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In some papers [1, 2, 3, 4, 5] a simplified derivation technique was
presented for obtaining the optimum transfer functions in the WIENER—
NEWTON sense for stationary ergodic stochastic continuous processes or signals.
Here, the method is extended to strictly digital processes, that is. the input
and output signals as well as the other signals are assumed to be in discrete
form, or more precisely, we are dealing with sampled-data or pulsed-data
signals (which may be treated as though they were number sequences) and
only pulse-transfer functions are of interest. Hybrid systems are not considered
here. In this paper only single variable cases are studied, multivariable sys-
tems will be investigated later.

On the other hand, not only the completely-free configuration but alse
the semi-free configuration and the semi-free configuration with constraints
are considered.

As usual, here also the signals are assumed to be stationary and the
ergodic hypothesis is adopted. As a basis of optimization the least mean square
value of the error is taken.

As in the technical literature various definitions are given for the cor-
relation functions of sampled-data signals [see e.g. 6, 7, 8, 9, 10] the defini-
tions used here are summarized in an Appendix.

1. Completely-free configuration

The problem for the completely free configuration is demonstrated by
Fig. 1. The reference signal r(¢) assumed as being a stationary ergodic stochastic
process, contains an useful signal component s(tf) and a corrumping noise
component n(t). The reference signal r(t) is sampled, thus the input signal
is r*(¢). The actual output signal c¢*(t) is also in sampled-data form, andis
compared with the idealized or desired sampled-data output signal i*(t).
Later this is obtained from the sampled-data signal component s*(t) through a
discrete filter y(t) which must not be physically realizable. The sampled-data
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error 1is .

e*(t) = i*(t) — c*(z) (1.a)
or the corresponding number sequence is:

e(nT) = i(nT) — c(nT) {1.b)
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Now the question arises, which is the weighting function w(t) or the pulse-
transfer function W(z) minimizing the mean-square value of the number
sequence of the error

N

1
S e lim S Xn 2
é(nT)= lim SN 1 n;}:Ne(nT) (2)

This mean-square value can be expressed as

_— 1 °
X(nT)= 7.{0T) = Y D, (z) 51 dz (3)
27j
Iy
where @ (kT) is the autocorrelation sequence (see Appendix 2) of the number
sequence e(nT):
ET 1 1 ; T T+ kT
Pl BT) = lim ———— N e(nT)e(nT + k 4
Pee KT) Vo= 2N -1 = (nT) e( ) (4)

while @,.(z) is the power spectrum (see Appendix 3):

B(5) = 5 golkT)z* (5)

K=—

and I is the unit circle in the z plane. Taking Eqgs. (1) and (4) into consideration
the autocorrelation sequence of the error can be expressed as follows:

N

. 1 .
@oo (BT) = irl_l'li E-Rl_—;—l— ,ng [i(nT) — ¢(nT)]-

[{(nT + ET) — c(nT + kT)]

(6)
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that is:

Fee (FT) = @ (KT) — @ (nT) — ¢ (KT) + ¢ (KT) (7)
Similarly, the power spectrum is
D (2) = Dy (2) — Die(z) — Dei (2) + P (2) (8)

which, with the aid of the well-known index changing rule (see Appendix 3),
can also be expressed as

P (2) = Py (z) — Pir (5) W(z) = W) Dy (5) +- W(=) D, (5) W(z)  (9)

Here W(z) is the z-transform of w(t) or, more precisely, of w*(¢). Let us define
the following auxiliary pulse-transfer function

G(Z) . @ri (:)

= 10
o, () 1o

Later this can be considered as a known function, as the power densities
are our starting data. Taking G(z) into consideration, the power spectrum
of the error @,(z) can be expressed as follows:

Dee(z) = Dii(z) — G(z71) Dr(z) G(5) +

+ [6(z7Y) — WzTY)] @uls) [G(z) — W(5)] (11)

It must be emphasized that only the last term of Eq. (11) contains the mini-
mizing transfer function W(z). The mean-square value of the number sequence
of the error would be minimum, if and only if the last term was zero.

In this case the optimum pulse-transfer function must be

W (z) = G(z) (12)
or according to Eq. (10):
- ®ri (:) 3
Wo(z) = 13
2, (2) 13

Unfortunately, W(z) is, in general, physically unrealizable. The physically
realizable optimum pulse-transfer function can be obtained in the following
way. Rearranging Eq. (13)

Dri(z) Wo(z) — Ppilz) = 0 (14)

Now, if W(z) is substituted by the physically realizable optimum pulse-
transfer function Wp,(s) then instead of Eq. (14) the following relation
becomes valid
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D(z) Wilz) — Dri(z) = F_(3) (15)

where F'_(z) is some function not yet known and having no poles or zeros
inside the unit circle of the z plane. Performing the spectrum factorization
the power spectrum @,(z) can be expressed as

Dyi(z) = Dri(z) Brr(2) (16)

where the factor @;;(s) contains all the poles and zeros of @, (z) lying inside
the unit circle, while the factor @;(z) contains all the poles and zeros of
D..(z) outside the unit circle.
Thus, from Eq. (15)
i () W) = 2D T
QTT (:) @ff (:)

Separating each term into two components, the first having only poles inside

(17)

the unit circle and thus belonging to positive-time functions, the second
having only poles outside the unit circle and belonging to negative-time
functions, the following two relations will be wvalid:
, " D, (=)
(Dr'r (:) W, (z) = [—_l'—— I
err (:) +
(18)

R

Finally, from the first relation of Eqs. (18), the physically realizable optimum

pulse-transfer function is
!i @ri (z) }
@‘ = .
L leel "

Additionally it must be mentioned that the separating procedure may be
performed by the following calculus:

[@,Az)] ~ (! dpg_.(f’_)_d (20)
D5 (x) |- =l 2 ) @7(0) )

[

PO

that is, by inverse bilateral (two-sided) z transform, taking for the integration
path the unit circle, and thereafter by the ordinary unilateral (one-sided)
5 transform, performing the summation only from n = 0 to >c (and not from

n= — oo to oo).
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It must be once more emphasized that the term, figuring on the right-
hand side of Eq. (20) is an unilateral z-transform bhelonging to a certain
positive-time function. This is the meaning of the symbolism [ ].. Thus it is
a false imagination to assume, for example, in case of simple poles that this
symbolism means the sum of the ordinary partial fractions, hence

7

|. @ri (:) } AN "iu
D, (=) |- W =—pf

where p} denotes the simple poles inside the unit circle I'; of the z-plane.
On the contrary, the term in question can be obtained as

{Qj’f(")} = ¥ Auz \“_\4:__
Or(x) | = i—pr = 1-pret
where
A, = lim (z — p%) .1 (2)
Y 20r(2)
Hence, in case of simple poles p:
o] =z e )
(pr_r _“) + u 5 P:l ==pi :@rr (:)

This remark is made because sometimes on can see false formulae, for example,
instead of the true expression (19) the worse one

QDri (:) }

2D (z) |

W'.m? (Z) B ‘ &+ (~) (19;)

This mistake originates from the incorrect application of the sym-

bolism [ ]..
2. Semi-free configuration

Let us study the problem of the semi-free configuration but again for
strictly digital processes only. This case is illustrated in Fig. 2. Everything
is the same as in Fig. 1, the sole difference being that the link between the
input and output now contains the cascade connection of the fixed elements
with weighting function w(t) and the compensating elements with weighting
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function 1w(t). It is worthwhile to mention that between the two parts a

sampler is figuring, thus, the corresponding weighting functions can be replaced
by the pulse-transfer functions Wy(z) and W(z), respectively.
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Taking the index-changing rule into consideration, the power spectra
can evidently be now expressed as follows:

W)W (1), (5) W (z) Wi(z) = D (2)
Wiz )W (571) D, (z) = D (2) 1)
D () W () Wi (z) = Dy (2)
Introducing the auxiliary power spectra @p(z), Di(z). Psi(z) by the fol-
lowing relations
Wiz @, (5) W (5) = Dy (2)
W12, () = 95 (2) (22)
D, (5) Wr(z) = Dy (3)
the power spectrum of the error can be expressed as
D (z) =Dy (z) = W, (571 Dy (5) — Dy (2) W (2) =
LW () By ()W (2)

(23)

Formally, this is the same expression as Eq. (9) but some other functions
figure here. By the proper choice of an auxiliary pulse-transfer function
25 (2)

G (z) = Ef(; (24)

the power spectrum of the error can be written as
D,, () = Dy (z) =G, (z71) Py (2) G (=) +

o (25)
-+ [Gc (ZMI) - Wc (z‘l)] @r'j (:) [Gc (Z) - Wc (:)]
According to the same line of reasoning as in the previous case of com-
pletely-free configuration, the physically unrealizable optimum pulse-transfer
function of the cascade controller is:
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W (;): @fi(z)
“ Dy (z)

or taking into consideration Eqs. (22):

W(o (:) — er(z_l) @”- (:) —_ ¢r[(z) (2-‘-)

Wi D, () Wiz) By (e) Wi(a)

Similarly, the physically realizable optimum pulse-transfer function of the

cascade controller is

II7(111 (:) = - (28)
D (=)
or substituting Fgs. (22)
{ Wi(z72) @,,(=) ]
=) W D ,
W e (2) 2 " 2te) (29)
Wf(~ )Wf(")]‘ w7 (2)

If the pulse-transfer function of the fixed elements W;(z) has no zeros
and poles outside the unit circle, then

[Wi(z"1) Wi(z)]™ = Wi(="") (30)
[Wi(="1) Wi()]* = Wilz)

and the physically realizable optimum pulse-transfer function of the cascade
controller can be more simply expressed

sl

W‘C:’I! (:) = - : (31)
W) 0502
or taking expression (19) also into consideration
/ -
cm( h‘i)_ (3‘2)

W (=)

3. Semi-free configuration with constraints

If some signals are limited, as they are in practically all control systems,
then constraints arise in the optimization procedure. For the sake of sim-
plicity, only one constraint is assumed, but it is not difficult to generalize
this case for many constraints. The problem can be depicted by Fig. 3. Here
the actuating signal m*(t) is indirectly constrained through a general weighting
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function w(t). If, for example, w,(t) = 0(t) then a direct constraint is prescribed
on m*(t), on the other hand, if w,(t) = w(t) then the output c*(¢) is directly
constrained. Generally, let us assume the constraint as being expressed in the
following form:

WA LT 1

B(nT)=¢,(0T)=

: @@” (z)-1ds < o2, (33)
275]
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This condition is called the unequality of constraint. The problem of the semi-

free configuration with constraint can bhe solved by the Lagrangean conditional
extremum technique. The function to be minimized now is

(L, ) = e*2 () + 2172 (1) (34.2)

or in another form

22(nT, 2y = e*(nT) + AR (nT) (34.b)

This can be expressed through the first term of a proper correlation sequence
or through the power spectra as follows:

x* (nT= }) = $yx (OT-: }) = - L - ¢¢x.\' (Z, ;) 2 lds =
2wy ]
Iy (35)
1 ¢ -
== Ql2u + 12y ] e
2aj

<
I,

The first power spectrum @.(z) figuring here is again given by Eq. (23) while
the second can be expressed as follows:

Du(z) = Wi(z7%) W, (z71) D(z) We(z) Wi(z) (36)
Let us now define the following auxiliary power spectrum

Paalz, 4) = [Wi(z71) Wilz) + AWi(z71) Wi(z)] @rr(2) (37)
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and the following auxiliary pulse-transfer function:

. D (z
G, (= %) = q}_f(i)_/_)_ (38)

both being also functions of the undetermined parameter 4. Then the power
spectrum @D, (z, A) can be expressed in the form:

Doz, 1) = Dlz) + 2Dy(z) =
= ii(") - Ga(z 1) Doz, ;) Gﬂ(z) -+ (39)
+ [Ga(z7Y) — We(z71)] Paalz, 2) [Galz) — Welz)]

Following the same line of reasoning as previously, the physically unrealizable
optimum pulse-transfer function now is

W oo, ) = o2 (40)
B (2 )
or in an expanded form:
4 ~—1 A=
ch (z’ /-) — Wf ("’ ) ®rt (") (41)

(Wi (T Wi(z) + AW, (571 W (5)] D, (3)

Again employing the spectrum factorization procedure, the physically realiz-
able optimum pulse-transfer function of the cascade controller is

[ Dy (Z)_}
P (a7 |-
I_r -~ - he 41
C""( /) @d ( .'Z) (49)
or in an expanded form:
W, (= ) - (2)
oy L@ W GO WO 926 Ly

[Wr(E ) W(z) + AW, () Wi (2)] D5 (2)
In case of the semi-free configuration with constraint the undetermined
Lagrangean multiplier 2 does figure in the expression of the physically realiz-
able optimum pulse-transfer function. ¥or obtaining the final form, the para-
meter /. must be eliminated with the aid of the unequality of constraint:
Eq. (33). First in the expression of @y(z) i.e. in Eq. (36) the pulse-transfer
function W,(z) is replaced by the physically realizable optimum pulse-transfer
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function W, (z, 1) and the mean-square value I*(nT) of the sampled-data
output signal I*(t) of the constraint is determined by the residue theorem.
then the multiplier 4 can be so adjusted that the equation of constraint
Eq. (33) should be fulfilled. Substituting this value of / into Eq. (43) we have
the desired physically realizable optimum pulse-transfer function for the case
of the semi-free configuration with constraint.

It is worthwhile to mention the following special cases: If Wy(z) = 0
then Eq. (43) is reduced to Eq. (29). Further, if Wi(z) = 0 and Wz) =1
then Eq. (43) or Eq. (29) is reduced to Eq. (19). Thus, the semi-free con-

figuration with constraint is the more general case.
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4. A complementary remark

Finally, if W.,(z) is known, then the optimum transfer function Ggy(s)
of the cascade controller in the closed loop (Fig. 4a) can be determined on
the basis of

Gcnz (’:) Wff <:)

W (z) =W,, z) Wi
m ( ) cin ( ( Gcnz (z) WJ (:)

(44)

as

Gcm (:) = i cm( ) . (45)

1-W cm(“) W J(:)
On the other hand, the optimum transfer function H,,(z) of the feed-back
controller in the closed loop (Fig. 4b) can be determined on the basis of

m( Y =W, )W (z) = L WJ (z)

(406)
1+ H,, (2) W5 (2)

Hp)=—Te® _ 1 _ 1 (47)

cm( )Wf ) cm( )H—J( ) n—f(:)
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Appendix
1. The bilateral (two-sided) = transform

First of all it is necessary to introduce the two-sided (bilateral) z trans-
form. Let it be a sampled-data function f*() which is, in general. not zero
for both positive and negative time:

fH )= 3 f(nT)b(t—nT) =

M= —

(A1)
-1 I
= N f(nT)é(t — nT)+ N f(nT)st - nT)
no- e n=0
Thus, f*(t) may be decomposed into two components:
o) = f2(e) = fE@) (A2)
where f_(t) = 0 if 0 <t and f.(t) = 0 if ¢ <7 0. Taking the : transforms:

Fo)= N fuT)s"= X f_(al)s"= Sf (D)=  (3)

= —o= n=— = n=0

Thus, F(z) can be written as

F(z) = F_(z) + F_(3) (A4)
This is an expression for the two-sided z transform. If f_(t) = O and F_(3) = 0
then the well-known unilateral z transform is obtained.

If the bilateral sz transform is needed in a closed form, then first of
all f*(t) must be expressed according to Eq. (Al) in the following form:

f*(t) :j i (t) f(f) f(t t) = f (t) j ) (A5)

where
iﬁu)::j§00-nT) (A6)
and o
i (1) = Nt — nT) (A7)
=

Employing the complex convolution theorem for the two-sided Laplace
transform the following discrete Laplace transform is first obtained:
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F(s) =T [fL0]=T[f- @) =

C+ joo
1 (" .
= ) F.(p)I* (s — p)dp =
2nj .
Cc— joo
1 c+‘jm
= F. Ne =p)Tngn A8
T J (P 3 p (A8)
C— jeo

C+joo
1 , 1
=- F.(p) —
o j +(P) T AP

€—je

where
F (p)=T[f:(0] = Z[f. ()] (A9)

is the ordinary Laplace transform of the continuous positive-time func-
tion f.(t).

The choice of the value ¢ must be performed in such a way that on the
Re p = ¢ axis the unequality

le"€PT 1 <1 (A 10)

must be fulfilled and there F_(p) must be regular. Let us assume that the
poles of F,(p) lie on the left-hand of the imaginary axis at some distance
because f, (f) is a positive-time function which decays (Fig. 4 1).

On the one hand, ¢ must be so chosen that the integration path be to
the right of the regularity limit of F.(p) and, on the other hand, to the left
of the poles of I¥(s — p). If Res = 0 as in the case of s = jo, then ¢ < 0.

Similarly

Fr(s)=-T[f* 0] =T[f- )& )] =

'+ fee
1 : .
—— [ P - pip =
2aj
' jeo
ek .
-4 ‘ F_(p) X e Pndp =
2ij o ]‘[:oc
¢ oo
€ oo
1 ) ﬂi\ ‘ ’
= j F_(p) 3 P dp =
< J n=1
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i

Im p axis
Pojes of
< !+/5-.D/
L T when
i Res=0 Re p axis
| ER U
c<{]
impan,
Poles of
I(5~p)_
when
Re s=0 Re p axis
O<r
[ ]
1 : , es-mT
= J Folp)s——r =
27j 1 — els—p
£ — jeo
e ==
R T p— d (A1)
 2aj J — W T er P )
€l fo
where
F_(p) = T [f_(1)] (A 12)

The value ¢’ must be chosen in such a manner that on the Rep = ¢’
axis the unequality

i e(s—p)T;. <1 (Al13)

be fulfilled and there F_(p) must be regular. The poles of F_(p) lie to the
right of the imaginary axis at some distance (Fig. A 1). Thus, ¢’ must be
so chosen that the integration path be to the left of the regularity limit of
F_(p), and at the same time, to the right of the poles of I*(s — p). If Res = 0
because of s = jw, then 0 < ¢’

In the first case a closed integration path is made to the left with the
aid of a semi-circle whose radius tends to infinity. In the second case the
semi-circle of infinite radius is chosen in the right-half plane. Thus, in both

3 Periodica Polytechnica EL IX/3.
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cases the residue theorem can be applied (in the first case with a positive
sign, in the second case, on the contrary, with a negative sign) giving:

F*(s) = F% (s) + F% (s) =

F . (p
= SRes — LBy SRes TP (AL4)
o p=p, 1 — e (S"PT = S p_p 1 . g 0G-PT

where p, denotes the left-half-plane poles of F, (p) while p, denotes the right-
half-plane poles of F_(p). Finally, substituting e’
form is obtained:

= z, the two-sided = trans-

Fs)= S Res— (P wpe F=(B) (45

u P=P. l — %71 epT ‘T P=p, 1 "“ Z_l epT

If there are no many-fold poles, then the following formula is wvalid
. F
Fo)= 3 lim (p— p)—LL__ (A16)

where the summation must be extended both on the right-half-plane poles
as well as on the left-half-plane poles of F(p).

2. Correlation sequence and pulse-spectral density

The correlation sequences may be defined in a similar manner to the
definition of the well-known correlation functions. The autocorrelation sequence
of a sampled-data signal u*(t) or a sequence u(nT) is defined as

N
— > u(mT)u(nT + kT) (A17)

N—-= 2N L1 n=—N

T

Puu (I"T) = lim —:'["-_

The cross-correlation sequence between pulsed-data signals u*(+) and (1)
or the corresponding sequences u(nT) and v(nT) is defined as

N
G (bT) = lim — N u(nT) o(nT + KT) (A18)
N—e 2—/\/‘:“ n:N A

The power-density spectrum or the power-spectral density is defined as the
Fourier transform of the autocorrelation function of a continuous-data signal
and the cross-power-density spectrum or the cross-power-spectral density is
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defined as the Fourier transform of the cross-correlation function between
two continuous-data signals. Similarly, the two-sided z transform of the
autocorrelation sequence of a pulsed-data signal is defined as the pulse-power-
spectral density or briefly as the power spectrum. In a similar fashion the
bilateral z transform of the cross-correlation sequence between two sampled-
data signals is defined as the pulse-cross-power-spectral density or briefly as
the cross-power spectrum. Thus, the power spectrum and the autocorrelation
sequence are related by

P (z) = }: uu (RT) 575 (A19)
-
1 ¢

Puu (ET) = 22 q} D, (z)zF1dzs (A20)
FD

while the cross-power spectrum and the cross-correlation sequence are related

by

Bo(z) = 3 g, (kT) s~ (A21)

K= — o

L @@w () -1 d (A22)
T ‘

o (KT) =
Pyp (ET) oy

where z = ¢/*7 and the contour of integration I’y is the unit circle in the
z plane. ‘

It must be mentioned that the two-sided z transform is used in defining
pulse-power-spectral densities, because the correlation sequences exist over
all values of k from —oo to o<.

Further, it is to be seen that when k& = 0, the value of the autocorrela-
tion sequence is equal to the mean-square value of the sampled-data signal
u*(t) or the sequence u(nT):

N
Py (0T) = lim SEE N g (nT) = u* (auT) (423)
N-o 2N 41 2=y

Furthermore, letting kK = 0 in Eq. (A20) relating the autocorrelation sequence
and the power spectrum:

L.
P (0T) = -f—‘g)@uu(z)z“‘l dz (A24)
2nj
T,

or taking into consideration Eq. (A23):

: dp@uu (z) 57 dz (A25)
T, ..

ut(nT) = 2

3*
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3. Properties of correlation sequence and pulse-power-spectral density

Here some properties are summarized but without proof.
1° The autccorrelation sequence is an even function, thus

Puu(kT) = quu(— £T) (A26)

2° The cross-correlation sequences are not even functions but the following
relation is valid

FulkT) = qou(— ET) (A27)

3° The pulse-power-spectral density (or power spectrum) has the following
property:
Dyu(z) = Duu(z~1) (A28)

4° The cross-power spectra are characterized by

Dy(z) = Dyu(s™Y) (A29)
5° If the response of the sampled-data control system with weighting func-
tion w(t) and pulse transfer function W(z) to an input r*(¢) is c*(t), then the
response of this system to an input ¢, (kT) is ¢, (kT) and the response of this
system to an input g (kT) is @ (kT). Thus

=0

2‘ w(nT) ¢, (kT — nT) = ¢, (kT) (A30)
X w(nT) g, (kT — nT) = g, (kT) (431)

and so on.
6 The corresponding relations for the power spectra are

Drr(5) W(z) = Dre(z) (A32)
Dyr(z) W(z) = De() (A33)
In a similar manner
W(z=1) @p(z) = D(3) (A34)
W(z=1) @(z) = Dee(2) {A35)
Finally:
W(z71) @(z) W(z) = D(s) (A36)

These are the so-called index-changing rules.
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Ilustrative examples

For the sake of illustration two simple examples are given both con-
cerned with the completely-free configuration only.

Example 1. For the sake of simplicity let us consider a control system
without noise. Furthermore, let the autocorrelation function of the con-
tinuous signal be

@rr (T) = Gss (T) = B2e2¥i7

Then applying the two-sided Laplace or Fourier transform, the power-density
spectrum (or power-spectral density) of the continuous signal is

4y B2

49? — 2

D, (s) = st (s) =

Let us assume that the idealized or desired output signal is the integral function
of the input signal. Thus, employing the index-changing rule for continuous
signals

1 4y B2
D, =@, () B —
i (S) St (s) s SS (s) 8(4:1'2 . 32)

With due respect of the formula for obtaining the two-sided z transform
Eq. (A 16) or Eq. (A 15), the power spectrum of the input is:

q)rr(_z) - | -

or in another form

B2 (1 — e~#T)
(1 —2z1 e‘i"”T) (1 —=z e_z"T)

Q)rr (:) =

Following the same method, the cross-power spectrum of the input and the
idealized output is

P, () =

29 | 1 — 1 1 — z—1 2T 1 — z—1o2T

B2 2 1 1 ]

or after some algebraic manipulations

B (1-—e2T)(1 L)

2y (1 -1 —z1e?T)(1 —ze27)
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Performing the spectrum factorization

B(l — e~+T)i2

Pre) = 1 —ze 27T
and
@i (z) = B(1 —"f_4:7:)‘1!2
1 —z-le—2T
Therefore
D.(z) B (1—e 2Ty —
W - ; —a - e*i"T)1,"2 (1 — :—1) (1 R g-:rT)

Specially in this case

133

12

{@n‘(z)] _ 9, (z)
P (z) . Pr(3)

rr

"Thus, the physically realizable optimum pulse-transfer function is:

It is interesting to note that in the case of v — 0

o T 1-+371
}Ij(l)l I:rm (") - 7 1—:?

which is nothing else but the pulse-transfer function of the digital integrator
working after the trapezoidal rule.

Example 2. Now let us assume that the autocorrelation function of the
continuous useful signal component of the input is:

Pss ('L') = B2e™¥"

while the autocorrelation function of the corrumping white noise com-

ponent is

gunl) = N2 3(7)

Furthermore, it is assumed that the signal and noise component are uncor-
related, thus

Pns(T) = gsn(1) = 0

The desired idealized output is the same as the signal component of the input
but advanced by the time kT, where k is an integer number and T is the
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sampling period. Thus, the physically unrealizable idealized transfer func-
tion is
Y—i (S) — ekTS

Employing the Fourier transform the following power-density spectra are
ohtained

4v B2
D5 (s) = Y .
4% —s2
@,m(s) = N2
Dsa(s) =0

where s = jo.
On the other hand, the cross-power-density spectrum of the input and
idealized output can be given as

. 4y B2

®If (S) - @53 (S) Y i(s) = .__VB—elx‘Ts
432 — 2
Applying the bilateral = transformation

B2 (1 — 9—4"T)

@ss (z) — — (_,,,,T —
(1= s71e>T) (1 — ze72T)

@nn(f}) e :\2

Thus
B2 (1 — e‘“T) — A2 [l — (7! 2) e—T L e“""T]

(1 — st e“‘-""T) (1 — :e_’-’"T)

After introducing the following notations by

Pl

0] % [1/;\?2 T BT IN2ewT L (NT _ By e #T

+ N BT —3N2.T (N2 — B?) e—4rT]
(P >0

the power spectrum can be rewritten as:

o, (P OP =20

B (1 - 1 e--zx-T) (1 — = e—zvf)_
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Now, the spectrum factorization can easily be performed

Dy (z) = L,Q__

1 —ze 27

9, (5= 10

1 —zle7

Again applying the bilateral z transformation

B2(1 — ¢~ #T) ¥
O () = —— )
(1 —z7le ) (1 —ze 7.
Thus,
O,(x)  Br(l—e Ty
Or(z)  (1—ze ) (P—zQ)

First, let us examine the case when k = 0. Then, after determining the partial
fractions

R e B
D (2) B P—QeT |1 —z1le2T @ P

the following expression is obtained:

()] _ B(l—eT) 1
ld);,(z) L_ P—Qe=7

1 — z7 12T

Finally, according to Eq. (19) the physically realizable optimum pulse-transfer
function is

. B (1—eT) 1
Irm('): P——-Q?_T"T

P—z1Q

Now, let us consider the case when the integer number k > 0. Assuming
!z"l e 2T < ’5“11 <. 1 the following relations are valid

=k

__ .k < o1 =T
1 —z71le 2T - ?H € -

n=0

p— g‘,(’f—N)ewern — ;‘ s g2 T
==y h -
n=0

==k
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Therefore separating the terms belonging to positive-time function:

{ 2, (2) ] _ B - e *7) 2Tk ';Z_le—‘z:vTI —
Or(e) | P QT =
B2 (1 o e-.gvT) e——zVI‘k

P_QexT 1 _zle»T

Finally, according to Eq. (19) the physically realizable optimum pulse-transfer

function is

be

B2 (1 . e_AlvT) e—gvTA‘

P—-Qe?»T Poz1(

1T/nz (Z) -

Summary

In this paper it is demonstrated how the so-called simplified derivation technique can
extended and applied to strictly digital stationary ergodic stochastic processes. Using the

frequency domain technique, explicit solution formulae can be obtained in a relatively simple
way. The physically realizable optimum pulse-transfer functions are determined not only for
the completely-free configuration but also for the semi-free configuration and for the semi-free
configuration with constraints. Two simple examples are also given for the sake of illustration.
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