
OPTIMUM PULSE-TRANSFER FUNCTIONS FOR 
MULTIV ARIABLE DIGITAL STOCHASTIC PROCESSES 

By 

F. CSAKI 

Department of ~\utolllation. Poly technical Lniver5ity. Budapest 

(Received July 1L 1965.) 

In a preyious paper [1] the so called simplified deriyation techniqu(, 
[2.3] was extended for strictly digital processes in case of single "ariable sys
tems. Now, multh'ariable pulsed-data control systems will be treated. Thi~ 

paper is the generalization of some studies [4, 5, 6] which deal with multi
"ariable continuous-data control systems. As usual, the inputs, outputs and 
manipulated "ariables are assumed to be stationary stochastic processes and 
the ergodic hypothesis is also adopted. As optimization criterion the least 
mean-square-sum of the ('Tror components is taken. Th(' definitions andnotioni' 
used here are the direct generalizations of that of the mentioned paper [1]. 

1. Optimum pulse-transfer-function matrix for the completely-free 
configuration 

The notations in this paper will be the following: If both indices are 
"ariable this will mean a matrix. if one index is fixed or is missing and only 
the other index is "ariable we ha"e a "ector. finally, if both indices are fixed 
th('n a scalar quantity is represented. As C011C("1'115 the Yectors a ya1'iable first 
index will signify a column "ector while a "ariable se('ond ind('x signifi('s a 

row "ector (the other indices being fixed or missing). 
A simple block-diagram representation of a multi"ariable pulsed-data 

"ystem is depicted in Fig. 1. The pulsed-data inputs are represented by a row 
"ector rj, (t), where k 1. ... K. The pulsed-data outputs are represented 
by a ro'w "ector C'l; (t). where I L ... L. The weighting-function matrix 

of the multi"ariable system is Irkl (t) (k = L ... K: 1= 1, ... L). 
The number sequence of the pulsed-data output can be expre~~ed })\' 

the follo·wing eon"oln tion sum: 

c.JnT) (1) 
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where n, v, .,u., are integers and the summation is performed on row vectors 
originating from the matrix multiplication of a 1 X K row matrix and a 
K X L matrix. 

Taking once more Fig. 1 into consideration the problem of optimum 
syntesis of the pulsed-data system can be stated as follows. The input row 
vector r:Z (t) has two components: the row vector of the useful signal com
ponents s;' (t) and the ro"w vector of noise components n1 (t), (k = 1, ... K). 

i,lt} i.7ft) 
T 

S·lr{/j + e.71t! 

Fig. 

The ideal or desired outputs are represented by i*z (t) (I = L ... L). 
In the way this row vectors or the number sequence i.1 (n T) can be deter
mined from the signal-component vector s*ic (t), or more correctly, from 
the number :3equence S.k (nT) by matrix multiplication with weighting
function matrix YkZ (11 T) and through one of the following convolution :3um,.: 

,uT) . (:2) 
,I{=-= 

It is to be emphasized that the weighting-function matrix Y~l (t), together 
with its elements, is generally not physically realizahle the formcr heing a 
fictitious one and merely sening for the origination of tht' idealized outputs. 

The row vector of the pulsed-data error is nothing else but tht' differ
ence of the ro·w vectors of the ideal and real pulsed-data outputs: 

(3) 

Taking the sum of the least-mean-square errors as a basis of optimiza
tion, the functional to be minimized can bc expressed by the trace of a matrix 
or in other words hy the sum of principal diagonal elements of a matrix, thl' 
latter heing composed of the matrix multiplication of the column matrix 
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el', (nT) and the row matrix e.l (nT), and by an averaging process: 

1 N 
tr [el'.(nT)e'l(nT)] = lim _ ",,-' tr [er.(nT) e·l(nT)] 

N-,=2N+l n ::-::" N (4) 

= tr [ rpei,el OT)] = 

where el'. (nT) e.l (nT) is an L X L matrix, while 

Cf'el,elkT) el,.(nT)e.z(nT + kT) = 

1 N (5) 
= lim --, -- Y el,.(nT) e.!(nT + kT) 

N~·= 2 IV + 1 n::"::N 

is the L X L auto correlation-sequence matrix of the errors. The power-spec
trum matrix of the errors can be obtained from the correlation-sequence 
matrix by z transformation: 

Ijjel,e,(z) = 1 [rpCi,er(kT)] = 2,' rpei,elkT)z-k (6) 
k=-<x; 

,I'hile the inverse relation is 

(7) 

Here and also in the foHo'wing treatise z = esT = e
jwT and r 0 is the unit 

circle of the z plane. Sincc evidently 

therefore, the autoeorrelation-sequenee matrix of the errors can he expressed 
as: 

(9) 

and consequently the po\\'er-spectruDl matrix of tht' error can he set up ill 
t he following form: 

(10) 

Our task is to illllllmlze the trace of the power-spectrum matrix Ijjer,er (z), 
as according to Eq. (4), this latter gives the sum of the mean-square errors 
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through a contour integration around the unit circle. If the power-spectrum 

matrix Wcl,el (z) itself can be minimized then eyidently the sum of the mean
square errors is also minimized at the same time. Thus, the yalue of the in
tegral in Eq. (4) becomes minimum if, and only if. the integrand is the least 
possible. As the index changing rule is also valid for pulsed-data systems [1] 
this can be generalized for multiyariahle systems, too. Thus, the power-spec

trum nlatrix can he expressed as 

We"e,(z) = <J>h,h(z) - Wh,r;/z) Wu(z) -- Wl'dZ- 1
) CP'k4z) -

Wl'k,(z-l) CPrk,rk(Z)W"I(Z) 

(k, k' = L '" K; l, [t 1, ... L) 

(11 ) 

'where We"c, (z), 1>i"i, (z) are L )( L matrices, 1>1"rl (:;) is an L )( K matrix, 
Wrl,i, (z) is a K X L matrix and 1>r!.,rk (z) is a K y K matrix. Wk / (z) is a 
K X L matrix and W'Z'I" (z-l) is the adjoint, that is, the transposed complex 
conjugate matrix of the former (e- jwT = e-sT = z-l). 

Naturally, the pulsed-clata-transfer-function matrix W/iZ (z) is nothing 
but the z transform of the 'weighting-function matrix IV,,! (t) (or more precisely 

of lrtz (t) ) . 
No'\\", let us introduce a K )< L auxiliary pulse-transfer-function matrix 

GkZ (z) and its adjoint L X K matrix G/,!;, (::;-1) hy the fonowing relatiom 

CPr",r;/z) G,,/ (z) = W'k4z) 

Gl' d :;-1) CPrl,r,,( z) CPI"r;)Z). 
(12) 

The auxiliary matrix Ghl (z) is. in general, physically unrealizable. As 

1> rl"I (z) and ([J rI:' I, (z) can be considered as giyen matrices Gid (z) and 
GUe (:;-1) are also giYen through Eq. (12). With the aid of the auxiliary matri

ces the power-spectrum matrix of errors take" the following form 

CPe,.c,(:':) = ([Ji,.i,(Z) - Gn ,(Z-l) cpr;,.rl(z) TV;;/(z) -

Jf~,,,,(z-l) CPrl,rk(z) Gu(z) -

-'- ~'d :;-1) <J>r",rl(z) W;;/( z) 

or after some algebraic manipulations: 

We"e,(Z) = Wi"i,(Z) G1'k,(:;-1) CPrk"k(Z) GI,,(z) --'-

-'- [G!'Ic,(z-l) - W;,dZ-1)] CPr;Jk(Z)[Gk/z) ~;!(z)]. 

(13 ) 

(14) 

It can he easily ohseryed that the pulse-transfer-functioll matrix W"Jz) and 
it;;: adjoint matrix W'1'Ic(z-1) are only contained in the last term of Eq. (14). 
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The power-spectrum matrix <PC[ Cl (Z) is the least one, if the last term IH'
comes a zero matrix. This is arriyed at if, and only if, 

ur 
o (15) 

where W-Z l (z) is the optimum pulse-transf('r-funetion matrix aiHl Tf/l~",(z-l) 

I;: its adjoint. 
With clue respect to Eq. (15), Eqs. (12) grn: 

(!Jrur;(z) WI~l:;) _. <Pr;i;(Z) 0 
(16) 

Thus, 
(17 ) 

unfortunately, the optimum-pulse-transfer-functiol1 matrix is generally phy;:
ically unrealizable, and th('refore does not supply the :"olution of the opti
mization problem. 

Let us separate the physically ullrealizable trani'fer-function matrix 
in to t-wo parts: 

( 18) 

whcrc W~;; (z) is thc physically-realizable-componcnt matl'ix 'with poles lying 

inside the unit circle of the z plane. TV;;1 (z) is the remainder of the matrix. 
The latter is physically unrealizable, because thc corrcsponding weighting
function matrix H';; I (t) is a n('gatiy('-tim(' function, 'which bccomes identically 
a zcro matrix for the p05itiYe time. The poles of W-':l (z) arc lying outside the 
unit cirde. 

\\'ith due respect tu the Tl'striction of the physical realizahility of the 
pulse-tnmsfcr-fullctioll matrix W ic1 (::;), instead of the first relation of Eq. 

(16) at must the following Hjuutioll j" yulid: 

<Pr,ri( z) WT]( z) ( 19) 

'where F'd (z) is a still unknown matrix containig no poles inside the unit 
circle of the z plane. Eyidcntly 

( 20) 

It must be emphasized that after substituting the physically realizable 
matrix component in Eq. (14) the last term does not become a zero matrix, 
but 'with respect to the physical realizability, together with the power-spectrum 

matrix <PC1,Cl (z), the last term heCOllleS a IllinimllIll . 

.3 Pcriodica Polytechnica EL IX,'·~. 
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As is well known the continuous-data power-density-spectrum lnatrice;;, 
which are assumed to he real paraconjugate herm.:itian, can he factorized 
[8, 9]. This theorem may he generalized also for pulsed-data power-spectrum 

rnatrices. If Wr;"rk(z) = <t>rkr.v (Z-l) , then 

(21) 

where, OIl the 0111' hand, the second 11latrix factor and its iIlYCrSe matrix 

contain elements "which hayc poles only inside the unit circl(', 'while, on tIll' 

other hand, the s('coIld matrix factor together 'with it:o: invers(' matrix: 

have only elements with poles outside tht; unit circle. By the way, the ad
joint of the second matrix factor is just the same as the first matrix factor, 
and the adjoint of the first matrix factor is equal to the st'cond matrix factor. 
This featurc is also yalid for the inn'rse matrices. 

Taking Eq. (21) into consideration, w(' have from Eq. (19): 

( 22) 

or in an other form: 

Let us now decompose the matrices on hoth sidt's of Eq. (23) into phys
ically realizable and unrealizahle matrix components, belonging to positiyt'
timt' and ncgatiYf'-timf' matrices, respectin·ly: 

(:2 -I ) 

(:25 ) 

'wht're the lower index + (jJlus) denotes a matrix component with physically 
realizable elements, which haye only poles inside the unit eircle, while tht, 
subscript - (m.:inus) denotes a matrix component with physically uurealizablt' 
elements having only poles outside the unit circlc. The decomposition shown in 
Eqs. (24), (25) is eyidcntly yalid, bccause the seeond term on the right-hand 
~ide of Eq. (23) haye poles only outside the unit circle and thus it can not 
supply any physically realizable matrix component. On the contrary, the term 
on the left-hand side of Eq. (23) han poles only inside the unit circle, and ~o it 

comistl' exclusiyely of a physicaUy realizable matrix component. 
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From Eq. (24) the physically realizable optimum pulse-transfer-function 
matrix is obtained as a final solution of the problem concPTning thc completf'ly
frt,f' configuration: 

(26 ) 

After substituting the optimum transfer-function matrix into Eq. 
(11), and thereafter the so obtained minimum po'wer-spectrum matrix into 
Efl' (4), as a rf'sult, the least SUln of the mean-square errors can he computf'd. 

2. Optimum pulse-transfer-function matrix for the semi-free configuration 

The completely-free configuration seems to he a rather special case. The 

semi-free configuration is much nearer to rcality. This prohlem is depicted in 
Fig. 2. The pulsed-data system now consists of t'wo parts. The fixed part, for 

cxample, the plant is represented hy weighting-function matrix "}I (t) (j = 
1, ... J; 1 = 1, ... L), while thc Illultipole cascade controller is represented hy 
weighting-function matrix W~j (t) (k L ... K; j 1, ... J). 

These two matrices must be physically realizahle in all cases. Our task 
now is to find the optimum pulsed-data cascade controller when the plant is a 
priori given. Between the two parts of the system the pulsed-data manipula

t('(l variahles are aeting which are represented by a 1'0'" vector m~ (t) (j = 1. 
... J). The other parts of the system. demonstrated in Fig. 2, are just the saml' 
as in Fig. 1. EYerywhere synehronuous samplers art' assumed. 

S'kfl) ~ i.{It} ./ i.7111 
--::"-"~I--':""';'-~T""''':'''-' 

+ e~(t) 

Fig, :! 

Taking the generalization of the index ehanging rule [1] into consider
ation and ohserving that the input first penetrates the controller and there

after the plant, the power-speetrum matrix in Eq. (10) can no"\\' he expressed 

as: 
r[JC1'C{(Z) = r[Jil il z) - r[Ji{,r«Z) WUz) W}i(Z) -

Wfl'/(Z-l) Wj-dz- 1 ) r[J,ic' i/Z ) (27) 
TI;;"f, (_-1) TFC (_-1) rr-. (~) TI;7C (_) TI7i (~) vv 1 j' ~ H' jll,'''''; 'l-'rk,r;:.-" fY kj,"" H" j[.""" 

(k,k' L ... K: j.j' 1, ... J; I, l' L ... L) 
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where WZj (z) and TV]l (z) are the pulse-transfer-function ma trices of the COll

troller and the plant, respcctiyely, obtaincd from the corresponding weight
ing-function matrices performing z transformations. 

Similarly to Eqs. (12) let us introduce another auxiliary K )< J matrix 
GL (z) and its adjoint matrix G}'le (Z-l) with the following relatioll5: 

Wr", n/z) GZj(z) WJ,(Z) = W'!c'i;(Z) 

Wf,;,( z-l) G'j. dZ-1) Wr;,. r,{z) = Wi/"k(Z). 
(28) 

Since the powcr-spectrum matrices and thc transfcr-function matri'\: 
of the plant can be considcrcd as given, thc auxiliary matriccs arc also kno,HI. 

On the hasis of Eqs. (28) the power-spectrum matrix of the errors in 

Eq. (27) can also be written as 

Wc,.clz) = Wir i/(Z) ~- Wh'(Z-l) Gl,;, (z-:) rfJrk',(z) G?:/z) W]z(z)-;-

-'- [Wh,(z-l) Gh(Z-l) Wl'j'(c1) Wj·dz-1)] X (29) 

IT/C (_) IT7i (_)] 
;y kj ~ n j! ~ . 

The transfer-function matrix of the controller Tf-~j (z) and its adjoint matrix 
Wj.I(' (z-l) are containt'd in the last term only. The sum of the mcan-square 

crrors 'will he minimum if the last term hecomcs a zcro matrix. From this 
sufficicnt and necessary condition and from Eq. (28) the physically unrealiz
ahle optimum pulsed-data transfer-function matrix of the controller can he 
ohtained: 

(30) 

Sincc here the inversion of the plant matrix does figure, it is necessary to hayp 
J L. Naturally the physically unrealizable transfer-function matrix is 

not acceptable. If, instead of W-/~j (z) the physieally realizable optimum puIsf'
transfer-function matrix TV/~T (z) is employed, then instead of 

(31) 

the following relation will be valid: 

(32 ) 

where F~i' j' (z) is a still unknown matrix with transfer-function elements hav
ing only poles outside the unit circlc. Eq. (32) is the direct generalization of 
Eq. (19). It must he emphasized that the matrix factor WL. (Z-l) is ineyitable 
in Eq. (32) as W~JI (z) wf.j' (Z-l) must he treated as a po"wer-spectrum matrix, 
and must be factorized: 

( U;"-i (_) W-i (_-1)+ (w .. f (.,-) Wf (_-1)-
¥'jl~ I'j'"' jl~ l'j'~ . (33 ) 
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Taking Eq. (21) and Eq. (33) into consideration, suhstituting the factorized 

matrices into Eq. (32), furthermore separating the physically realizahle and 
unrcalizable matrix components on hoth sides of the equation, finally, after 

"ume algebraic manipulations the physically realizahle optimum pulse-trans
ft'r-fuIlction matrix of the pulsed-data cascade controller can he obtained: 

x {[<P-;; .;,(Z)]-1 <Prvi,(Z) WJ'j'(Z-l) [(WJ;(z) Wh·(z-l))-]-lf-'- X (34) 

>< [(WMz) TVh'(Z-l»)-c ]-1. 

Thj,; is the final explicit solution formula for the pulse(l-data control system 

with semi-free configuration. Suhstituting WIT (z) hackwards in Eq. (27) in 
place of W'~j (z) and employing Eq. (4), the minimum yalue of the sum of tht· 

mean-sqnarp errors can lw cOIl1puted. 

3. Optimum pnlse-transfer-fuIlction matrix for the semi-free 
configuration with constraints 

:\ow, it will be shown how the optimum lllultipole pulsecl-LIata cascade 
controller can be determined for multiyariahle systems with constraints. 

The conYentioll of notations is the same as pl'eyiously and the problem is 
dl:lllUnS trated in Fig. 3. It j" a,,;;uI1wd that eyen the manipulated YariahIf'8, 

Fig . .3 

i; It) 
! 

J eilti 
~ 

cJt! C;lt~t 
T 

acting hetwet'll the controller and the plant, an' ,.:ubmitted to COllstrainV'. 
Generally, an indirect manner can he taken as a hasis, and for this purpose 

,.:nIne eonstraint weighting-function matrix IV];! (t) is constructed (j = l. 
... ]; h 1, ... H; H L). The pulsed-data output ro'w vector b~, (t) 
(h 1, ... H) of this transfer link represent;;: the indirect yariahle~. or 1Il 

other word", the modified manipulated yariables to he constrained. 
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Let us aSSUIlle that the StlIn of the mean-sqnare ndue;; of the indirt'ct 
variables is limited. Then the unequality of eon;;traint ean })(' exprt'ssed in 

the following form 

1 . (35) 
tr [q'b",bh(OT)] = -2-'- rh tr [<P1>" I>;.{z)] Z -1 dz 17-

n] 'Y 
r, 

(h,Jz' L ... H) 

where b,z·.\nT) b.lz (nT) is a symmetrical H X H matrix eomposed of the 
matrix multiplication of column vector biz .. (n T) and row vector b.lz (n T), 
which are H X 1 and 1 X H matrices, respecth-c1y, while "tr" denotes the 

trace that is the sum of the principal diagonal elements of the matrix. Fur tlwr , 

rbn,ll. (OT) is the autocorrc1ation-sequence matrix 'with zero "hifting time, 
while <Pb"b;. (z) is the corresponding power-spectrum matrix. 

As a minimization criterion, again the sum of the meall-square-error 
components is adopted. This sum can he expressed once more "with Eq. (4). 
Taking Eq, (4) and Eq. (35) into consideration just as if one would apply the 
Lagrangean conditional extremum technique, the optimum design of the 
pulsed-data cascade controller is r('clucf'd to th(' minimization of the follo

wing expression 

w11('1''' th(' matrices figuring here are the following 

and 

and 

Our task is again to find an expression for the power-spectrum matrix 

<PX1,Xl (z, },) and then to minimize the latter. Applyiug the generalized index
changing rule and considering Fig. 3, thc power-spectrum matrix of the error" 

ean he expressed as in Eq. (27), whil(' the power-spectrum matrix of the modi
fied manipulated variables is 

rr. (_) _ TJ7k (_--1) W"C (_-1) rr. TJ7C (_) wk (_) 
'Vbh,bi; "" - "'1.' h' j'''': , j 'k' ..;., ':Pr1. TJ: W kJ ..., jh ~ (37) 

(k, k' = 1, ... I( : j,j' = 1, ... J; Iz, 1z' = L ... H) 
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'where Wj~l (z) is the J >< H pulse-transfer-function matrix of the constraint 
(letermined from the 'weighting-function matrix 1{J~ * (t) performing z trans
formation. W;;"j' (z-l) is the adjoint H >< J matrix of the former. In mo:"t 
cases K = J = L H can be assumed without loss of generality. 

Let us no'w introduce an auxiliary power-spectrum matrix (/J ak.a" (z, i.) 
iIllplicitly defined by the following relation: 

TJ'7f (~-l) IT;c (~-1)' n. (~) w'e (~) W·f (_) w l'j' '" ~y j'1e' N 'I",,,.rk N kj\'" jl'" ~ 

J" Wk (_'-I) W·c (_-1) n, (-) WC (-) W· j 
(,,) ----:--. lzl}' ~ j'li' ..... 'Pr}:,,;; ~ kJ ~ jl""- (38) 

W·f (_-1) TJ7C (_-1) n, (_ /.") IT7C (_) W·f (_) = 1'/ -' W FIe' N 'l-'ak.ak -", . W kj '" jl ... · 

It can be show'u that the auxiliary power-spectrum matrix (jJ ak,ak (z, i.) 
i~ uniquely determined by Eq. (38) if it does not depend on the choice of tran5-

ffr-function matrix W'Zj (z) of the cascade controller itself. (See later in "'1. 
Some supplementary remarks".) Now, taking Egs. (27), (37) and (38) into 
consideration the power-spectrum matrix figuring in Eq. (36) can he expn~ssed 
a~ follows: 

TI?i ( -1) IT/C (-1) n. ()! - - J-'1~ J'j' .:;; 1'J' j'k' :; ~rJ:dl Z i (39 ) 

! T17f (_-1) WC (_-1) n, (~/.") rr;c (_) W·f (_) 
- W I'j' '" j' k' '" 'l-'a"'{/k"" W kJ .., jl N • 

The form of this expression is quite similar to Eq. (27). Thus, the same 
tt,chnique can he employed as in the case of the semi-free configuration without 

cOllE'traints. 
Therefore let UE' introduce an auxiliary K X J matrix GZi (z, i.) 

its adjoint Gj.IJ,. (z-1, i.) with the folIo'wing implicit definitions 

ifJal.,ak:;, i.) G~~(z, i,) W}z(z) = ifJrk4z) 

W}j'(z-1)Gj,%'(Z-1, i.)ifJak,aiJZ, i.) = ifJi,.rk(z), 

and 

(40) 

As (/Jak,ak (z, i.) does not only depend on z hut also on i., thus, the auxiliary 
matrix is also a two-variahle function of z and i .. The physical realizahility of 
GC

I;} (z, i.) is, of course, not garanteed, on the contrary, it is physically unrf'a
lizahle. Suhstitution of Eqs. (40) into Eq. (39) gives 

rf, ( ") n. () ITi< (-1 GCk( -1 "',-7, ( " GCk( ")W'«) '1-'",,:;, .::;.1. = 'l-'i,.i,:; --, 11" 'er Z ) j'I;':; ,J.) 'l-'a",a" Z, I.) kj z, J. /}Z Z --

[Wh'(Z-l) Gr\~,(z-l, i.) WL,(Z'-l) Wj'dZ-1)] >:. (-11) 

>< ifJak,ak(z, i.) [GZ~(z, i.) W]/(z) WZiz) W}I(Z)] . 

Since the pulse-transfer-functiol1 matrix w'~y (z) and its adjoint are containcd 

only in the last term. tlw power-spectrum matrix ifJX"Xl (z. i.) together with 
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the trace of it, "will be minimum if the last term becomes a zero matrix. From 
this condition and on the basis of Eq. (40) the physically unrealizablc optimum 
pulse-transfer-function matrix and its adjoint can be obtained from th(' 
following relations: 

(42) 

From the first relation the optimum matrix w~y<) (z, i.) itself can easily 
be determined, but this step is not necessary at all, because unrealizable trans
fer-function matrices giye no solutions. Let us substitute a physically realiz
able optimum pulse-transfer-function matrix fV~J!ll (z, i.) instcad of W"~j O(z, i.) 
into Eq. (42) then the following relation can be dniYe(1: 

where F~:j. (z, i.) is ::;till an unknown matrix with tran;;fer-function elem(,n ts 
haying only pole" outside the unit circle. This pxpn-ssion is quite similar to 
Eq. (32) and then-forf'. tlIP same technique can he applied as was preyiou;;l:-' 
used. 

Taking th(' spectrum-factorization relation 

(..j.l) 

and Eq. (32) into cOllsid(~ration. Eq. (43) ma\' a;;"lllllC' th,· following form: 

[qJ~,Ui.(z .. i.)] (j)".i,(Z) W'ir(Z-1) [(W}(z) Wij(z-l))-]-l, ( .. 15) 

[qJ,~,.(I; (z, i.)j-l F;}(z. i.) [(lY);(z) Whiz -1))-]-1 

Separating again the physically realizable and unrealizahle ma t1'i:-.: 
eOlllponents on both sides of Eq. (45) the 11 ('xt l wo 1'<'1ations ean be obtained: 

W;;;.a;,(Z. i.) TV~jlll(z, i.) (WJ;(z) Wh'(Z-l)). 
(-16 ) 

rrW(~a~(z, i.)]-l Wn;.i/Z) Wlj(z-1) [( W};(z) WJ. 1'(Z-1))-]-tj". 
and 

(4 i) 

where the symboli:;m llsed is the same as in connection ;dth Eqs. (24) and 
(25). Finally .. from Eq. (46) the physically realizahlp optimum pulse-transfer-



OPTDIU.U PULSE-TR.·LY'iFEH FU.YCTIO.Ys 

function matrix of the pulsed -data cascade controllt'r III case of constraintF 

can be expressed as follows: 

lT7Ckl11(~ ') _ [fl'-' (~ ,)]- 1., 
H kj -'0; /. - Y.-'a;; Gl: -'0; I. /" 

X I[fl)- (- ,)]-l(!J (_)><;If (_-1) [(TI/·i(_)IT;·j (---1))-]-11 ',/ 1 ~ak,ak' ~," - r!"il.~ H' I';' ..., n jl~ fJ' I'j'.~. r 7 /, 
(48) 

X [(WMz) Wk,(:;-l))-'- ]-1, 

The expression of W-~j Ill(Z,).) may nu,,' he 5ubstitutt'd into the condition 

of con5traint. This can he performed hy first suhstituting TV- ~j l11(z, i.) and it5 
adjoint matrix instt'ad of W'~j (z) and it." adjoint, rt'speetivcly, into Eq. (37). 
Hence the pO'wer-spectrum matrix C/)/l/',b.(z, i_) is obtained. Suhstituting the 
latter matrix into Eq. (35) the parameter i. can be adjusted so that the concli
tion of constraint, that is, even the unequality (35) 'will be satisfied. 

After ha'dng dl:termined the proper value uf parameter i., the latter can 
bt' substituted backwards into El{. (48). Thus, as a ret"ult of this techniqu{' 
the phy:"ieally realizahk optimum puli'f'-trallsfer-fullction matrix of the 
pulsed-data ca5cade controller Wjj 111 (z) i8 ohtained. :\aturally, follo\,-ing tht, 
procedure outlined preyiously the parameter i. 18 already missing from the 
final solution formula. W"~j III (:;) is the t'xplieit solution of the problem in cas!' 
of the semi-free configuration with conHraints, 

Substituting the so obtaim'd matrix expression of JV~; m (z) and its ad
joint into Eq. (27) instead of JV!~j (z) and Wj\. (:;-1), re"p{'~·tiyt~ly, the ])o\\"er

"pectrum matrix of the error can be computed. Hcneeforth, applying Eq. (4) 

the least sum of the ll1('an-"Cfuare-error components can be determined. 

4:. Sorue suppleluentary relnarks 

£yidently, the semi-hI'!' eonfigura tion with eonstrainb is the most gener
al case, and from the final solution formula of the latter, that of the semi
free configuration 'without constraints call eu;;ily hI' ohtained. It is only IU'(,

l',"sary to suhstitute i_ 0 into Eq. (48), which is then r(,clueefl to Eq. (3,11_ 

as ill the same time from ECl' (38) 

(49) 

The final solution formula of the completely-free configuration, Eq. (26) call 
also he ohtained from Eq. (48) after substituting i. = 0 and taking an unity 
matrix instead of the pulse-transfer-funetion matrix WJ/ (z) of the fixed part. 

All cases of the single yariahle systems can readily be obtained from the 

l'orre"ponding easei' of the rnultiyariahlp sYstem"_ too. 
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Let us no'w concentrate our attention to the most complex problem, 
that is, to the semi-free configuration with constraints. It must be emphasized 
that in the latter case the suecess of the proposed method depends on the 

condition that the auxiliary pO'wer-spectrum matrix Wa",ak (z, i.) must be 
independently determined from the choice of the pulse-transfer-function matri
ces W~i (z) and W)./-:. (Z-l). Unfortunately. this condition is not guaranteed a 

priori. 

Sk //) 

b.,Jfj::zm,itj b~ft)~m;II} 

T 

Fig. 4 

From Eq. (38) the auxiliary power-spectrum matrix can he <>xplicitly 
expressed as 

c[Ja",ak(z, i.) = c[Jrk.rk(Z) + i, [Wj'dz-1)]-1 [Wh'(Z-l)]-lX 

:x W~'j'(Z-l) Wrdz-1) c[Jr; .. r,,(z) WZ/z) WYJz(z) [W]lZ)]-l [WUZ)]-l. 

It can be seen that for arbitrary power-spectrum matrix W k,rk (z) the 
independence of the power-spectrum matrix rp Qie,ale (z. ).) I:" ensured only 
,,-hen 

W]Jz(z) [W]!(z)]-I = G(z) I jj (50 ) 

(j = 1. ... J, Iz = 1= 1, ... H = L) 

where G (z) is some scalar puhe-transfer function (or cxceptionally a poly
nomial), while I jj if' an unity matrix of th(' J X J type. This condition yielde:

the following auxiliary matrix 

(51) 

which is indeed independent of W~j (z) and Wj\. (,:;-1). This circumstance 

emphasizes the fact that for a giyen plant matrix the constraint matrix can 
not be optionally chosen but there most be an interdependency between them 
to ensure the independency of the auxiliary matrix. This is in eontrast to the 
single variable systems where Eq. (50) is inherently guarantied, because for 
j = 1 being I jj = 1, that is a scalar quantity. Thus, in single variable system" 
the necessary independence is a priori ensur<>d. 
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In the follo'wing: we will always assumc that Eq. (50) is yalid. :\'ow, let 

llS concentrate our attention to the constraint matrix W;'l (z). If the manip
ulated variables are directly constrained then W;~l (z) must be an unity ma

trix Ijh (J H), and lC;~1 (t) must be a diagonal delta-function matrix 6jj (t) 
(Fig. 4). If, on the other hand, the manipulated yariables are indirectly COIl

strained the pul;;:e-transfer-function matrix W;'h (z) may assume quite a genC'r-

Fig. 5 

b~/I}=I~11! 
T 

Fig .. 6 

al form. For example, if even the Sllm of the mean-square yalues of the COll

trolled yariables are limited, then the constraint matrix Jf/}~l (z) becomes the 
yC'ry same as the plant matrix W11 (z) (Fig. 5). 

If the plant matrix WJl (z) can be expressed as the matrix multipliea
tion of two corresponding pulse-transfer-function matrices 

(52) 

and eyen the sum of the mean-square-value of the pulsed-data variables acting 
between the two control links mentioned aboye has to he limited, then Wj~: (z) 

must be taken as identical to WJh (z) (Fig. 6). 
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No'w the results ohtained may easily he generalized also for multiple 
constraints. For example, if the manipulated yariahles are simultaneously 
submitted to two or more constraints (Fig. 7) then instead of unequality (35) 

a system of unequalities is valid: 

I 
I 
I 

Uf· 

~1 .. 11' I ° "r)!;...- D'h/I)'!, 
r~ w"li;(:)'" ;C--C-

I 
I 
I 9 I<J;f!i1ii IOnl!/t::: c',,;,,: 

Fig_ -: 

Furthermore, iU5tead of Eq. (36) we have the following relation: 

,~tl 'te,.,,,(~) / /', et"" . G) - _ ,"';, J. 1 . 1- I 

2:rj't _ ,... ii'" 
r" 

Here tllt' corre:"ponding power-spectrum matrices arc 

(3')* ) 

where Wj), fl) (z) (i = 1, .. , I) are the corresponding constraint matricf's. 
In case of the semi-free configuration ,,-ith many eonstraints th(' ('OIHlitions of 
independence 

W}h(i)(Z)[WJl:;)J-l = G(i)(z) I, (50*) 

(i 1. ... 1) 
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must he fulfilled, -where G(i) (.:;) (i = 1, ... I) arc some scalar pulse-transfer 
functions (or polynomials) and 1jj is an unity matrix of the J X J type. 

Naturally, in this case both the auxilliary power-spectrum matrix 

<P al;,a!; (.:;, i_I' ... i) and the physically realizahle optimum pulse-transfer
function matrix TVI~j Il1 (.:;, i. 1' ••• i_I) becomes a multivariablc function of the 
parameters i.i' Accordingly, instcad of Eq. (51) wc obtain 

(/)ai;-ai;(Z, i·1, ... i'I) = [1- i ;'i C(i)(.:;~1) G(i)(':;) 1 (/) i; J.:;) 
_ 1=1 

(51*) 

c.~ (tJ 

b, It! c; (0 

Fig,8 

Finally, the explicit solution formula fO!' thc semi-free configuration -with 

multiple constraints hecomes: 

IT7Ckll1(_ ; ; ) - [(/j--' (_ J' ; -)]-1 
n kj _~, "1' ' .. "I - - ai; ail ~, '1' . , , "I 

(48*) 

The adjustment proccdurc of the parameters i'i must now he performed 
in such a way that the most rigorous of the ullcqualities (35 *) can he fulfillcd. 

After having detcrmined on the basis of FiS' 8. the optimum pulse-trans
fer-function matrix of the pulsed-data-cascade controllcr, the pulse-transfer
function matrix of thc series controller in the closed loop can he expresEed as 

[I Tf7C (_) n;'! (_)- ]~l W-c (_) 
fY kj"" Vi jf "'" k.: ..;., 

if there is no feed-hack controller. If, on the other hand, the scrics controller 
IS missing, the pulse-transfCT-function matrix of the feed-hack controller is 

H7k(':;) [WZj(z) W}i(.:;)]-1 [fV'j/(.:;)]-l 

(k = I j = 1, . , . K L = }). 



5. Illustrative examples 

To illustrate the propo:,ed methods only a very ~imple two-variaLlc 

pulsed-data system serves as an example. Each of the two inputs contains a 
useful signal component and the second one is also influenced by a wbite noist' 

component. The useful signal components and the noise component are not 

correlated, while the signal eomponents themselves are correlated. The ideal 
or desired outputs are assnmed as identical with the signal components of the 

inputs. Only thl' completely-free and thl' semi-frpc configurations arl' treatf'cl 

here. 
Example 1. Let tlu' continuous-data po,n>r-d"n"ity-spcctruIll matricef' be 

(2 
:2A 

s)(l~s) 

whf're 0 ·.1:':.~ 1, all (1 

(l 

:2A 

s)(:2~-s) 

1 
-1 -- s~ 

Correspondingly, the pulsed-data power-spectrum matrices an> 

:2.-1 

(l 

1 

4 (1 ;;;e-2T ) (1 _;;;-1 e-2T ) 

and 

[

0 
cj)",""dz) = "" . ° 

Thus, after additioJl the power-spectrum matrix of th(' inputs is 

:2A 

(P-z Q) (P __ ;;;-l Q) 
- -

where 

P} 1 '"1! Q = :2 / 



On the other hand 

lweause Y k I (z) = I. 

On th{, basis of Eq. (21) in the present ea,,(' 

q) I/"'(Z) = 

and 

U}= V 

is substituted. 
f:orrespondingly, 

and 

A 

3 

Jf2(l-= ;=21') o 
1 --ze-2T 

3 U --zV 

V2(Y:':"?1') 
1 __ -z-l e-2T 

o U Z-·l V 

K 
3 

o 

U _. Z V 

A 

3 (1 e-ZT)(U -- Z-l V) 

o 
U - Z-l V 

371 
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Hence 

o 

:?A 

3 

r~(l 4· 

1 

Separating the physically realizable ma trix component: 

o 

2A 

3 

I~ (1 

X 

e-·1T ) 

1 
l. 

u-

:? A2 
'j X 

9 (1 - e-2T ) 

1 

V 1 :;-1 e-2T 

Finally, for the case of the completely-free configuration the physically real
izable optimum pulse-transfcr-function matrix can he ohtained according 

to Eq. (26) as 

W)~)(z)= 

o 

A 

3 

[ ~(1 4· 

1 1 Z-l e- T 

U - z-l V 1 z-l e-2T 

9 

Example 2. Taking the same starting data as in example L let us look at 
the following plant matrix of nonmininlUm phase 

[
BZO-i

J 

W};(z) o .) 
Cz-:' . 
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where {3 and "/ are positive integer numbers. No'w the mort' complicated for
mula (34) must be applied. The steps of the calculation are: 

m .(_) Tf7f (",-I) 
'.l:-'rJ:.1 l["": 1-1" I' j' N 

2 A Cz:· 

3 (1-ze-T)(1-z-1e-2T ) 

2 A (1 - e-aT ) Bzii 1 CzY 
-' <-~--

3 (1 ze-~T)(1 - z-l e-T) 4 (1 ze-ZT)(1_z-1e-ZT) 

It can easilv be shown that 

thu~ 

fly (_) Tf~'i (_-1) [(n;·f (_) Tf7f (_-1»-]-1-
'1. k.il N fY l'j' N fY ji N '~I'j' N -

2A 

3 (1 - ze-2T )(1 

and the physically realizable component i,;; 

1 (ri>- (_)]-lm (_)Tf7f (_'-")[(n;'i(_)Tf?i '(_"'1»)'-]-11 1 '¥ri:,r;:~ ... · "Pruiz,..; JY [It ,,:... - H' jl.o.,1 H [']' ...; r-: 

o 

2A 

3 

I. ~(l 4 

1 

1 

Finally, following Eq. (34.), the pulse-transfer-function matrix of the physi
cally realizahle optimum pulsed-data cascade controller can he determined in 

4 Periodi('a Polytechlliea El. IX,·~. 
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the form: 

Tl'7Cm(",) _ 
W i:j ~ -

o 

A 

3C 

F. CSAKI 

I 1- z-1 e-T 

U - ,:;-1 J7 I _ Z-1 e-'!.T 

Hence, the oycrall pulse-transfer-function matrix of the whole system is 

TV/I11(_) _ rr;ct)1(_) Tl7l(_) _ 
W kl'" - n /{} '" w}I~. -

o I 

In case of /3 = 0, ;' = 0 this expre5sion is reduced to the form given foI' dw 
completely-free configuration in example 1. 

Summary 

It is shown here how the results obtained for continuous-data multivariable cont rol 
,y"tems can be generalized for the case of strictly digital or pulsed-data multivariable system,.. 
The inputs and outputs are assumed as pulsed-data stationary ergodic stochastic processes. 
The optimization criterion is the least sum of the mean-square errors between the sets of 
actual and ideal outputs. Applying the so-called simplified derivation technique explicit solu
tion formulae can be obtained in a relatively simple way. Thus, this technique which was for
merly proposed by the author is now extended for multivariable pulsed-data systems, too . 
.'i"ot only the case of the completely-free configuration but also the cases of the semi-free con
figuration as well as the case of the semi-free configuration \\'ith constraints is inve!'tilrated. 
T;,-o simple examples are also given for the sake of illustra tion. ' 
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