by using the impedance
matrix Z;, which, due to Z;, will not represent a diagonal matrix now as in (12).
With the matrices Z, and 3} determined, matrices I?, G*, and Z, as well as
the values g* and 3? can be calculated with the method used for wire pairs.
Consequentlv. the number of modes will generally equal that of the conduc-
tors.
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Determination of the ground impedance matrix

The elements of matrix Z; are determined by equation (100). Substitut-
ing the low argument approximate term of the Hankel function in equation

(100) will show

[

E et Vg
Zy = -—7~0——~J [V (@) + 1] L cos afj, du. (110)
2ajwe, la?— g2

‘With the expression of F(u) as given by (96) taken into consideration, integral
(110) may be approximated giving the below result:

o2 2L 1 g . .
Zy=—E 0 L o gifern) -
” 2ajwe, ki — ki | g* doy

el By (01 jfe ™) — e~ N (0] fol®) — €% Ny (0 jfe%%)] —

a [ 1 ) n = k2 ks

—{ s ijcﬂ((l)) (89_/;\-) - T €08 ZQﬂc HY (ngk)J} - 5T [’—“““ ‘1 - ‘j

2j 891 2j Lk} + K g

— |
-H%ngﬁiﬁ%4~ww%ﬂ (111)
| k5 - kj
where

L =1, +jé = Ok e/ I, +l—j& =0y e~I% (112)

The meaning of gy and O can be seen in Fig. 12. N (z) represents the Neu-
mann function of first order and H,(s) the Struve function of first order defined
by the following sequence:

2m--1)

- (—1) ?]
H, (z) = 3‘ : o=
m =0 I’("Z'———JF lm — 2
2 ! 2
:l(;z_:'_‘;i~+. . ’ (113)
73 135 525

As shown by equation (111), Zjj; is the transcendental function of g and f.
Since {g) and (f) are unknown and their determination is feasible only with
Zsy known, the determination of the numerical values appears, for a given task
rather complex. Fortunately, however, with the displacement current in the
ground (wef<€ oy) being negligible, expression (109) will be much simplified.
For the ground parameters encountered in practice, this assumption is per-
missible up to about 1 megacycle per second. In case of the above assumption,
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the last (third) term of (111) will seem negligible as compared to the rest of
the terms.The lowargument Hankel functions mavbe substituted with approx-
imate terms. The term containing function HY will change negligibly as
compared to the term containing function HY. Now introducing the new
variable rj;:

rie =@ f ) = op, 0,05 (114)
With the above statements in mind, the approximate value of Zz; will appear
as
ou [ Vi o 9. i T ( —j
Z = | = (e Hy (1) %) = e0%n Hy(rj e %) —
T 4T
) i

P . o cos 200,
— e~ N (ry, /%) — e/% N, (1 e=i%)) — — &

(115)
]‘jk

The Struve (110) and Neumann functions of (115) can be approximated by

means of their sequences. Through approximation the following formula will

apply to Zg:

wu .
L= _CU (P +70) (116)
where
P.=2" Uk cos @, — T ‘(lnmr _ 2 cos 20, -
=g gy o T e | | eos 20
-3 .
4 Tk O, 5in 20, - T_J";_ cos 30, — _7_1_’::[_. cos 40, — l"_@;ksin 46, -+
16 EEYE 1536 AT :
N 47 5
LK cos 50, — T (ln mr, — ~"lcos 60, — —wwriﬁ—-(?,»;_.sin6@;-;f—f— .
15751@ 18432 2 : 18432 - ’
1 . Tik ik ; Tj?c ;
Qp=———Inmrj + —=cos@y — Lcos 20 ;, — —L—cos 30, +
4 2 33 64 T
ri 5 ri _ réa
2 \In mrj, —— l cos 40, — — L —c0s50), — = —cos 60, + . ..
384 | 3 1575)2 7372
m = 0.890536 . (117)

As opposed to (112), equation (116) does not depend on (g) and. with (116)
valid, f and Z will depend — at a given frequency, — only on the geometri-
cal dimensions and material constants. Were the above approximation not
applicable, the Z; and g* values as calculated from (116) might be considered
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as first approximate values. Substituting the obtained g and f values into (112),
the Z; and g values can be corrected. This correction may he performed
repeatedly if necessary.

Determination of the cut-off impedance matrix

In accordance with the aforesaid statements, the matrix form image pa-
rameters of the aerial power transmission line syvstem can be properly deter-
mined. In order to promote the calculation of the produced reflections as well,
the expression of the loading (cut-off) impedance must also be determined.
In attempting to express the loading impedance matrix, such a situation should
be investigated where, at a given point, the power transmission line will he

terminated in such a manner as to have each conductor connected to all other
conductors by means of the Y, admittance, and to the ground through the
admittance Yy, (Fig. 13).

(For easier understanding, the Figure has only three conductors entered.)
The node law applyving to the terminal of the k-th conductor reveals that

I.=U/Y,, ~ 27 Y ) — ElUj Y (118)
Gk oy
introducing the below notation:
- - n -
Y=Y — 2; Y (119)
]:
JF#T

and substituting (119) into (118), it will be seen that

I = “Zij Uy- (120)
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Expressing (120) for the node points of each lead terminal, the following matrix
equation is obtained:

I=Y,U (121)
where Y, is the loading admittance matrix:
Yy Y, . .. Y,
Y, =z = Y, Y, . . .Y, (122)
Y. Y. . . . Y,

‘With the wires loaded also at points other than their terminals or if the indi-
vidual wires terminate at different points, each homogeneous section must
be discussed separately.

Studying the layout illustrated by Fig. 14, it will be seen that a total of
(n) aerial lines are run here in a length of I;. At this [, length, similarly to the
termination illustrated by Fig. 13, the wires areloaded with admittances char-
acterized by matrix ¥;,. Subsequently to length l;, a number of k of the n

i/h-0) ifh-0

iz

K Y

-

Fig. 14

wires proceed to a length of I, being, again similarly to the loading illustrated
by Fig. 13, terminated at their ends with admittances characterized by matrix
¥, First the homogeneous section I, will be studied. With Y}, known, the
Yo input admittance matrix expression of the section can be determined in
accordance with formula (55). Knowing this, the below equation as related to
point z = I, may be written:

i1, = 0) = Ykl uli(i,) (123)

Here i¥*!(I, — 0) is a column matrix composed of the values of currents flow-

ing in the k proceeding wires as assumed at point z = [, whereas the elements
k]

of vector u'"! (I;) represent the voltages of these wires as compared to the

ground. Matrix Y}Elis of dimension k. Matrix equation (123) is equivalent to k

scalar equations. Now let us extend the dimension of I’é’g’j to n by making all
elements in the rows under the k-th row and in the columns following the k-th
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column equal to zero.

] 0 . 07
YiA
0. . .0
Yilh=1 .. . U . (124)
0 .00 0
0. ..00...0

With this being made use of, equation (123) may be re-written as an equation
of n-dimension.

i, 0) = Yl ulnl(z,). (125

where u!™! (1)) is a column vector composed of the veltages of n wires existing
at point 5 = I; the first k elements of which are identical to those of u'¥! (L)
while the rest of its elements equal to zero. Equation (125) consists of
scalar equations of n number of which the first k equations are identical to
those produced by (123) while the rest show that i, (I, + 0) = 0, where
k << m << n. Before point z = [;, the currents in the wires may be combined
into the column vector i(l;—0). This consists of two parts. One is the column
vector i (I, + 0) symbolizing the proceeding currents as expressed by (125)
whereas the other is represented by the column vector composed of the cur-
rents flowing off for loading purposes. This part can be calculated with matrix
Y, being made use of:

i1, — 0) = (Y[ — ¥ ) uln)(l). (126)

From (126), the admittance matrix ¥, loading the power transmission line
svstem of [, length is obtained:

Y. =Y +Y,. (127)

The calculation presented above includes the following two special situations
as well: a) the first k wires are not shunted at point z = [; and, b/ the wires
are of identical length but loading is not only at the terminals.

By now, matrix M (105), input impedance matrix Z, (107) and (116),
and loading admittance matrix¥, (124) of the system have all been deter-
mined to promote the calculation of aerial line systems. Thus the calculation of
aerial line systems has completely been led back to the calculation of systems
composed of conductor sections. The method discussed above is suitable for
power transmission lines either with or without neutral as well as for those of
either single or double three-phase type. Since these do not require any special
design, their separate discussion is not necessary.



Summary

Power transmission line systems are usually installed horizontally above ground level.
The lavout techniques of such systems reported on by the literature so far may be objected
for various reasons. The present paper attempts to further develop the results published by
the literature. and to render a more accurate theory as well as calculation method than those
hitherto known.

In theory. first the generalized Kelvin equations concerning coupled power transmission
lines and their solution are being dealt with. Then the reflection and input impedance calcula-
tions are discussed. Finally, by making use of the electromagnetic field theory of power trans-
mission lines as well as of the theory of ground-return power transmission lines the results are
generalized to promote the calculation of power transmission line systems installed above
ground level.
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