
SIMPLIFIED DERIVATION OF OPTIMUM TRANSFER 
FUNCTIONS FOR DIGITAL STOCHASTIC PROCESSES 

By 

Department of Automation, Poly technical University, Budapest 

(Received March 11, 1965) 

In some papers [1, 2, 3, 4, :5] a simplified derivation technique was 
presented for obtaining the optimum transfer functions in the WIENER

NEWTON sense for stationary ergodic stochastic continuous processes or signals. 
Here, the method is extended to strictly digital processes, that is, the input 
and output signals as well as the other signals are assumed to be in discrete 
form, or more precisely, we are dealing with sampled-data or pulsed-data 
signals (which may be treated as though they were number sequences) and 
only pulse-transfer functions are of interest. Hybrid systems are not considered 
here. In this paper only single variable cases are studied, multivariable sys
tems ""ill be investigated later. 

On the other hand, not only the completely-free configuration hut also 
the semi-free configuration and the semi-free configuration with constraints 
are considered. 

As usual, here also the signals are assumed to he stationary and the 
ergodic hypothesis is adopted. As a basis of optimization the least mean square 
value of the error is taken. 

As in the technical literature various definitions are given for the cor
relation functions of sampled-data signals [see e.g. 6, 7, 8, 9, 10] the defini
tions used here are summarized in an Appendix. 

1. Completely-free configuration 

The problem for the completely free configuration is demonstrated by 
Fig. 1. The reference signal r(t) assumed as being a stationary ergodic stochastic 
process, contains an useful signal component s(t) and a corrumping noise 
component n(t). The reference signal r(t) is sampled, thus the input signal 
is r*(t). The actual output signal c*(t) is also in sampled-data form, and is 
compared with the idealized or desired sampled-data output signal i*(t). 
Later this is obtained from the sampled-data signal component s*(t) through a 
discrete filter y(t) which must not be physically realizable. The sampled-data 
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error is 
e*(t) = i*(t) - c*(t) (La) 

or the corresponding number sequence is: 

e(nT) = i(nT) - c(nT) (lob) 

Fig. 1 

:\'ow the question arises, which is the weighting function wet) or the pulse
transfer function W'(z) minimizing the mean-square value of the numher 
sequence of the error 

1 N 
e2(nT)= lim --- :£ e2(nT) 

N~oo 2lV 1 rz=-N 
(2) 

This mean-square yalue can be expressed as 

(3) 

where Cfee(kT) is the autocorrelation sequence (see Appendix 2) of the number 
sequence e( n T): 

1 N 
(Pce(kT) = lim ~ e(nT) e(nT + kT) 

N~= 2N + 1 n=-S 
(4) 

·while (/jee(z) is the power spectrum (see Appendix 3): 

(5) 

and To is the unit circle in the z plane. Taking Eqs. (1) and (4) into consideration 
the autocorrelation sequence of the error can he expressed as follows: 

1 N 
Cfee (kT) = lim 2 [i(nT) c(nT)]. 

N~= 2N + 1 n=-N 

. (i(nT + kT) - c(nT + kT)] 
(6) 
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that is: 

(7) 

Similarly, the power spectrum is 

(8) 

which, with the aid of the well-known index changing rule (see Appendix 3), 
can also be expressed as 

Here W(z) is the z-transform of w(t) or, more precisely, of w*(t). Let us define 
the following auxiliary pulse-transfer function 

G(z) 
c{Jri (z) 

c{Jrr (z) 
(10) 

Later this can be considered as a kno'wn function, as the pO'wer densities 
arc our starting data. Taking G(z) into consideration, the power spectrum 
of the error c{Jee(z) can hc expressed as follows: 

(11) 

It must he emphasized that only the last term of Eq. (11) contains the mmI
mizing transfer function W(z). The mean-square value of the numher scquence 
of the error 'would be minimum, if and only if the last term was zero. 

In this case thc optimum pulse-transfer function must be 

or according to Eq. (10): 

c{Jri (z) 

c{Jrr(z) 

(12) 

(13) 

Unfortunately, Wo(z) is, in general, physically unrealizable. The physically 
realizable optimum pulse-transfer function can be obtained in the follo"\ving 

way. Rearranging Eq. (13) 

(14) 

Now, if Wo(z) is substituted by the physically realizable optimum pulse
transfer function W m(z) then instead of Eq. (14) the following relation 
becomes valid 
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<1\,(z) W m(Z) - cf>ri(Z) = F _ (Z) (15) 

where F _ (z) is some function not yet known and having no poles or zeros 

inside the unit circle of the z plane. Performing the spectrum factorization 

the power spectrum cf>rr(z) can be expressed as 

cf>rr(z) = cf>;;(z) cf>;:;'(z) (16) 

where the factor cf>;:;'(z) contains all the poles and zeros of cf>r,(z) lying inside 
the unit circle, while the factor cf>;;(z) contains all the poles and zeros of 

cf>rr(z) outside the unit circle. 
Thus, from Eq. (15) 

cf>;,. (z) Wm(z) = ~r~r:.C(·;» + F _. (17) 
<p _ cf>;,.(z) 

Separating each term into two components, the first having only poles inside 

the unit circle and thus belonging to positive-time functions, the second 
having only poles outside the unit circle and belonging to negative-time 

functions, the following two relations will be valid: 

(18) 

0= [cf>,,(Z) J 
cf>;;.(z) 

Finally, from the first relation of Eqs. (18), the physically realizable optimum 

pulse-transfer function is 

(19) 

Additionally it must be mentioned that the separating procedure may be 

performed by the following calculus: 

[ 
cf>ri (z) 1 
cf>;r (z) .,.. 

(20) 

that is, by inverse bilateral (two-sided) Z transform, taking for the integration 

path the unit circle, and thereafter by the ordinary unilateral (one-sided) 

Z transform, performing the summation only from n = 0 to = (and not from 

n = - = to 00). 
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It must be once more emphasized that the term, figuring on the right
hand side of Eq. (20) is an unilateral z-transform belonging to a certain 
positive-time function. This is the meaning of the symbolism [ ] +. Thus it is 
a false imagination to assume, for example, in case of simple poles that this 
symbolism means the sum of the ordinary partial fractions, hence 

where p7, denotes the simple poles inside the unit circle Tu of the z-plane. 
On the contrary, the term in question can be obtained as 

'" _--,-_z_ _ ~ __ --'-__ ._ . 
..-;;,. -..;;;;. 1 

,11 Z - p~ /1 P* _-1 
/l""' 

where 

Hence, in case of simple poles p7, 

~ z lim (z - pt) -"--"-
,It z - p~; z-_p!~ 'zefJ-;; (z) 

(20') 

This remark is made because sometimes on can see false formulae, for example, 
instead of the true expression (19) the worse one 

_I efJri(Z)] 
., zefJ;:;.(z) " 

efJ;:;. (z) 
(19'?) 

This mistake originates from the incorrect application of the sym

bolism [ ]+. 

2. Semi-free configuration 

Let us study the problem of the semi-free configuration but again for 
strictly digital processes only. This case is illustrated in Fig. 2. Everything 
is the same as in Fig. 1, the sole difference being that the link between the 
input and output now contains the cascade connection of the fixed elements 
with weighting function wf(t) and the compensating elements ,vith weighting 
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function u·c(t). It is worthwhile to mention that between the two parts a 
sampler is figuring, thus, the corresponding weighting functions can be replaced 
by the pulse-transfer functions Wj(z) and W-c(z) , respectively. 

Fig. 2 

Taking the index-changing rule into consideration, the power spectra 
can evidentlv he now expressed as follows: 

Wj (z-l) Wc (z--l) <Prr (z) Wc (z) Wj (z) = <Pee (z) 

Wj(Z'-l) Wc (Z--l) <Pri (z) <Pci(z) (21) 

<Pir (z) Wc (z) Wj (z) = <P ic (z) 

Introducing tllt' auxiliary power spectra <Pjj(z), <Pij(z), <Pji(Z) hy the fol
lowing relatioI15 

Wj (z-l) <Prr (z) Wj (z) <PJ! (z) 

Wj(Z-l) <Pri (z) = <Pji(z) 

<Pir (z) Wj (z) = <Pif(z) 

the power spectrum of the error can he expressed as 

<p.:._ (z) <Pii (z) - Wc (Z-l) <PJi (z) - <Pi! (z) Wc (z) ..:.. 

+ Wc (Z-l) <Pj] (z) Wc (z) 

(22) 

(23) 

Formally, this is the same expression as Eq. (9) hut some other functions 
figure here. By the proper choice of an auxiliary pulse-transfer function 

(24) 

the power spectrum of the error can he written as 

<Pee (z) = <Pii (z) -Gc (Cl) <PJf(Z) Gc (Z) + 
..:.. [Gc (z-l) - Wc (z-l)] <Pjf (z) [Gc (z) Wc (z)] 

(25) 

According to the same line of reasoning as in the previous case of com
pletely-free configuration, the physically unrealizable optimum pulse-transfer 
function of the cascade controller is: 
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or taking into consideration Eqs. (22): 

<l>fi(Z) 

<l>fj (Z) 

243 

(26) 

(27) 

Similarly, the physically realizable optimum pulse-transfer function of the 

cascade controller is 

or substituting Eqs. (22) 

r Wj(Z-l) <l>ri(z) ] 
I [WAZ-l) Wf(z)]- <I>;,(z) -i

[Wf(Z-l) Wf(z)]+ <I>;7i.(z) 

(28) 

(29) 

If the pulse-transfer function of the fixed elements Wj(z) has no zeros 
and poles outside the unit circle, then 

[Wj(Z-l) Wf(z)] - = Wj(Z-l) 

[Wj(z-l) Wf(z)] + = Wf(z) 

(30) 

and the physically realizable optimum pulse-transfer function of the cascade 

controller can he more simply expressed 

[ 
c[:Jri (z) ] 
c[:J;'(z) -'-

Wj(z) <I>;7i.(z) 
(31) 

or taking expression (19) also into consideration 

(32 ) 

3. Semi-free configuration 1\'ith constraints 

If some signals are limited, as they are in practically all control systems, 
then constraints arise in the optimization procedure. For the sake of sim
plicity, only one constraint is assumed, but it is not difficult to generalize 
tIlls case for many constraints. The problem can be depicted by Fig. 3. Here 
the actuating signal m*(t) is indirectly constrained through a general weighting 
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function Wk(t). If, for example, Wk(t) = o(t) then a direct constraint is prescribed 
on m*(t), on the other hand, if Wk(t) = wf(t) then the output c*(t) is directly 
constrained. Generally, let us assume the constraint as being expressed in the 
following form: 

sit) 

sW r~>--.:...i'.;.;.(t.:...) _______ --, 

+, e'lt) 

T~c.ft)-~ 
........ _....d'~~ 

mfl) T~f) lit) T 1"(tJ 
~:--

Fig. 3 

(33) 

This condition is called the unequality of constraint. The problem of the semi
free configuration with constraint can be solved by the Lagrangean conditional 
extremum technique. The function to be minimized no'w is 

X*2 (t, ;.) = e*2 (t) + J,l*2 (t) (34.a) 

or In another form 

x2 (nT,i.) = e2 (nT) + J,12 (nT) (34 .. b) 

This can be expressed through the first term of a proper correlation sequence 
or through the power spectra as follows: 

x2 (nT, ;.) = If:.:,. (OT, ;.) = __ 1_ ~ <Pxx (z, ;.) Z-l dz 
... 27rj 'f .. 

T, 
(35) 

The first power spectrum <Pee(z) figuring here is again given by Eq. (23) while 
the second can be expressed as follows: 

(36) 

Let us now define the following auxiliary power spectrum 

(37) 
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and the following auxiliary pulse-transfer function: 

(38) 

hoth being also functions of the undetermined parameter } .. Then the power 
spectrum C/\x(z, }.) can be expressed in the form: 

(f>xx(Z, n = (f>ee(z) + }.(f>IJ(z) = 

= (f>ii(Z) - Ga(Z-l) (f>",,(z, i.) Ga(z) + 
+ [Ga(Z-l) - WAZ-l)] (f>aa(z, }.) [Ga(z) 

(39) 

Following the same line of reasoning as previously, the physically unrealizable 
optimum pulse:-transfer function now is 

(40) 

or in an expanded form: 

(41) 

Again employ-ing the spectrum factorization procedure, the physically realiz
able optimum pulse-transfer function of the cascade controller is 

or in an expanded form: 

TVc", (z, i.) = l 
Wj(Z-l) {f>ri (z) I 

[Wj(Z-l) Wj(z) + i. Wdz-1 ) Wdz)]-{f>~(z) + 

[WJ (Z-l) WJ (z) + i. W,.{z-l) W k (z)] + {f>j;. (z) 

(42) 

(43) 

In case of the semi-free configuration with constraint the undetermined 
Lagrangean multiplier J. does figure in the expression of the physically realiz
able optimum pulse-transfer function. For obtaining the final form, the para
meter }. must be eliminated with the aid of the unequality of constraint: 
Eq. (33). First in the expression of (f>1l(z) i.e. in Eq. (36) the pulse-transfer 
function Wc(z) is replaced by the physically realizable optimum pulse-transfer 
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function Wcm(z, },) and the mean-square value F(nT) of the sampled-data 
output signal l*(t) of the constraint is determined by the residue theorem. 
then the multiplier }. can be so adjusted that the equation of constraint 
Eq. (33) should be fulfilled. Substituting this value of ;. into Eq. (43) we han 
the desired physically realizable optimum pulse-transfer function for the ca~e 
of the semi-free configuration with constraint. 

It is worthwhile to mention the following special cases: If Wk(z) = 0 
then Eq. (43) is reduced to Eq. (29). Further, if Wk(z) = 0 and Wf(z) = 1 
then Eq. (43) or Eq. (29) is reduced to Eq. (19). Thus, the semi-free con
figuration with constraint is the more general case. 

~ c'W ;-0"" 0---_ 
: c{t) 

Fig. 4" 

~ c'ltJ ,..----<1" 0---- ... 
I 
I dtJ 

Fig. 4b 

4. A complementary remark 

Finally, if W·cm(z) is known, then the optimum transfer function Gcm(z) 
of the cascade controller in the closed loop (Fig. 4a) can he determined on 
the basis of 

( 44) 

as 
W 

Gem (z) = l-Wcm(z) WJ(z) 
(4,5 ) 

On the other hand, the optimum transfer function Hcm(z) of the feed-back 
controller in the closed loop (Fig. 4b) can be determined on the basis of 

(46) 

as 
1 1 

(47) 
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Appendix 

1. The bilateral (two-sided) z transform 

First of all it is necessary to introduce the two-sided (bilateral) :: trans
form. Let it be a sampled-data function f*(t) which is, in generaL not zero 
for both positive and negative time: 

f*(t) = ~ f(nT) b(t - nT) 
11=-= 

(AI) 
-1 

2,' f(nT) b(t - nT) nT) 
!1--,,--= 

Thus, f*(t) may he decomposed into two components: 

f*(t) f~(t) f-~(t) (A2) 

where f-(t) == 0 if 0 and f+(t) _ 0 if t ,/ O. Taking the:: transforms: 

1 

F(z) ....... f(nT) ::-11 = ~ f- (nT) z-11 ~ j~ (nT) z-11 (A3) 
ll-= -00 n= - ~<:: 11=0 

Thus, F(z) can be written as 

(AA) 

This is an expression for the two-sided z transform. Iff_(t) 0 and F_(::) == 0 
then the well-known unilateral z transform is obtained. 

If the bilateral z transform is needed in a closed form, then first of 

all f*(t) must he expressed according to Eq. (AI) in the following form: 

where 

and 

f*(t) = f(t) i*(t) f(t) i:(t) f(t) i~ (t) =--= f~(t) 

i* (t) 

i'~_ (t) 

-1 

-y b(t ...... nT) 
fl== 

y b(t - nT) 
~o 

f~'(t) (A.5) 

(A6) 

(A';") 

Employing the complex convolution theorem for the two-sidpd Laplacp 
transform the following discrete Laplace transform is first obtained: 
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F! (5) = ,y[f! (tH ,r[j+ (t) i! (t)] = 

where 

c+j~ 
1 . 

-2' J F+(p)I't(s-p)dp= 
n] . 

c-j~ 

c+j= 
I' = = --. j F + (p) ::E e-(s-p)Tn dp 

2n] • 11=0 
c-j= 

c+j= 

-~ f F+(p) 1 dp 
2n] 1 - e-(s-p)T 

c-J= 

(A8) 

(A9) 

is the ordinary Laplace transform of the continuous positive-time func
tion f+ (t). 

The choice of the value c must be performed in such a way that on the 
Re p = c axis the unequality 

(A 10) 

must be fulfilled and there F + (p) must be regular. Let us assume that the 
poles of F + (p) lie on the left-hand of the imaginary axis at some distance 
becausef+(t) is a positive-time function 'which decays (Fig, A I). 

On the one hand, c must be so chosen that the integration path be to 
the right of the regularity limit of F + (p) and, on the other hand, to the left 
of the poles of I:(8 - p). If Re 8 = 0 as in the case of 8 = jw, then c < o. 

Similarly 

F* (5) =.y [J~ (t)] = ,y[f _ (t) i~ (t)] 

c'- j= 

1 f' -. F_(p)E(8-p)dp 
2n] • 

c'- j= 

c'~-j= 

1 , -l 

2nj 1 
F - (p) 2' e-(s-p)Tn dp 

.. l1=- = 
c'- j= 

c'+j= 

2~j r F - (p) ~l e(S- p)TI1' dp 

c'- j= 
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imp 0).,7 

Poles of 

~ Im p axis 

Poles oi 
I;(s-p) 

",/when 
Re s= 0 

f".(S-p) Poles of 
when "', [JpJ 
Re 5=0 ~ <' 

--------1.-+--~~ ~~ .~I!!£'" 
i" < D1/ 

-',.p 
'" -.S' _ .;;, 

0<: r' , 

Fig. AI 

c'-'.. j= 
l ' e(s-p)T - - J F - (p) dp = - 2:7 j 1 - e(s-p)T 

C'-j= 

2~j J 
1 

F_ (p)-----dp 
, 1 e-(s-p)T 

C'- j= 

249 

(All) 

(A 12) 

The value c' must be chosen in such a manner that on the Re p = c' 

axis the unequality 
e(s-p)T. < 1 (Al3) 

be fulfilled and there F -(p) must be regular. The poles of F -(p) lie to the 
right of the imaginary axis at some distance (Fig. A I). Thus, c' must be 
so chosen that the integration path be to the left of the regularity limit of 
F -(p), and at the same time, to the right of the poles of 1':(5 p). If Re s = 0 
because of s = j(J), then 0 < c'. 

In the first case a closed integration path is made to the left with the 
aid of a semi-circle 'whose radius tends to infinity. In the second case the 
semi-circle of infinite radius is chosen in the right-half plane. Thus, in both 

3 Periodica Polytechnica El. IXj3. 
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cases the residue theorem can be applied (in the first case ,vith a positive 
sign, in the second case, on the contrary, with a negative sign) giving: 

F* (s) = F't (s) F": (s) = 

= :y Res -----'-=-"--_ + :y Res __ F ___ (,-,-p-"-)_ 
-; P=P". 1 - e-(s-p)T --:- P=Pv 1 e-(s-p)T 

(AI4) 

where P.ll denotes the left-half-plane poles of F + (p) while P" denotes the right
half-plane poles of F _(p). Finally, substituting /T = z, the two-sided z trans
form is obtained: 

(AI5) 

If there are no many-fold poles, then the following formula is valid 

F(z) = :y lim (p - Pi) __ F--,--=(p,-,-)_ 
i P-Pi 1 - Z-l epT 

(A16) 

where the summation must be extended both on the right-half-plane poles 

as well as on the left-half-plane poles of F(p). 

2. Correlation sequence and pulse-spectral density 

The correlation sequences may he defined in a similar manner to the 
definition of the well-known correlation functions. The autocorrelation sequence 
of a sampled-data signal u*(t) or a sequence u(n T) is defined as 

1 l'IJ 
(FUll (kT) = lim , >' u(nT) u(nT 

N--= 2N + I n~N 
kT) (All) 

The cross-correlation sequence between pulsed-data signals u*(t) and r*(t) 
or the corresponding sequences u(nT) and venT) is defined as 

kT) (AIS) 

The power-density spectrum or the power-spectral density is defined as the 
Fourier transform of the autocorrelation function of a continuous-data signal 
and the cross-power-density spectrum or the cross-power-spectral density is 
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defined as the Fourier transform of the cross-correlation function between 
two continuous-data signals. Similarly, the two-sided z transform of the 
autocorrelation sequence of a pulsed-data signal is defined as the pulse-po'wer
spectral density or briefly as the power spectrum. In a similar fashion the 
bilateral z transform of the cross-correlation sequence between two sampled
data signals is defined as the pulse-cross-power-spectral density or briefly as 

the cross-power spectrum. Thus, the power spectrum and the autocorrelation 
sequence are related by 

<PUU (z) = 2 gllU (kT) :;-k (A19) 
k=-= 

(A20) 

while the cross-power spectrum and the cross-correlation sequence are related 

by 

<PUt (z) = ~ CPuv (kT) :;-1-: (A21) 
k=-= 

(A22) 

where z = ejwT and the contour of integration ro is the unit circle in the 

:; plane. 
It must be mentioned that the two-sided z transform is used in defining 

pulse-power-spectral densities, because the correlation sequences exist over 
all values of k from - 00 to O2. 

Further, it is to be seen that when k = 0, thc value of the autocorrela
tion sequence is equal to the mean-square value of the sampled-data signal 

u*(t) or the sequence u(nT): 

Cfuu (OT) 
1 .'I 

lim ---- X' 
.'1-= 2N + 1 n~N 

(A23) 

Furthermore, letting k = 0 in Eq. (A20) relating the autocorrelation sequence 
and the power spectrum: 

1 . 
Cfuu (OT) = -.-. rK <Puu (z) Z-l clz 

2nJ 'Y 
ro 

or taking into consideration Eq. (A23): 

3* 

-- 1 . 
u2 (nT) = -. rh. <PUll (z) :;-1 clz 

2nJ 'Y 
r, 

(A24) 

(A25) 
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3. Properties of correlation sequence and pulse-power-spectral density 

Here some properties are summarized but without proof. 
l' The autocorrelation sequence is an even function, thus 

rpuu(kT) = f(uu( - kT) (A26) 

~) The cross-correlation sequences are not even functions but the following 
relation is valid 

rpuv(kT) = rpvu( - kT) (A27) 

30 The pulse-power-spectral density (or power spectrum) has the following 
property: 

(A28) 

-!] The cross-power spectra are characterized by 

(A29) 

5° If the response of the sampled-data control system with weighting func
tion wet) and pulse transfer function W(z) to an input r*(t) is c*(t), then the 

response of this system to an input rprr(kT) is rprc(kT) and the response of this 
3ystem to an input fPcr(kT) is rpcc(kT). Thus 

.,2' wenT) rprr (kT nT) = q'rc (kT) 
11=-= 

= 

:>' w(nT)rpcr(kT - nT) rpcc(kT) ..... 
n=-= 

and so on. 
6" The corresponding relations for the power spectra are 

In a similar manner 

Finally: 

cfJrr(Z) W(z) = cfJrc(z) 

cfJcr(z) W(z) = cfJcc(z) 

W(Z-l) cfJrr(z) = cfJcr(z) 

W(Z-l) cfJrc(z) = cfJcc(z) 

W(Z-l) cfJrr(z) W(z) = cfJcc(z) 

These are the so-called index-changing rules. 

(A30) 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 

(A36) 
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Illustrative examples 

For the sake of illustration two simple examples are given both con
cerned with the completely-free configuration only. 

Example 1. For the sake of simplicity let us consider a control system 
,vithout noise. Furthermore, let the autocorrelation function of the con
tinuous signal be 

Then applying the two-sided Laplace or Fourier transform, the power-density 
spectrum (or power-spectral density) of the continuous signal is 

Let us assume that the idealized or desired output signal is the integral function 
of the input signal. Thus, employing the index-changing rule for continuous 
signals 

With due respect of the formula for obtaining the two-sided z transform 
Eq. (A 16) or Eq. (A 15), the power spectrum of the input is: 

or In another form 

Following the same method, the cross-power spectrum of the input and the 
idealized output is 

B2( 2 Wri (z) = - ---
2" 1 - ~-l 

1 1 

or after some algebraic manipulations 
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Performing the spectrum factorization 

and 

Therefore 

cJjri(Z) 

cJj;:r (Z) 

Specially in this ease 

B 1 + z-l 

2v (1 

Thus, tlw physically realizable optimum pulse-transfer function IS: 

Wm (z) 

It is intercsting to note 

lim 
V-!oO 

1 1 -+- z-l 

2v 1 -+- e-~"T 1 - Z-l 

that in the case of JI-+O 

U7m (z) 
T 1 -+- z-l 

2 1 _. Z-l 

which is nothing else but the pulse-transfer function of the digital integrator 
working after the trapezoidal rule. 

Example 2. No'\\' let us assume that the autocorrelation function of the 
continuous useful signal component of the input is: 

while the autocorrelation function of the corrumping white noise com
ponent is 

Furthermore, it IS assumed that the signal and noise component arc nncor
related, thus 

rpns( r) = rpsrz( r) = 0 

The desired idealized output is the same as the signal component of the input 
hut adyanced by the time kT, where k i5 an integer number and T i5 the 
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sampling period. Thus, the physically unrealizable idealized transfer func
tion is 

Employing the Fourier transform the follo'wing power-density spectra are 
obtained 

'where s = jw. 

4vB2 
cI>ss(s) = ----

4v2 -s 2 

<PS'1(s) = 0 

On the other hand, the cross-power-density spectrum of the input and 
idealized output can he given as 

Applying the hilateral ::; transformation 

B2 (1 e-4,'T ) 

cI>ss (z) = -(-1-----::;---1 e---2-"T-)-(I-.-::;-. e---Z-VT-) 

Thus 

After introducing the following notations hy 

== VN2 -"--132 2S2e zq -"- (l"Y2 

(P > Q) 

the power spectrum can he rewritten as: 

(P ::;-1 Q) (P _ ::;Q) 
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Now, the spectrum factorization can easily be performed 

W;:;. (Z) 

P Z-1 Q 
1 - z-1 e-2"T 

Again applying the bilateral z transformation 

Thus, 

Wri(z) 

Wr-;. (z) 

First, let us examine the case when k = O. Then, after determining the partial 
fractions 

Wri (z) 

W;:; (z) 

B2 (1 - e-1,'T) 

P Q e-21'T 

_1_--=- ~_ _ z Q 1 
1 Z-1 e-2vT P - z Q , 

the following expression is obtained: 

B2 (1 _ e-,lVT) 1 

P - Q e-2"T 1 

Finally, according to Eq. (19) the physically realizable optimum pulse-transfer 
function is 

B2 
W'", (z) = ------:c-

P 

1 

Now, let us consider the case when the integer number k > O. Assuming 

1",-1 e-2vTI < I"'· -11 1 the f 11' I' I'd _ _ 0 o,nng re atlOns are va 1 

~ z(k-n) e-'!.I'Tn 

l1=O 
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Therefore separating the terms belonging to positive-time function: 

B2 (1 _ e-4vT ) 

P _ Q e-2vT 
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Finally, according to Eq. (19) the physically realizable optimum pulse-transfer 
function is 

B2 
Wm (z) = _-.C.-___ -'-

P _ Qe-2vT P-Z-lQ 

Summary 

In this paper it is demonstrated how the so-called simplified derivation technique can 
be extended and applied to strictly digital stationary ergodic stochastic processes. Using the 
frequency domain technique, explicit solution formulae can be obtained in a relatively simple 
way. The physically realizable optimum pulse-transfer functions are determined not only for 
the completely-free configuration but also for the semi-free configuration and for the semi-free 
configuration with constraints. Two simple examples are also given for the sake of illustration. 
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