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I. The theoretical basis

Introduction

Such systems are designated as multivariable systems which have
more than one controlled variable (N pieces) and an identical number of
reference inputs. The number of the inputs of the final controlled plant (M)
may be identical (M = N, symmetrical system), it may be higher (M > N,
excess systems) or lower (M < 1V, deficiency systems).

The system is denominated as noninteracting if the controlled variables
depend only on their own reference input, and are independent — in a certain
sense — of “extraneous’ reference inputs. The functioning of the noninteracting
system 1is evidently better, its designing simpler.

Only linear systems having a purely discrete operation will be examined.
The sampling period T is assumed to be constant and the samplers synchron-
ized.

We assume that the impulses can be substituted by Dirac impulses.
The variable and the parameter of the discrete Laplace transformation,

respectively, are Z = e =T = 5-1;

;__f;TﬁZ, nT<t<(nt1T, 0<A<l,

where s denotes the variable of the Laplace transformation.
The task of the designer is to determine the transfer matrix of the
impulse compensator.

1. The description of the system

The controlled variable y, of the controlled system is a linear function
of the input f; of the controlled element:

M
Yi(s) = NGs{s)Fs), i=12_...,N. (1.1)

j=1

The transfer functions Gg;(s) of the controlled element are represented by a
transfer matrix Gg consisting of NV rows and M columns, while the controlled
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variables and the inputs of the controlled element by the column matrices
Y(s) and F(s) having N and M rows, respectively.

In front of the controlled system, a zero order held is inserted on most
occasions, the transfer function of which is given by

1 —eT

Go(s) = K — (1.2)

§

Let us introduce the joint transfer matrix of the controlled system and
of the hold element:

6(s) = G1(s) Gs(s) . (1.3)

The corresponding discrete and modified transfer matrices are designated

by &(Z) and G(Z, }), respectively.

Gs

SRS

According to the block diagram in Fig. 1, we can write, for the discrete
and the modified discrete matrices of the controlled variables, that

Y(Z) = 6(2) ¥(2) . (1.4)
Y(Z, 7)) = 6(Z, %) F(Z) . (1.3)

The series f; (nT) of the inputs of the controlled clement is a linear
function of the series e,(mT) of actuating signals:

F(Z)= SDUZ)E(Z). j=12.. ... (1.6)

By summing the transfer functions D;(Z) of the impulse compensator
te a discrete transfer matrix D(Z) consisting of M rows and N columns,
¥F(Z) = D(2)E(Z). (1.7)
In the case of the rigid feedback according to Fig. 1.
E(Z) = Y(Z) — X(Z). (1.8)

where X (Z) denotes the IN-row column matrix of the reference inputs.
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By expressing the controlled variables in terms of the actuating signals,

Y(Z) = G(Z) F(Z) = G(Z) D(Z) E(Z) . (1.9)
Upon substituting this into (1.8),
E(Z) = G(Z)D(Z2)E(Z) — X(2) . (1.10)
Let us introduce the quadratic and diagonal unit matrix I (where
I;=0,if i = j, and I;; = 1). On rearrangement we obtain the column matrix
of the actuating signals:
EZ)=[1+6(Z2)D(2)]"1X(2). (1.11)

where the exponent (—1) denotes the inverse of the matrix.
Upon substituting expression (1.11) into (1.4) and (1.5) and introducing

L(Z) = 6(2) D(2) (112)

the quadratic discrete transfer mairix of the open-loop system, the expression
for the controlled variables will be

Y(2) = L(2) [1 ~ L))~ X(Z) = W(2) X(Z), (1.13)
Y(Z, ) = G(Z,3) D(Z) [I - L(Z)]"' X(Z) = W(Z, 3) X(Z). (L.14)

The discrete and the modified discrete matrices of the closed svstem
are (N-row, N-column matrices),

W(Z) = L(Z) 1+ L(Z)]" = I+ L(Z)]'LZ). (1.15)
W(Z,3) = G(Z. ) D(Z) [L - L(Z)]~! =
= G(Z, %) D(Z) [6(Z) D(Z)] " W(Z). (1.16)

The second form of the relationships can be easily verified. In the case
of a symmetrical svstem [G D]~! = D~1G~!, thus

W(Z,}) = 6(Z,}) G~ (Z) W(Z), M = N, (1.17)

which is analogous to the relationship valid for systems with a single variable.

2. The noninteracting system

All the controlled variables of a closed control system depend on all
the reference inputs. This is naturally disadvantageous from the aspect of the
operation of the system, since thus an intentional or accidental change of any
of the reference inputs causes a change in all the controlled variables. On
the other hand, couplings make the analysis of the svstem more difficult and
designing more complicated.
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It is a self-evident requirement to eliminate or to reduce these harmful
couplings as far as possible. Let y;,(¢) designate the component of the controlled
variable y(t), which is produced by the reference input x4(¢), if the other
reference inputs are equal to zero. For controlled variables of the character
¥:(t), the requirements usual in the case of systems with a single variable are
valid, which will not be discussed here. With respect to mixed index components
(i = k), we insist in any case on having a value of zero in the steady state.
In other words, in the steady state all the controlled variables may depend
only on their respective reference inputs, since otherwise we cannot speak of
control any longer. The ideal case would be if all the coupled components
(with mixed index) were identically zero.

In sampled-data systems several types of noninteracting can be distin-
guished. These are, in the order of stringency, the following:

1. Steady-state noninteracting: The mixed index components asymptot-
ically tend to zero with the increasing of time:

lim y,{t) = 0, ik, (2.1)

[

2. Finite settling time noninteracting: The value of the mixed index
components in the sampling instants is zero after the elapse of the settling
time:

yu(nT) =0, nT > Ts: lm yu(t) =0, i=k. (2.2)
fm

3. Ripple-free, finite settling time noninteracting: The value of the mixed
index components is zero after the elapse of the settling time:

yie(t) = 0. t > T, i=k. (2.3)

4. Sampled noninteracting: The value of the mixed index components
is zero at the sampling instants:

_«;‘i,‘.(nT) = 0; lim yik(t) = O, 1= k. (2.4:)

[

5. Continuous (complete) noninteracting: The value of the mixed index

components is zero:

yi(t) = 0, i=k. (2.5)

As we have already mentioned, requirement 1 should be satisfied in
any case, but this is generally not sufficient. In connection with requirements
2 and 3 it should be noted that those can be satisfied only with respect to
certain types of reference inputs. This follows from the concept of the finite
settling time. We generally demand that the settling time should be finite



SYNTHESIS OF MULTIVARIABLE SAMPLED-DATA CONTROL SYSTEMS 177

if the reference input is of m or of a lower order, where the m-order reference
input is

W) = 1(t) — ', m=1,2,3, (2.6)

i.e. the unit step (m = 1), the unit ramp (m = 2), and the acceleration step
(m = 3). Requirement 5. i.e. the continuous noninteracting, cannot be satisfied
on most occasions in sampled-data systems. The system is left to itself in the
sampling instants. The controlled variables are changing between the sampling
instants in accordance with the time constants and natural frequencies of the
controlled system. The amplitudes of the individual components can be
influenced by controlling the amplitudes of the inputs of the controlled
element, acting at the sampling instants. The superposition of components
with different time constants and natural frequencies however cannot be equal
to zero. It follows from this that continuous noninteracting with respect to
one or several controlled variables can be ensured only if the transfer matrix
of the controlled system has a special structure concerning the time constants
and natural frequencies. Expressing this more simply: Some of the time
constants and the natural frequencies should be identical. We shall later
revert more concretely to this question.

3. The mathematical conditions of noninteracting

Let us formulate the various requirements of noninteracting in a mathema-
tical form. This means the conditionsimposed on the transfer functions Wy, (Z)
and Wy(Z, 1) with a mixed index i = k. For the transfer functions with
identical indices W;(Z) or W;;(Z, 1) essentially the same requirements are
valid as in the case of a single variable.

The discrete transform of the m-order reference input is

— m=123, (3.1)

where @p, (Z) is an (m—1)-degree polynomial. The transforms of the corre-
sponding controlled variable are

?,(Z)

Yi(Z) = W(2) m ; (3.2)
g Wz, 2) D)
Yil(Z,2) =Wy(Z, 2) (1—2z)m . (3.3)

From this, the condition of steady-state noninteracting is evidently

1. WilZ, %) = (1 — Z)" Rix (Z,2), i~k (3.4)

{

where R;; (Z.A) denotes a rational fractional function having all its poles
outside of the unit circle, but otherwise arbitrary.
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The condition of the finite settling time and of the ripple-free finite
settling time noninteraction is that Yy, (£) and Yy, (Z, 4), respectively, should
be polynomials. Accordingly the requirements are:

2. Wil(Z) = (1—Z)" Py(2), i=k (3.5)

3. WiulZ,2) = (1—Z)" Py(Z, %), i =k (3.6)
where Py (Z) and Py, (Z,2) are arbitrary polynomials in terms of the
variable Z.

The conditions of the sampled and continuous noninteraction are inde-
pendent of the reference input, evidently it is

1. Wi(Z) = 0, i=k, (3.7)
5. , WilZ, 1) = 0, i=k. (3.8)

Now we have also mathematically demonstrated that the requirements
are more and more stringent in the order of enumeratiou.

Requirements 1, 2, and 3 are closely connected with the type of the
reference input. In the case of a more general reference input, the system
does not show decoupledness, but every controlled variable depends on all
the reference inputs. Since reference inputs do not change during the real
operation as step signals do, the controlled variables are actually changing
under the influence of any of the reference inputs. Afterwards this change
tends to zero asymptotically or with a finite settling time. Regarding the
problem from the aspect of the designer, the application of the statistical
designing methods is practically hopeless. In principle there is nothing to

prevent the formation of the quadratic mean errors y} (1), or v3 (nT). and
afterwards to minimize these. Since, however, the number of these quadratic
mean error values is N* and they are all very complicated functions of the
free parameters of the impulse compensator, the actual execution of this
process is not very promising. Circumstances are considerably more favourable
in the case of sampled noninteracting systems. The system with several
variables can be substituted with respect to the sampling instants by IV pieces
of single-variable subsvstems, which can be designed according to the usual

method, independent of each other. The quadratic mean error Vi (nT) is zero

(i = k), while the mean error y}; (nT) can be minimized.

II. Designing methods
4. Finite settling time noninteracting system

«) The basic correlations

The designing method of systems becoming noninteracting after a finite
settling time was elaborated by Nismipa and Imar [6]. The procedure was
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given for symmetrical systems (M = N), but the generalization can be per-
formed without difficulties, as we shall later see.

The calculation is based on the examination of the equivalent open
system, containing a fictive impulse compensator with the transfer matrix

€ (Z) (Fig. 2).

...’./7.—.. ..’./T.—.. E
X2 I ¥
_ﬁf.’-/-—- _{H—/f‘- ]
Fig. 2

The matrix has M rows and N columns. The designing consists of two
steps: First the matrix C(Z) is determined, afterwards, with the knowledge
of this, the transfer matrix D (Z) is calculated.

The transfer matrix of the closed system is, in view of Fig. 2.

W(Z,7) = G (Z, 1) C(Z). (4.1)

One of the conditions of finite settling-time noninteracting is, according
to formulae (3.5) and (3.6), that all W, (Z. Z) functions should be polynomials.
Let IV; (Z) denote the least common multiple of the elements G;; (Z) figuring
in the j-th column of the matrix G (Z), then

Ci(Z) = N (Z)Cj (Z): j=1.2,....M; k=12,...,N (4.2)

should be chosen, where Cj; (Z) is a polynomial to be determined later.

It is evident, if the finite settling time is stipulated not only for the
coupled components, but also for the own components. By restricting our
considerations to follow-up systems (generalization can be performed without
difficulty), the other condition system of the finite settling time is

lim G(Z) C(Z)=1, (4.3)
Z—1
?1'1_{11 fdei—G (Z)CZ)=0, pn=1,2... . .(m —1), (4.4)

where m denotes the highest order of the still compensated reference inputs.

Let us regard the index k as being fixed. In this case the number of
condition equations given by (4.3) and (4.4) is mN. The matrix elements
Cix (Z) should contain altogether at least as many free parameters. Let py
designate the degree of the polynomial Ci (Z), then the condition equation

IVE

(p,,x +1) = mN (4.5)

-,
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should be satisfied for all the indices k. If in a special case all the C}; (Z) have
an identical degree by a given k, then

N
> m— — 1. 4.6
Pr <= Y (4.6)

In a symmetrical system this is reduced to the form p, > m—1 [6].
The quality characteristics of the system can later be influenced by the choice
of the free parameters.

It is easily conceivable that the settling time is determined by the
maximum degree of the functions Cy (Z). Let g; designate the degree of the
functions N; (Z), then

S

= max (q; - p)- (4.7)
The discrete transfer matrix of the closed system, in view of formulae
(4.1) and (1.15) is given by
W(Z) = 6(2) €(2) = 6(Z) D(2) [1 + G(Z) D(2)]~' =
= 14+ G(Z) D(Z)]' G(Z) D(Z). (4.8)

Let us examine the second and third terms in the series of equations.
We obtain after matrix algebraical rearrangements,

G@ML_anwnma—ﬁwﬂzo. (4.9)

If the multiplier of the matrix G is a zero matrix, the equation is satisfied.
In the case of a symmetrical system, this is the only solution (since in this
case G~! does exist). In the general case, other solutions are also possible,
but it is not easy to find one. By accepting this solution, the transfer matrix
of the impulse compensator is

D(Z) = [I — C(Z) G(Z)]' C(Z). (4.10)

Let us now regard the second and fourth terms in the series of equations
(4.8). One of the solutions is obtained in a similar way:

D(Z) = C(Z) [1 — G(Z) €(Z)]~~ (4.11)

The two expressions are theoretically equivalent.
The difference in practice is that a matrix of dimension M should be
inverted for the first form and one of dimension N for the second form.
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b) The statistical error

We shall examine the operation of the system in that case of stochastic
reference inputs. Only stationary processes are examined, by accepting the
ergodic hypothesis,

Let the reference inputs consist of two parts: the useful signal m(r)
and the noise n() .

X () =me (1) + n (i), k=1, 2,...,N. (4.12)

We shall restrict our considerations to the examination of the values
occurring at the sampling instants, thus we regard the series

2, rT) = my rT) + 0y, (¢T), B=1,2,..., N, (4.13)

or the corresponding autocorrelation and cross-correlation series as given.
Let yg; (rT) designate the required series of the i-th contrelled variable.
This is generally some linear function of the useful signal value m; (pT) and
can be expressed by the ideal transfer funection I ; (Z), that is assumed to
be a general power series.
The error signal series of the i-th controlled variable is the difference
of the actual and the desired series of signals,

PArT) = 5(T) = 5rT) = 3 5ulrT) = 5ol rT). (1.14)

Let the statistical error be, by definition, the mean square value of the
series iy (r1):

G=lim o Ny, (4.15)
Ne= 2N L1 S

The statistical error can be expressed by the autocorrelation function
of the error signal and by the two-sided discrete transform @, (Z) thereof,
respectively:

Gme § P @ = S Re 0,2 10
oy Zz (Fyw12=2 Z
1Z=1
where by force of (4.14) and (4.15)
N N \' N
ot (2) = 5 S PpsZ) — 3 Gy Z2) — S0y 2) + B (2). (417)
E=17-1 = =1

Express the transformed correlation functions occurring here with the
aid of the rule of index changes. Upon introducing the designation B (Z) =
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= W (Z"'), omitting the argument Z, we obtain on the basis of (4.12) the
following:

®," JALS == ini W’i}: d)x;“'k - Ii?ij W.U; [@"{i"u— JT“ Qm,-nk - ¢Iljlll,'_- _ @n_;n;_.], (-118)

@}'i}:}'oi — W’“‘_ I-I?Oi ®-‘5};"’i = ink W;m‘ [@mkm; _;— Q)"A"li]’ (4.19)
-+ @

®."al‘)‘il’ - rf70!' W’l’/\' @"‘i-‘"k = W_Oi W‘l‘l; [(‘Dmim}; rrx,-rx;:]s (4‘.20)
qj)‘ai.\'oi - Uffoz’ W-of ®mg"l; . (421)

On most occasions it is justified to assume that the useful signals and the
noises are uncorrelated by pairs. Then the expressions are simplified, but even
in this case the function @, (Z) is complicated. If all the reference
inputs and noises too are uncorrelated by pairs, then the situation is relatively
simple, since in this case the system is noninteracting in the stochastical
sense. Naturally in this case this is not a characteristic of the system, but a
consequence of the uncorrelatedness of the reference inputs by pairs.

It should be noted that since the individual functions Wy (Z) are poly-
nomials, thus the poles of the function (I),r,,[,ﬁ_ (Z) are essentially identical with
the poles of the transformed correlation functions. By the transfer functions
the place Z = 0 is introduced, at the most, as a new pole. In spite of this,
the evaluation of the statistical error is very lengthy, since (4.17) consists
of a very great number of terms. In the general case the residues of (2N + 1)*
functions should be calculated to a single variable. Even if the useful signals
and the noises are uncorrelated, the number of functions is 2V (N + 1) -1
even in this condition, i.e. in the case of N = 2, the number is 13, while in
the case of IV = 3, it is already 25.

¢) Evaluation of the method

With the aid of the given relationships the controlled variables and the
statistical error can be checked. With the suitable choice of the free para
meters the quality characteristics can be improved. If necessary, the degree
pjx of the polynomials Cj; (Z) is chosen higher. It is useful, by considering
expression (4.7) for the settling time, to increase, above all, those degrees
Pjx which do not increase the settling time. If the performance of the system
is already suitable, then the transfer matrix of the impulse compensator is
determined according to (4.10) or (4.11).

The advantage of the process is that it can be employed both in the
case of M > N and M < N. One of the drawbacks of the method is that
the system is actually not noninteracting, thus its operation is not completely
satisfactory, as has already been mentioned, in spite of the formally reassuring
quality characteristics. A drawback in the calculation technique is that first
the elements of the matrix € (Z) are to be determined and the effect of these
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is clarified only during further calculations. The calculation of the statistical
error is very lengthy. The calculation of the impulse compensator requiring
a matrix inversion is similarly cumbersome.

5. Sampled noninteracting excess systems
a) General correlations

Systems with several variables are designated as sampled noninteracting
systems, if the controlled variables depend on the sampling instants only at
their reference inputs, not on the other reference inputs. The condition of
sampled noninteracting is, according to (4.7), that Wy (Z) = 0, i = k, with
other words, the transfer matrix of W (Z) should be diagonal.

The expression of the transfer matrix of the closed system shown in
Fig. 1. according to (1.15) is

W(Z) =L(Z) [1 + L(Z)]"", (5.1)

The matrix W is diagonal only in the case if the matrix L = GD is
also diagonal. Accordingly the condition of sampled noninteracting is

Ly(Z)= _/\:fo(z) Dj/;(Z) =0, k=12....N,
i=1,2,...,N, i==k (5.2)

If in the above equation the index k is assumed to be fixed, the number
of the condition equations is (N — 1). The functions G;; (Z) are given, while
the number of the unknown functions Dy (Z) is M. One of these must be
regarded as given (e.g. the function Dy, (Z)), since otherwise only the trivial
solution Djk (Z) = O exists, that naturally cannot be used.Thus the number
of the functions D, (Z) which can be chosen at willis (M — 1).Itis evident
that (N — 1) equations with (M — 1) unknown terms can be satisfied only
if M 2> N, Le. if this is an excess system (there are more inputs of the controlled
element than controlled variables). For designing symmetrical systems,
(M = N), the method of Tou [10] can be utilized, while the designing of excess
systems can be performed by way of the generalization of this method. The
essence of the generalization is that the N(IV — 1) pieces of functions D, (Z)
are expressed in terms of the others, which will be determined later.

Let us regard the functions Dy (Z) (k=1,2,..., N),figuring in the
main diagonal of the upper quadratic block of the matrix D (Z), as given.
The other elements are expressed with the help of the coupling matrix J (£):

Di(Z) =J(Z)D(Z).  j=1,2....M,
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where naturally
Juw (Z) = 1, E=1,2,...,N. (5.4)

Accordingly one element (Dy;) in the k-th column of the matrix D (Z)
is given, (N — 1) pieces of elements can be determined with the aid of relation-
ship (5.2) and (M — N) elements can be entered arbitrarily.

Let us regard the upper quadratic block of the matrix D (Z) (with the
exception of the main diagonal) as being determined, while the lower block
is chosen. It is advisable to express the elements of the latter similarly by the
elements D, (Z), this means that '

DUZ) = KuZ)Dl(Z), j=N-=1LN+2,.. . M,

:=1,2,.. ., N, (5.5)

where the functions Ky (£) are arbitrary rational functions having no pole
at Z = 0. (The condition of the realizability of the impulse compensator is
that Z = 0 may not be a pele of the functions Djk (Z)).

Divide the equation (5.5) by Dy (Z):

M
NG Z)JZ) =0, ik, i k=12.. . N (5.6)

=1
Upon arranging the quantities regarded as known on the right side,
and performing on the basis of formulae (5.3) and (5.5) the substitution

ij(Z) = I{jh(Z), ]: N —'r— 1, N ~L~2, Ce . ,A’I, k= 1,2, P N, (5.7)

we obtain:

R M
2 Gij(z) J;’;;(Z) = —6(Z) ~ Z Gij(Z) Kﬂ.-(Z)v (5.8)
j=1 j=N+1
j#Ek

E=12,...,N,i=12...,M, ik

The solution of the IV pieces, system of linear equations each with
(N — 1) unknown value, supplies the functions J;. (Z) which were regarded
as unknown.

With the functions J;(Z) determined in the described way, the transfer
matrices L (Z) and W (Z) are diagonal. Taking this into consideration, in view
of (5.1), the expression for the elements in the main diagonal of the transfer
matrix of the closed system is

M
Di(Z) X 6(2) Tl 2)

Wiu(Z) = : (5.9)
1+ Dy(Z) 3 6u[2) Ju(2)

J

1
-

This relationship serves as the basis for designing.
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b) The condition of continuous neninteracting

The expression of the modified discrete transfer matrix serving for the
determination of the continuous coutrolled variable is given according to
(1.16) by

W(Z,%) = G(Z,1) D(Z) L YZ) W(Z). (5.10)

Since L and W are diagonal matrices according to the preceding considerations,
thus one element of the matrix W (Z, 1) can be written as

N Loz 1
Wik(Z, /.) = > Gz’j(zv /') Djk(z) M =
j=1 14+ G (Z) Dy(2)
j=1
v M
= Wkk 2 Gij(Zv ;") ij(Z)s i, E=1.2,..., N. (511)

GII(Z) ij(Z) =t

l“\ J:?"

it
—

i

Now in view of (5.6) it is ensured that X G;(Z) Jyx (Z) = 0, if i = k.
Generally from this it does not follow, that 2 G;; (Z, 2) J;(Z) figuring in the
expression for Wi, (Z, 1) is also zero. Consequently the system is not con-
tinuously noninteracting, the reasons for this have already been discussed.
Let us, however, assume that for one or more indices i the relationship

Gy (Z,2) =kyGu(Z,7), j=1,2.... .} (5.12)

is valid, where k;; is a constant, though in principle it can be an arbitrary
function of Z too. The elements of the i-th row of the transfer matrix
G (Z, A) are proportional with one another and the proportion factors do not
depend on 4. In this case, naturally, the relationship G;; (Z) = k;; Gy (Z) is
also valid, hence (5.0) is simplified to the following form:
M
G,-,-(Z)Zkijj/,-k(Z)z(), 1=k (5.13)

=1

At the same time the expression for the sum figuring in (5.11) is

A

(WE

M
' Gij(Ze ;*)ij(Z) - Gz‘/‘(Z? ) Zkij ij(Z)' (5.14)

=

I

j
Since the value of this is zero according to (5.13) in the case of ¢ = k, thus
the corresponding elements of the modified discrete transfer matrix are
gii(za ;'_)

Wi{Z, 4) =W (Z) Gi(Z)

(5.15)

W, (Z,2) =0, i k.

6 Periodica Polytechnica FI IX/2.
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Thus under these conditions the controlled variable y; is noninteracting
continuously too. If the condition (5.12) is fulfilled for any value of 7, then
the sampled noninteracting system is continuously noninteracting too. The
existence of the relation (5.12) can be already decided on the basis of the
examination of the transfer matrix Gg (s) of the controlled syvstem. The con-
dition is evidently that we should have

Gsifs) =k Csy(s), j=1.2,. .., M. (5.16)

Here k;; may be a constant or a rational function of e ~*7, but it may
not be directly dependent on the variable s. This means essentially that all
the components of the i-th output signal of the controlled system change
with identical time constants and natural frequencies, thus the value of the
mixed index components could actually be zero.

¢) The course of designing

Let us summarize the course for designing a sampled noninteracting
system.

1. Certain functions K;(Z) are taken down which have no pole at
Z = 0. The more indefinite coefficients these functions contain, the more
possibilities shall we have for additional corrections, but the more difficult
the calculation will become., A very simple, but effective choice is

Ky(Z)=Kj, j=N+1,N+=2....MEk=12_....N, (517)

where Kj; is an indefinite constant.

2. The system of IV equations, each having (IV — 1) unknown quantities
given under (5.8), is solved. The coupling functions Jj, (Z) contain the para-
meters of the functions Kj; (Z), this means that in the case of choosing Kj;. (Z)=
= Kji. the coupling elements Jy (Z) are linear functions of the factors K.

3. At the sampling instants, the controlled variables depend only ou
their own reference input. The discrete transfer function is given by (5.9).
This can be interpreted so, that the system of IV variables can be substituted
with respect to the sampling instants by IV pieces of equivalent subsystems
(Fig. 3). The transfer functions of this are

CUZ) = S G, (2)J (Z). (5.18)
i=1

D(Z) = Dyl(Z), (5.19)

]TL(Z): B DA(Z)GA(Z) _ (520)
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For designing these subsystems with one variable, all the methods
can be employed which are based on the analysis of the signal values assumed
at the sampling instants. Such method is typically the one with the aid of
which the system with finite settling time and minimum statistical error
(interpreted for the sampling instants) can be designed. This method has
been elaborated in detail [8], thus we do not treat it here. If the transfer
function W, (Z) has already been determined, then the transfer function of
the impulse compensator of the subsystem is

_ 1 W2 ]
A= e T was 21

ch WL — Gk

t=0T2T.37,. ..

Fig. 3

4, Already during the examination of the equivalent subsystems,
certain aspects can be asserted on determining the free parameters of the
functions Kj(Z). It is advantageous if the numerator of the functions G, (Z)
has as low a degree as possible, since thus a ripple-free system can be ensured
with a shorter settling time. It is similarly advantageous if the degree of the
denominator is reduced, since the consequence of this is that the transfer
function of the impulse compensator is more simple and consequently (in
most cases) the build-up of the compensator too.

During the analysis of the values assumed by the controlled variables
at the sampling instants, further aspects can be obtained for the choice of
the free parameters of the functions Kj(Z). In this respect these have a
similar role to the eventually chosen free parameters of the funetion Wi(Z).
The essential difference is that every free parameter of the function W, (Z)
(which is a polynomial) increases the settling time by one period, while the
number of the free parameters of the function Kj(Z) is in no direct con-
nection with the settling time. (As we have seen, the settling time can still
be reduced.)

It should be mentioned here that the stability of the impulse compen-
sator is advantageous, though not unconditionally necessary. The condition
of this is that no function Dy(Z) should have a pole inside the unit circle.
This can be ensured for the functious Dy (Z) by a suitable choice of Wy (Z),
(this precondition is automatically fulfilled when designing a ripple-free sys-
tem), or by making sure that the functions G,(Z) have no zero inside the
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unit circle. The functions Jj(Z) may not have a pole inside the unit circle.
This is a new aspect for choosing the parameters of the functions Ky (Z).

5. With the aid of the modified discrete transfer functions, the con-
tinuous controlled variables are determined:

W22 =248 X6 (7.5 5,42). (5.22)
Gk( )j=1

First of all the components originating from the coupling are examined
and we shall try to minimize their maximum value (or quadratic integral).
To this end the free parameters of the fuunctions K (Z) can similarly be
utilized. The continuous overshoot of the uwn component can also be checked
and (in the case of a not ripple-free system) the degree of the ripple after
the settling time.

It should be mentioned here that if the conditions (5.12) and (5.16) are
satisfied for certain indices 7, then

Wiz )=z G, (529

Accordingly the controlled variable y;is noninteracting continuously too.

6. If we succeeded in choosing all the free parameters in such a way that
the performance of the system is satisfactory in every aspect, then the transfer
matrix of the impulse compensator can be determined on the basis of the
relationships

Di(Z) = Di(Z), Djk(Z) = ij(Z) Dy(Z) . (5.24)

To sum up, the essence of the designing procedure is that the examination
of a multivariable system is reduced to the examination of systems with a
single variable. In comparing both a single-variable and syminetrical muiti-
variable systeins, what is new is that the functions K;{Z) can he chosen.
The number of such functions pertaining to an index & (subsystem) is (M — N).
If the recommended choice of Kj(Z) = Kj; is used, the number of free
parameters is IV (M — N). With more complicated functions K (Z), as we
have already mentioned, the calculation will be more difficult, but we have
accordingly more parameters for considering the enumerated points of view.

The symmetrical system (M = IN) can be handled as the limit case of
the excess system. The process is exactly the same, but in this case not a single
function Kj,(Z) may, and can, be chosen.
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d) The effect of the disturbing variables

Let us now examine the effect of the disturbing variables in the case
of symmetrical and excess multivariable systems. We shall assume that the
disturbing variables are acting at the output of the system, or they are reduced
there (Fig. 4).

When examining the effect of the disturbing variables at the sampling
instants (assuming the reference inputs to be zero), the following relationships
can be written on the basis of the block diagram in Fig. 4:

Y(Z) — U(Z) = G(Z) F(Z) = G(Z) D(Z) E(Z) =

= — 6(2) D(2) Y(Z), (5.25)
U
e VR N
D _Q_/r_.,_ c P
—ﬁ’-/r—w- —):'L_—UN
¥
Fig. 4

where U (Z) denotes the N-row column matrix of the disturbing variables.
Let us introduce the discrete transfer matrix W (Z) pertaining to the
disturbing variable:

Y(Z) = WH{Z)U(Z), if X(Z)=0. (5.26)
According to (5.25) and (1.15), we obtain

Wu(l)y=[1+LZ)]'=L"YZ)W(Z)=1— W(2). (5.27)

Since the matrix W (Z) is diagonal, also the matrix W (Z) is diagonal.
WolZ) =1 — Wi(2); WyulZ) =0, i k. (5.28)
This means that the system is noninteracting at the sampling instants
with respect not only to the reference input but also to the disturbing
variables. A certain controlled variable depends at the sampling instants
only on the disturbing variable acting on it but not on the other disturbing

variables. Thus the equivalent subsystems with one variable are also valid
for the disturbing variable at the sampling instants,
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Accordingly, in the case of sampled noninteracting multivariable systems
with finite settling time, the same can be said on the effect of the disturbing
variables at the sampling instants, that being the case for finite settling
time systems with one variable [9]. It is specially to be mentioned that the
system has a finite settling time with respect to the disturbing variable, too.
The order my; of the compensated disturbing input is identical with the order
m of the reference input.

A reduction of other cffects of the disturbing variable, however, (over-
shoot. degree of coupling between the sampling instants, statistical error),
is only possible at the expense of the characteristics of the reference input
(e.g. settling time).

e) Compensation of the disturbing variable

In systems with one variable, the discrete transfer function pertaining
to the reference input or to the disturbing variable can be prescribed separately

with the aid of a compensator arranged in the feedback loop [5, 9]. In multi-
variable systems, thi¢ effect can evidently be achieved by an impulse com-
pensator characterized by a transfer matrix. The transfer matrix of this
compensator is designated by C (Z) in Fig. 5.

The column matrix of the modified discrete transform of the controlled
variables can be written on the basis of the block diagram in Fig. 5, as

Y(Z.7) — U(Z, %) = G(Z, 1) D(Z) [X(Z) — C(Z) Y(Z)] . (5.29)

Upon changing over to the (simple) discrete transforms and expressing
the controlled wvariable, we obtain the discrete transfer matrices for the
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reference input and the disturbing variable, respectively:
W(2) = [L - L(Z) €(2)) ' L(Z) = L(Z) [1 = CZ) L(Z)] . (5.30)
WilZ) =1+ LZOHUH) = W2DHL Y Z) =L (2)W(Z). (5.31)

Naturally the requirement still remains that the system should be
sampled noninteracting with respect to the reference inputs. It is advantageous
both from the aspect of the functioning of the system and from the clear
arrangement of the design, that the system be sampled noninteracting with
respect to the disturbing variables too. These two conditions are satisfied
if both W (Z) and W, (Z) are diagonal matrices. This is, in turn, fulfilled if
both L{(Z)=G(Z) D(Z) and L(Z)= C(Z) are diagonal. In this case,
€ (Z) necessarily must only be diagonal.

Accordingly the conditions of noninteracting are

The way of satisfying the first system of conditions was described in
the preceding discussion. On the other hand, the diagonality of C (Z) means

Uy
5 - lUen b 4
5 Uy
Ft . Uy
B, Y
! C, !

T\_lf«____

Fig. 6

that the impulse compensator with the transfer matrix C (Z) can simply be
realized by IV pieces of common (one variable) impulse compensators (Fig. 6),
that is otherwise evident according to Fig. 5. This fact brings about a simpli-
fication in realization, and calculation work is reduced thereby. A drawback
is, in turn, that we can decide only above a smaller number of free parameters,
namely IV pieces of transfer functions C; (Z) = C;; (Z), than in the case of
a compensator with several variables, characterized by an N X IV element
matrix.
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Since both the transfer matrices W (Z) and W (Z) are diagonal, the
multivariable system can be substituted with respect to the sampling instants
by single variable subsystems (Fig. 7). The transfer functions of these, in
view of (5.30) and (5.31). and the preceding sections, are

M
G(Z) = Zij(Z) le;(z) (5.33)
j=1
DZ) = Dwx (Z); G (Z) = Cy (Z) (5.34)
WA(Z) — DI:(Z) Gk(Z) ; (5'35)
1+ C(2) D(Z) G{Z)
, 1
Wix(Z) = . 5.36
W =@ p2) 642) (5:39)
Uk
- Gk YUt Y _li'_
Ce T\_,,yk__
t=012737,...

Fig. 7

The impulse compensators of the substituting subsystems can be designed
by any method elaborated for one wvariable system, which are based on the
analysis of values occurring at the sampling instants. In consequence of the
existence of the second impulse compensator, the quality characteristics for
the reference signal and the disturbing variable can be prescribed as essentially
independent. That method should be mentioned specially with the aid of
which a system of finite settling time and minimum statistical error can be
designed with respect to both the reference input and the disturbing
variable [9]. In this case, the settling time, the compensated limit order, the
minimum of the statistical error can be independently chosen for the reference
input and the disturbing variable, respectively. With the knowledge of the
functions Dy (Z) and Cj (Z) the elements of the transfer matrices D (Z) and
C (Z), respectively, can be determined:

Djk (Z) = ij (Z) Dy (Z) . Cr (Z) = Gy (Z) . (5-37)
As afinal check, it may be advisable to examine the continuovus contrelled
variable pertaining to the reference input. If U = 0, then according to (5.29)

and (5.30), after matrix algebraical transformations, it is quite evident, that
the modified discrete transfer matrix is

W(Z,2) = 6(Z, ) D(Z) [1 + C(Z)L(Z)]"", (5.38)

that corresponds to the second form of (5.30).
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One element of the modified transfer matrix is

M

D(Z) 3 6,(2.1)J,2)

WolZ, 2) = — 2 B
14 Cy(Z2) Dy(2) 2 G (2) J(Z)

j=1

M
362 1) J ()

=Wu(Z) 25 — (5.39)
> 6,(2) Ju(Z)

=1

These are completely analogous to the two forms of (5.11). Thus our statements
concerning the continuous noninteracting in Section 5b are valid word.by
word, thus it is not worthwhile to repeat them here.

0. Sampled noninteracting deficiency systems
8 Y 8
a) The ensurance of noninteracting

We have seen in Section 5a that the sampled noninteracting cannot
be ensured with the aid of an impulse compensatur arranged in the forward
loop in the case of deficiency systems (M <C N, the number of inputs of the
controlled element being lower, than that of the controlled variables). The
reason is to be found in the fact that the quadratic transfer matrix W (Z)
is characterized by IN? pieces of functions Wy, (£), while the number of elements
Dy (Z) of the transfer matrix D (Z) is only MN. Thus in the case of M < IV
we do not have the necessary number of functions which can be chosen.

Noninteracting can only be ensured, i.e. the transfer matrix W (Z) can
be made diagonal only if a new organ is (or organs are) inserted into the system.
In principle it would be sufficient, if the new organ were characterized by
(N — M) N pieces of transfer functions, this can however hardly be built
logically into the system. It seems to be simpler if the new organ has N
inputs and NN outputs, consequently the characterizing IV? pieces of transfer
functions are sufficient themselves to ensure the desired form of the matrix
W (Z). The role of the signal modifier inserted in the forward loop is basically
reduced in this case to the production of M pieces of inputs of the controlled
element from N pieces of actuating signals (by way of delaying and linear
superposition). The task of the new impulse compensator is the suitable
moditication of the signals. (In the case of symmetrical and excess systems
the impulse compensator having the transfer matrix D (Z) was able to per-
form these two tasks simultaneously.)
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An organ of this kind can be arranged into the system in several ways.
Naturally any solution is senseless which means no independent organ from
the aspect of operation. E.g. a compensator connected in series or in parallel
with the compensator in the forward loop does not represent a new organ,
since these two compensators can be substituted from the aspect of operation
by their resultant. The resultant organ has naturally NV inputs and M outputs,
thus it is characterized by NM transfer functions, consequently we do not
obtain new transfer functions which ean be chosen.

b) The difficulties of realization

The realization of the system built up in accordance with the above
train of thoughts has a serious difficulty. Let us designate the transfer matrix
of the impulse compensator serving to convert the number of variables by
D (Z), while the transfer matrix of the actual signal modifier by € (Z). Let
the latter be arranged e.g. in the feedback loop (cf. Fig. 5). The matrix D(Z)
can be regarded for the time being as given, consequently the matrix L (Z) =
= G (Z) D (Z) is also regarded as known, the task being to determine the
matrix € (Z).

The discrete transfer matrix of the closed system is, in accordance with

(5.30),
W(2) = LZ) 1+ C2)L(2)] " = [T+ UZ)L(Z) L(2)| =
— [LYZ) + €(Z)] 1. (6.1)
ft is evident already from this, that
C(Z2) = W-YZ) —L-Y2Z). (6.2)

This result is, however, only virtual, since the matrix L (Z) = 6(Z) D(Z)
cannot be inverted, as its determinant is zerc, i.e. the ordinal is lower than
the dimension. In our case, namely, M << NN, consequently it is evident that
the order of both the matrices G (Z) and D (Z) can be M at the maximum,
ie. rg <X M, rp << M (if the ordinal is designated by r). According to the

estimation of the order of the product of matrices
rp = rgp < min (rg, rp) < M < N. (6.3)

The condition of the invertability of the matrix L (Z) in turn is rp = N,
which is certainly not satisfied in the case of a deficiency system, consequently
the matrix L (Z) cannot be inverted, as we have already asserted.

Strictly speaking, we have proved by this only that the prescribed
matrix W (Z) of the closed system cannot be realized by the system shown
in Fig. 8. It is evident, however, that the requirement of the invertability
of the matrix L (Z) = G (Z) D (Z) arises also in the case of other systems
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of similar structure. Accordingly the sampled noninteracting of deficiency
multivariable systems can be ensured only by systems of basically different
structures. The noninteracting with finite settling time, in turn, can be ensured
by the method described in Chapter 4, in the case of both excess and deficiency

syvstencs,

7. Ilustrative example

The manner and somz aspects of designing excess systems is illustrated by a very
simple example. Let the number of controlled variables be N = 2, while the number of inputs
of the controlled element M = 3. Let the transfer matrix of the controlled svstem be

1 0.5

s+ 1 s+1 0 "
Gs(s) == 0.2 ] o1 . (7.1)
s+0.25 505 5025

The matrix has a very simple structure, since

1 1 -
Gy Z'S'Gu-. G =0, Gz:s:"g‘czr (7.2)
Calculation is facilitated by these properties, and some considerations become more easy to
survey. However, attention is called to the fact that the situation is generally more compli-
cated.

By emploving a zero order hold circuit. the diserete transfer matrix. by using the

designation

p = e ¥ = 0.77880 (7.3)
will be
(1—pHZ 031 —pHZ 0
1—p'Z 1—-p'Z -
G(Z) = ) N . (7.4)
081l—p)Z 20—pHZ 04(1-—p)Z
1—pZ 1 —pZ 1—pZ

The independent elements of the modified discrete transfer matrix are

) 1—pt+(p*—pYZ
6(Z, ) =2 o .

i A
G,(Z, %) =082 1—-p"+ ' —pPZ
i 1—pZ

N on L= pY (Y —p)Z .
G.(Z, %) = 27 i . (1.5)

The other elements can be calculated on the basis of (7.2).

Let the task be to design such a system that follows the step-form reference input
without steady-state error, with the shortest possible settling time. The statistical error and
the effect of the disturbing variables is not discussed here. The designing of the finite settling
time noninteracting system is not performed here.
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b) The conditions of sampled noninteracting

The condition equations of the sampled noninteracting are very simple, in the present
case, according to (5.8). The functions Kjk(Z) are assumed to be constant, thus

k=1, i=2) Gu(Z) JulZ) = — Gu(Z) — G.y(Z) Ky,
(h=2, i=1) 6y(2)J1s(Z) = — Gy(Z) — G15(Z) Ky (7.6)
From this, the elements of the coupling matrix J(Z) are
1
J”(Z): L Jm(z)=_?,
04 24K, 1—pZ B
Jﬁl(z)"‘ 1+P P 1—pZ 2 Jﬁz(z)“‘lz
Jsx(z) = Ky .]32(2) = K. (1.7)
The transfer functions of the equivalent subsystems are, according to (5.18).
G(Z) = G(Z) J1(Z) + G Z) Tu(Z) + Gm(z) Jau(Z) =
_ 1— pt 7 0.8+ p—0.1K,) — p(1+08p—01pK,)Z ’ (7.8)
I—p 1—-p'2) QA —p2)
GAZ) = 6x(Z) J1Z) + G Z) T Z) + Goo(Z) Jyn(2) =
(08 +-p+02K;)—p(14+08p+02pK;.)Z -
=l — p) Z = 2 LA .
G=n A=A p2) 9

¢) The designing of a not ripple-free system

Let us restrict our considerations to the designing of a not ripple-free system and try
to obtain a system of possibly rapid operation, i.e. having the minimum settling time. In this
case the form of the transfer function of the equivalent subsystems is

W(Z)=Z, WJ(Z)=Z. (7.10)

The elements of the transfer matrix describing the continuous signal are very simple

with respect to the cantrolled variable y,. since for the elements of the first row of the matrix
G the relationships (5.16) are valid. Thus by force of (5.23)

R ) G, (Z, 72 1 P J -
muz. ) = @ ) - - ezl G

W (Z,2) = 0.

The controlled variable 3, is unambiguously determined. since it does not depend on the para-
meters Ky and K . If x/(t) = 1(1). then in the case of an arbitrary x.(f)

Y(Z. 1) =1382(1 — ¢ M) Z + 224+ 20+ Z3 = .. (7.12)
1
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Somewhat more caleculations are necessary for determining the modified discrete transfer
functions pertaining to the controlled variable y,. According to (5.22)

. wW{(Zy . ) ‘ R .
Wol2 1) = o (6ol Ze D T 2) + G2 D T (2) + Gan 2. 1 T (2] =
sl (A—p'Z)1—2)[p— (1 +p)p’ 4 p¥] (1.13)
T 1-—p (0.8 + p — 0.1K,)) — p(1 + 0.8p — 0.1pK,,) Z ~ )
It is immediately evident, that the most advisable choice is
Ky= —2. (7.14)
since in this case
W.(Z, 1) =0, (7.15)

which means that ¥y, is noninteracting in continuous sense too, this cannot be achieved in the
symmetrical case,

This result is, however, surprising. As in the chosen example G, = 0, i.e. the controlled
variable y; does not depend on the input f; of the controlled element, therefore, it would seem
logical if f; in turn were not dependent on the actuating signal ¢;. This would mean the choice
of D, = 0, that is K,; = 0. By examining the whole complexity of the problem, the choice
of K, = — 2scemed to be the most advisable, The discrete transfer function of the equivalent
controlled system is then simplified in accordance with (7.8):

(1-pHYZ

6u2) =7

(1.16)

The following steps are the calculation of W,.(Z, /) and the choice of K., In the present
simple example, however, the order of operations can be reversed. The most obvious additive
requirement, namely, is that y, should be ripple-free. This is the case if W,(Z) contains all the
zeros of G.(Z). In our example this can be ensured if G.(Z) has no other zeros beyond Z = 0.
This can be achieved e.g. by making the first degree term in the numerator of G.(Z) equal to
zero. which means that on the basis of (7.9)

. 108 . .
Ky = — 53 P — 10.4200. (7.17)
Now for the subsystem
__ 2 —=pHd—p) Z -
Gi(Z) = - A= 2(0= 57" (7.18)

Forming the transfer matrix element IW,,(Z, %)

WosZ.1) = AT 2.1 T2 = G2, 1) Jos @)~ Gl 2, ) T D) =
1 . i i : L ey A
zﬁﬁ:ﬁl—:‘az[(lw(lfp)}? - PP )'*(1‘:‘P)(P‘(1-‘“P)P -

ppH Z + p*(p — (1 + p) p* +p*) Z°]. (7.19)
It is worth mentionirg that no overshoot occurs at the sampling instants. It can be
shown by some calculations, that in the case of x,(t) = 1(2)

= 1.085. (7.20)

Yomax = 1 +

41+ p)
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Ripple-free operation can, however, be ensured in other ways too. Let the value of
K ;. be chosen so that the numerator of G,(Z) is equal to the radical (1 — pZ) of the denominator.
(The other radical of the denominator cannot be eliminated in this way.) The condition of this
iz, by force of (7.9). that

08 +p+02K,=1+08p + 0.2pK,.. (7.21)
from which we obtain
K= L (7.22)

Then the transfer function of the subsystem is given by

21— p?) Z
G(2) =——(1 _;%~- (7.23)

The modified discrete transfer function is
o i 1 ‘74 i ﬂ‘ " -
Wo(Z. £) = T_T}FZ [QA—=p+ (" —p) 2] (7.24)

The modified discrete transform of the controlled variable corresponding to the refer-
ence input x,(t) = I(t)is

YodZ, 7y = 2.541(1—€"%) Z+ 22+ 28 — ... (7.25)

Accordingly the settling time is T = T and the controlled variable attains its steady
state without overshoot and keeps it withont ripple. This very favourable solution was made
possible by the special case G, (Z. 2) = 0.5 Gy(Z, 7). If other aspects are not examined, evi-
dently the second solution should be regarded as being the more favourable.

d) The impulse compensator

According to (5.21), the transfer function of the subsystems is, by using (7.16) and (7.23).

1w 1 1-pZ
@) = icw@a  T=p 1=2Z °
DZ) = LT N 1 —pZ (7.26)

GAZ) 1— Wy Z) 201—p) 1-Z
Accordingly. on the basis of (5.24),

D,(2) = D(Z),

D.(Z) = JulZ) Dyy(Z) = 0,

D.(Z) = K, D(Z) = — 2D, (Z).

D.(Z) = D.(Z).

D,s(2) = jm(z) Day(Z) = — %‘ D.y(Z), DyAZ) = KyZ) Dol Z) = D2n(Z). (7.

-1
(3]
-1
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The realization of the impulse compensator is not the subject of the present paper.
It is worth while, however. to call the attention of the reader to the point, that realization is
considerably facilitated in the present case by the fact that the coupling coefficients i
are constants independent of Z. The detailed block diagram in Fig. 8. was composed in such
a way that only one compensating organ pertains to every actuating signal, afterwards the

signals should only be attenuated. The equations of the block diagram are:

2 1-— piZ

Dsl(z) = 1‘j};_,’ —ﬁé
1
D(2) = —?Dal(z)e D, (Z) = 0
1 1— p*Z
Dy(2) = 2(1_—"13*_‘)' T_z
1 -
Di(Z) = — _2“D32(Z)= D.o(Z) = Dyu(Z). (7.28)
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In the case of a controlled system having a more general structure, or of more stringent
requirements. the train of ealculations will not be so simple and clearly arranged. First of all

the choice of the coupling coefficients K requires earnest considerations and detailed calcu-

lations. However, even this simple example was suitable for indicating some characteristies
of nonsymmetrical svstems.

Summary

Some theoretical problems and two designing methods of multivariable sampled-data
control systems were discussed. The central problem is to ensure the noninteracting of the
system, i.e. to attain, that all the controlled variables should depend only on their own refer-
ence input, and be independent of all the others, at least in a certain sense.

By employing one of the designing methods. onlv noninteracting finite settling time
can be ensured: All the controlled variables are equal to their own reference input after a defi-
nite settling time. if the reference input is of the (m — 1)th degree at the maximum. Since
noninteracting can be ensured only for reference inputs of a certain type, the svstem is not
noninteracting in the case of a reference input of the general type. Consequently the mini-
malization of the statistical error corresponding to the stochastic reference input iz difficult
in practice. The other drawback of this designing method is its formal character. It is especially
difficult to predict the effect of the individual parameters on the build-up of the impulse
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compensator. An advantage of the method is, in turn, that it can in principle be employed
independently of the number of controlled variables and inputs of the controlled element.

By employing the other designing method, sampled noninteracting can be ensured:
The controlled variables depend in the sampling instants only on their own reference input.
whatever the change in time of the reference inputs may be. The multivariable system can be
substituted with respect to the sampling instants by so many systems with one variable, as
the number of the controlled variables. The designing of these equivalent systems can be
performed by any method based on the analysis of the values occurring at the sampling
instants.

The procedure can be generalized in such a way that the effect of the disturbing vari-
ables can be compensated independently of the reference inputs. To this end a second impulse
compensator is required. The essence of the designing processes is, in this case too, the examin-
ation of the equivalent subsystems. This method is not suitable for designing deficiency svs-
tems (M <7 N).

The ideal continuous noninteracting cannot be ensured in a general case in sampled-
data systems. If. however, individual rows in the transfer matrix of the controlled system
have special characteristics, the controlled variables of the correspending order number can
be made continuously noninteracting.

The process is illustrated by a numerical example, in which some practical aspects of
the designing methods are indicated.
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