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From among the far-flung problems arising in connection with sensitivity
and tolerance analysis the following questions will be dealt with here only:

1. For a given network, how the  sensitivities and tolerances in the
time, frequency and complex frequency domains can be determined?

2. What is the effect of the input waveform tolerance on the network
Tesponse?

3. What connection exists between the various tolerances, e.g. between
the tolerances of the real and imaginary parts or in case of frequency and time
domains?

1. The computation of tolerances

Fig. 1 shows the symbols used to characterize the linear networks in
the time, frequency and complex frequency domains. The system may be
described, for instance, in the time domain with the weighting function k(z),
in the frequency domain with the amplitude characteristic A(w) and the
phase characteristic b(w). In many cases it is more convenient to characterize
the system in the time domain with the transit function A{f), in the frequency
domain with the logarithmic amplitude characteristic a(®w) = In A({w) and
the group delay time characteristic 7 = ?—b Further, the following symbols

do

are used: p = o <+ jo for the complex frequency, K(p) for the transfer
function. p} for the zeros and pj for the poles. If no distinctions between
poles and zeros should be made, the svmbol p; is used. In writing the second
form of K(p) it was assumed that p; = 0. If p;, = 0, also a multiplication
factor of the form pl occurs and, consequently, m or n will be diminished
by . The network functions k(z), K(jo) and K(p) will in common be symbol-
ized by y.
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Fig. 1. Characterization of linear networks

Fig. 2 shows the mutual connection of the tolerances and sets the tasks
of the investigation. Z; == Z,; -+ ¢; is the true value of the i-th quantity detez-
mining the network, e.g. that of an impedance, where Z;; is the nominal
value of the i-th quantity and g; is a randem variable with zero mean. Usually,

Fig. 2. Mutual connections between the tolerances

a; is a complex value. One group of problems is to compute from the probability
distribution of the network elements, assumed to be known, the tolerances
of the networks characteristics in the time, frequency and complex frequency
domains. Another and much more difficult group of problems is to determine
the tolerances of the network elements from the tolerances set in the time,
frequency or complex frequeney domains. The third group of problems is
the mutual connection of the tolerances, e.g. the conversion of time domain
and frequency domain tolerances. Within the frequency domain in case of
minimum phase networks there also appears the mutual connection between
the phase characteristic tolerance and that of the logarithmic amplitude
characteristic.
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The sensitivity of the y = f(x) comnection is S = % and its tolerance
x
. . . e dln y
is Ay = S /x. The connection y = f(x) has the relative sensitivity S, = ——d . e
nx
= M x d} and the relative toleranceﬂ =S, :]—x« . The relative sensi-
dx/x y dx ¥ x

tivity will not be used below and it is to be mentioned that the definition of
sensitivity used here differs from the original definition of Bode and can be
used advantageously in all three domains.

The tolerance of the network function y = y, -+ Ay is

N
dy =2 Si e (1)

i=1
where y, is the nominal value of the network function [k, (t), Ki(jw), K(p)].
S; is the sensitivity relating to the i-th element, and IV is the number of the
quantities determining the network. The sensitivities and the tolerances for
the various domains are shown in Fig. 3. The formulae giving the tolerances

are obtained in the following way.
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Fig. 3. Sensitivities and tolerances

In the frequency domain it is very important that from the sensitivity

S{j w) = w and from the tolerances «; besides the tolerance JK(jw)
Ly
also the tolerances of A(w), b(w) and a(w) could be computed. Since
N
Kjjo)=K(jow) + 2 S;q; =
i=1
N S.a; N S q; N S;a;
o)1+ LD =K (Jo){ 1+ YR ZL7l 7 gy, l},
olJ ){ = K, } o(J )ii e € K, ]i‘:i K,
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using Taylor series expansion we obtain
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K(jo) = A(w) = A4, l tl - ;/Qf e 2’7’”’ LRILIL RPN
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In terms of equation (2)
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The latter equation takes in the worst case the form
NI1S,q 1 5. . . .
da<< N ZLL = NU§, g (3)
=1 I\ ' :11) =1 '

The equations (3), (4), (5) in the practical computations proved to be simple,
good approximations.

In the complex frequency do_nain p = ¢ — j o the effect of the network
element’s tolerances on the poles and zeros can be expressed in the following
form:

dp;=pi — P~ AK, —— . (6)

OPi Py

Formula (6) follows from the two ways of writing the transfer function tol-
erance: :

L, 0K N < I, -
,};f’”(p —Pi)=2> m'a"ﬂx (7)
pi “Pi, =1 1L

C011<eque11tlv AK, is the transfer function tolerance resulting from the
tolerances of all network clements at the point p = p;,. Since K (p) iz a

3K, o .
rational fractional function, the expression —- can be relatively easily

szl Pio
computed. Specialforms of the relztion (6) can be found in works of Parotiis

and Horowitz.
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In the time domain t the character of the tolerance of the weighting
function k(t) can be judged in the knowledge of the tolerances of poles and
zeros. If the transfer function is a proper fraction and the poles are single,
then in terms of the expansion theorem

4(p)
k. (1) = ePi
o (1) = ?1 B (p"
k3 $ (P - pi)(lf7§'-p’)-~-( Pi = Pm) px
= (pi—py)---1...(pi — pm)

This expression must be differentiated with respect to the zeros and poles
for determining the tolerance:

Ak(0) 7~ 3 3 cjert dp| +
pi pi

"}—._J._/c epi‘/‘]pz

P pi

+ 3 3w erd Apf. (8)

pi Py

It can be seen that besides the original time functions e”"' there also occur
the time functions tePi".

The logarithmic amplitude and phase plots, the so called Bode plots
are very useful in the analysis and synthesis of linear systems. In the know-
ledge of pole and zero tolerances the tolerances of logarithmic amplitude and
phase characteristics can be expressed. The results are shown in Figs 4,

5 and 6.
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Fig. 4. Tolerances in logarithmic amplitude and phase plots T
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Fig. 5. Tolerances in logarithmic amplitude and phase plots II.
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Fig. 6. Tolerances in logarithmic amplitude and phase plots IIL

In the analysis it was assumed that the character of the factors remains
invariable, which means that the sign of the constant k, as well as the root
at the origin do not vary, the root lying on the real axis varies only on the
real axis and does not become a pair of conjugate complex zeros etc. In Fig. 4
the first row shows the tolerance of the constant k, in the transfer function.
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The second row is the case of a zero at the origin. The third row indicates
the effect of the variation of a zero being on the negative real axis. The
variation of the zero has a considerable influence on the amplitude and phase
characteristics.

The case of conjugate complex zeros is shown in Fig. 5. The conjugate
complex root is described by the absolute value of w; and by the phase 9.
For the latter the parameter { = — cos @ is introduced. In case of a conjugate
complex root the effects of the absolute value and the phase angle tolerances
must be analysed separately as shown in Fig. 5. In the last row of Fig. 5 the
effect of the tolerance of the pure imaginary zero is indicated.

Fig. 6 summarizes the formulas of the root factors and those of the
tolerances of the logarithmic amplitude and phase plots. In the terms of the
foregoing, the following cases are to be found here: k, = const., zero on the
real axis, conjugate complex root, pure imaginary root. As had been assumed
the zero located at the origin remains invariably in the origin, thus is not
shown in the table.

In the case of frequency transformations which are usually made in
the design of filters, since the main geometric structure of the filter remains
unchanged, the expression of the sensitivities is the same for low-pass and
transformed impedances:

_OKE(p.Zk) _ OKE(p.Zh)

S. =
9Z% VAN

H

9

Here L relates to the low-pass filter and T to the transformed one.
However, the tolerance of the low-pass filter and that of the transformed
filter are different, because the variations of the impedances are different:

2. The effect of the input waveform tolerance

If the Dirac delta pulse or the unit step function is considered as input
signal, then their tolerance appears only with a constant multiplication factor
in the weighting function as well as in the transit function. The analysis of
the systems in the time domain is made in connection with the measurement of
the response to the periodic signal. The period, the rise time and the overshoot
of these test signals are established by international recommendations. The
computation of the system response to periodic signal even in case of applying
the very well useable Laplace transformation is by order of magnitude more
complicated than the computation of the response to unit step function. An
acceptable compromise between complexity of computation and practically
utilizable result is the computation of the response to the ramp step. The
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ramp step is shown in Fig. 7. With ¢ < 0 its value is zero, fromt =0 tot = ¢,
it varies linearly and is constant for ¢ > ¢. The two interesting intervals are

marked with I and II.

ur

I

Let us analyse the effect of the rise time ¢, of the ramp step u; = uy(t.t))
on the response u,(t) of the system. The response of the system is

t
u, (t, t;) = O‘f E(t—1yu (z,t)dr. (10)

Since

-~fk(t aul(rt)dr,

the tolerance of the response is

t
duy =2 gy, = | k) 2 Su(®t) gy ge
2 e, | ,
t
= .ch(_t — 1) Juy dr (11)
0
where
du, = Bu (7, &) At, . (12)
t‘r
In domain I
uf :LJu{: ——%—At,: —uf At,
t t; t.
Substituting this in (11) and using (10), the result
4 : 4
dul = — <t E(t—)uldr = —ul s (13)
t t,

will be obtained.
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Let the rise time of the response be designed by ¢, and let it be assumed
that # < t.. In terms of Fig. 8

Aul Aul Bul

tr, — tjl Atf ot

of which, using equation (13), we obtain

Aul ul A
Atf:tfz““tfl = 2 = 21 = (14)
duj Buj ¢,
at ot
P
4U;
Lt
I Iy Il
Fig. 8

Equations (13) and (14) can be used advantageously in the evaluation
of measurement results if the network elements have nominal values and
only the rise time of the input signal varies.

3. The mutual connections between the tolerances

3.1. The connection of the tolerances of the real and imaginary parts

Let the real part of the transfer characteristic be K(jw) of the four-
terminal network shown in Fig. 9. 4(w) and its imaginary part B(w). In the
knowledge of the network elements Z; the real functions A{w) and B(w) can
be determined.

[-S——— | —-

Kl = At} + 7B lw)

Fig. 9

Since the values of the network elements depend on chance, A(w) and B(w)
can be considered as stochastical processes. Further on, the connection be-
tween the characteristics (mean value, variance, correlation function, spectral
density) of the stochastical processes 4(w) and B{(w) shall be dealt with.
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It is known that the real and imaginary parts of the complex functions
regular in the right half-plane and on the j axis are connected by the Hilbert
transformation. In this case

B(o) = - | A0 4, (15a)
T o — T
A (o) — _4(00)2_}; ( g%dr. (155)

Equation (15) can be considered as a convolution with the weighting

function ky; = — . Consequently, the Hilbert transformation can be substit-
it
AulQ)
Afwl by Blw)
Ax
b
1 H
Jjife
0 fe} 7
~7if2
Q
Fig. 10

uted in the frequency domain 2 by the transfer characteristic K (jQ) or by
an equivalent amplitude characteristic Ay (£2) and phase characteristic
by(Q2). Performing the Fourier transformation of the weighting function ky
we obtain
—j2>0
Ky (JQ) = Fky(t) = - (16a)
] <0
respectively,

Ay (2) =1 (16b)
by (£2) = (16¢)

The four-terminal network given by equations (16) by realizing the Hilbert
transformation is shown in Fig. 10. Consequently, the Hilbert transformation
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is equivalent to the passage through a linear system having the input 4(w)
and the output B(w).

The application of the relations concerning the linear transformation
of the stochastical processes is very simple, since A, (2) = 1, and gives the
following results for the mean value, the variance, the correlation function
and spectral density of the tolerances 4.4 and AB:

M [d4] =M [4B] =0 (17a)
D? [d4] = D? [4B] (17b)
R [44]=R [4B] (17¢)
G [44] =G [4B]. (17d)

Therefore, the statistical characteristics of the tolerances are the same for
the real and imaginary parts of the transfer characteristic, if the tolerances
do not alter the character of the network, that is, if the Hilbert transformation
can be applied.

3.2. The connection between the tolerance of the time and frequency domains

To begin with, let the effect of small sinusoidal variations of the phase
characteristic in the time domain be investigated. Let the frequency ofthe
sinusoidal variation O, and its amplitude be /b (Fig. 11):

b= Absin Q, . (18)
b
TN ?ab ol
/ i ! o
27/ {
Fig. 11

Then in the output signal beside the original signal u,; we get two echos

Ab . Ab
Ush = Uy, + > ~ Uy, (8 + 2y) — > Uy, (£ — -Qo)

that iz. for the tolerance in the time domain we obtain the inequalities

U,y = maAX Uyp — Uy, < b max u,, (19a)

dwn . (19b)

max U,
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A similar result is obtained if with a linear phase variation a cosinoidal ampli-
tude variation is assumed. Fig. 12 shows the waveform distorsion appearing
in various situations, for the case of square wave.

In a general case the uppermost limit of the tolerance characterizing
the resulting waveform distorsion is obtained by adding the small sinusoidal
and cosinoidal effects

dw, J [1543(2) + Su5(2)]de . (20)

max | Uy, !

Z-<AT<7‘;

Fig. 12. Frequency characteristics and waveform distorsion

Here S;;(2) and S ;(£2) are the tolerance spectra of the amplitude and of
the phase characteristic, respectively.

The tolerance frequency 2 and the tolerance spectrum S{{) introduced
to describe the deviation of the real and imaginary parts as well as of the
amplitude and phase characteristics from the nominal are conducive to the
better understanding of the connection of tolerances.

Summary

The tolerances of the logarithmic amplitude characteristic and those of the phase
characteristic can be expressed as a sum of real random variables. Knowing the tolerances of
poles and zeros simple formulae for the tolerances of the weighting function as well as for
those of the logarithmic amplitude and phase characteristics (Bode diagrams) can be deduced.
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In the case of frequency transformation the sensitivities computed for the low-pass filter
can be used for the computation of tolerances.

After defining the response to the ramp step, a simple formula for the tolerance of the

rise time is given. The connection between the real and imaginary parts of the network func-
tion in terms of the Hilbert transformation is analysed. The mutual connections between the
tolerances of the frequency and time domains are treated by introducing the notion of the
tolerance spectrum.

Dr
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