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In a previous paper [1] the so called simplified derivation technique
[2.3] was extended for strictly digital processes in case of single variable sys-
tems. Now, multivariable pulsed-data control systems will be treated. This
paper is the generalization of some studies [4, 5, 6] which deal with multi-
variable continuous-data control systems. As usual, the inputs, outputs and
manipulated variables are assumed to be stationary stochastic processes and
the ergodic hypothesis is also adopted. As optimization criterion the least
mean-square-sum of the error components is taken. The definitions and notions
used here are the direct generalizations of that of the mentioned paper [1].

1. Optimum pulse-transfer-function matrix for the completely-free
configuration

The notations in this paper will be the following: If both indices are
variable this will mean a matrix, if one index is fixed or is missing and only
the other index is variable we have a vector, finally, if both indices are fixed
then a scalar quantity is represented. As concerns the vectors a variable first
index will signify a column vector while a variable second index signifies a
row vector (the other indices being fixed or missing).

A simple block-diagram representation of a multivariable pulsed-data
svstem is depicted in Fig. 1. The pulsed-data inputs are represented by a row

vector 1 (1), where k = 1, ... K. The pulsed-data outputs are represented
bv a row vector C:Z; (¢). where I =1, ...L. The weighting-function matrix
of the multivariable system is wy (t) (k=1. ... K:I=1,...L).

The number sequence of the pulsed-data output can be expressed by
the following convolution sum:

c.(nT) = i ronT - 2T)w, (vT) = ‘:\‘; roduThe, (nT — nT) (1)
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where n, v, u, are integers and the summation is performed on row vectors
originating from the matrix multiplication of a 1 X K row matrix and a
K X L matrix.

Taking once more Fig. I into consideration the problem of optimum
syntesis of the pulsed-data system can be stated as follows. The input row
vector 1 (1) has two components: the row vector of the useful signal com-
ponents s} (t) and the row vector of noise components n’ (1), (k = 1, ... K).
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The ideal or desired outputs are represented by i%(t) (=1, ...L).
In the way this row vectors or the number sequence 7; (nT) can be deter-
mined from the signal-component vector s (£), or more correctly, from
the number sequence s, (nT) by matrix multiplication with weighting-
function matrix y,; (nT) and through one of the following convolution sums:

o

i(nT) = N so(nT — Ty 0TV = N s, (uT)vy(nT —uT).  (2)

-
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It is to be emphasized that the weighting-function matrix y;; (¢), together
with its elements, is generally net physically realizable the former being a
fictitious one and merely serving for the origination of the idealized outputs.

The row vector of the pulsed-data error is nothing else but the differ-
ence of the row vectors of the ideal and real pulsed-data outputs:

o5 (1) = i%(t) — ci (1) . (3)

¥
i

Taking the sum of the least-mean-square errors as a basis of optimiza-
tion, the functional to be minimized can be expressed by the trace of a matrix
or in other words by the sum of principal diagonal elements of a matrix, the
latter being composed of the matrix multiplication of the column matrix
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e;. (nT) and the row matrix e; (nT), and by an averaging process:

r [ep(nT)e.(nT)] = hm {ﬁ ir ey (nT)e.(nT)]

v IIN - ﬁ;N (4)
=1r [(Pfi'é’x(OT)] =
1 .
:_7 .d;t'r[ Ezez( )] tdz
<7y ]
r,

where e, (nT)e; (nT) is an L x L matrix, while

PeneET) = ey (nT)e(nT + kT) =

N 5
1 L N ey (nT) e (nT + kT) ©

N-= 2N 1,22y

is the L X L autocorrelation-sequence matrix of the errors.The power-spec-
trum matrix of the errors can be obtained from the correlation-sequence
matrix by z transformation:

Q)fl'fl(z) = ’% [(Fr;,m(kT)] \ Per. fl(I‘T) (6)

o

while the inverse relation is

(:Dﬁzre.v(kT) =Xt {@Gzrfz(z)] = . W (pf:lfz(.z) sF1dz. (7)

Here and also in the following treatise z = et =" and I', iz the unit

circle of the z plane. Since evidently

e (nT)e (nT) = [i,(nT) — ¢p.(nT)] [i.(nT -+ ET) — c.,(nT + ET)], (8)

therefore, the autocorrelation-sequence matrix of the errors can be expressed
as:

(peuez(kT) = qj‘iz/iz(kT) - (f'ipCszT) — (/’7C1rl'z(kT) - (1’7C1'Cz(kT) (9)

and consequently the power-spectrum matrix of the error can be set up in
the following form:

ﬁ’: E{( ) - ‘\ o (pim‘f(:) : @Cpiz(:) == (pc;‘c‘z(:) . (10)

Our task is to minimize the trace of the power-spectrum matrix @, ,, (),
as according to Eq. (4). this latter gives the sum of the mean-square errors
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through a contour integration around the unit circle. If the power-spectrum
matrix D, (3) itself can be minimized then evidently the sum of the mean-
square errors is also minimized at the same time. Thus, the value of the in-
tegral in Eq. (4) becomes minimum if, and only if. the integrand is the least
possible. As the index changing rule is also valid for pulsed-data systems [1]
this can be generalized for multivariable svstems, too. Thus, the power-spec-
trum matrix can be expressed as

Q)e,,e,(:‘) - q)illil(:) lz r, )le( ) 1 i ("‘ I» lz( ) =
- W;I‘/\"(:~1) ng;;:rL-(z)W'l;i(:) (11)
(k=1 ... K; LI'=1, ...L)

where Q)cl o (3)s Dy (5) are L < L matrices, @, (s) is an L kK K matrix,
D, . (z)is a KX L matrix and &, . (5) is a K % K matrix. Wkl (z) is a
K % L matrix and W, (z71) is the adjoint, that is, the transposed complex
conjugate matrix of the former (7T = ¢ = z—1).

Naturally, the pulsed-data-transfer-function matrix ¥, (z) is nothing
but the z transform of the weighting-function matrix wy (t} (or more precisely
of wfj(t)) .

Now, let us introduce a K X L auxiliary pulse-transfer-function matrix
Gy () and its adjoint L % K matrix Gy (z71) by the following relations

r;rr;( )Gh ( ) @’I:'il(z) (12)

GI’I;’(:— ) (‘Drn(:) gv)lrh(:) »

The auxiliary matrix Gy (z) is. in general, physicallv unrealizable. Ax

O, .. (2) and &, , (s) can be considered as given matrices Gy (s) and

Gy (7%) are also given through Eq. (12). With the aid of the auxiliary matri-
ces the power-spectrum matrix of errors takes the following form

Doz} = Dii(3) — Gy, (5~ DDy (3) Wiy(z) —
p(5Y) Pronl2) G5 (13)
_W”(" )Arr )lT Z)

l!

or after some algebraic manipulations:

@6’1 €z<z) = ®i.’ri1( ) — Gy ( -1 @fr 2N )GIA(:) En

. (14)
~+ [Gz'!:’(z_ ) — W (z71)] @rz:rz(:)[cu(.:) — W(=)]-

It can be easily observed that the pulse-transfer-function matrix W, (z) and
its adjoint matrix Wi.(371) are only contained in the last term of Eq. (14).
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The power-spectrum matrix @, , (z) is the least one, if the last term be-
comes a zerc matrix. This is arrived at if, and only if,

Gifz) — Wis) =0

or
Gz = Wip(z71) =0 (15)
where W7, () is the optimum pulse-transfer-function matrix and Wg.(z71)
Is its adjoint.
With due respect to Eq. (15), Eqgs. (12) give:
rnr( ) A; ) x( ) =0
(57 By (2) — By f) = 0.

W‘n’l "‘)"“[J)’ f( )] l(j: lz( ) (17)

'!

Thus,

Unfortunately, the optimum-pulse-transfer-function matrix is generallv phys-
ically unrealizable, and therefore does not supply the solution of the opti-
mization problem.

Let us separate the physically unrealizable transfer-function matrix
into two parts:

Wid=z) = Wii(z) — Wiy(s) (18)

where W} (s) is the physically-realizable-component matrix with poles Iving
inside the unit circle of the 5 plane. W) (5) is the remainder of the matrix.
The latter is phv=1callv unrealizable, because the correspending weighting-
function matrix wj (f) is a negative-time function, which becomes identically
a zero matrix for the positive time. The poles of W) (5) are lving outside the
unit circle.

With due respect to the restriction of the phvsical realizability of the
pulse-transfer-function matrix Wy, (), instead of the first relation of Eq.
(16) at most the following cquation is valid:

(5) Wz) — Prifz) = Fio(z) (19)

where Fj.;(z) is a still unknewn matrix containig no poles inside the unit
circle of the s plane. Evidently

Bry o ) W(E) — By ifz) = - Fo), (20)

It must be emphasized that after substituting the physically realizable
matrix cempenent in Eq. (14) the last term does not become a zero matrix,
but with respect to the physical realizability, together with the power-spectrum

matrix @, , (), the last term becomes a minimum.

3 Periodica Polvtechniea EL IX/4
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As is well known the continuous-data power-density-spectrum matrices,
which are assumed to be real paraconjugate hermitian, can be factorized
[8, 9]. This theorem may be generalized also for pulsed-data power-spectrum
matrices. If @, () =@, (377), then

o . [ . . .~ 5
(prk« ;;v(“') @r;;~i1;(“) - g[)r;;.r,-,-(‘) ("l)
where, on the one hand, the second matrix factor and its inverse matrix

O (=) (@], ()]

contain elements which have poles only inside the unit cirele, while, on the
other hand, the second matrix factor together with its inverse matrix:

P (3): [Drr (5)]7

have only elements with poles outside the unit cirele. By the way, the ad-
joint of the second matrix factor is just the same as the first matrix factor,
and the adjoint of the first matrix factor is equal to the second matrix factor.
This feature is also valid for the inverse matrices,

Taking Eq. (21) into consideration, we have from Eq. (19):

D, () D (5 Wil(2) = @, 1 (3) = Fr2) (22)

or in an other form:

-1t

D (3)Wialz) = [@7, (]7' D, i (2) — [P (2)]TT Freal3). (23)

Let us now decompose the matrices on both sides of Eq. (23) into phys-
ically realizable and unrealizable matrix components, belonging to positive-
time and negative-time matrices, respectively:

D) W) =D, (2] (5] (24)
0 = {[@ror, ()] By ()} = [D7,, (5)]7 Freals) (25)

where the lower index + (plus) denotes a matrix component with physically
realizable elements, which have only poles inside the unit circle. while the
subscript — (minus) denotes a matrix component with physically unrealizable
elements having only poles outside the unit circle. The decomposition shown in
Eqgs. (24), (25) is evidently valid, because the second term on the right-hand
side of Eq. (23) have poles only outside the unit circle and thus it can not
supply any physically realizable matrix component. On the contrary, the term
on the left-hand side of Eq. (23) have poles only inside the unit circle. and <o it
consists exclusively of a physically realizable matrix component.
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From Eq. (24) the physically realizable optimum pulse-transfer-function
matrix is obtained as a final solution of the problem concerning the completely-
{ree configuration:

Wii(z) = [, ()] P o ()] i (26)

After substituting the optimum transfer-function matrix into Eq.
(11), and thereafter the so obtained minimum power-spectrum matrix into
Eq. (4), as a result. the least sum of the mean-square errors can be computed.

2. Optimum pulse-transfer-function matrix for the semi-free configuration
The completelv-free configuration seems to be a rather special case. The
semi-free configuration is much nearer to reality. This problem is depicted in
Fig. 2. The pulsed-data system now consists of two parts. The fixed part, for
example, the plant is represented by weighting-function matrix w;, 0 G=
1....J;1=1,...L), while the multipole cascade controller is represented by
weighting-function matrix wi; (t) (k= 1, ... K;j=1,...J).
These two matrices must be physically realizable in all cases. Our task
now is to find the optimum pulsed-data cascade controller when the plant is a
priori given. Between the two parts of the system the pulsed-data manipula-
ted variables are acting which are represented by a row vector mj"- () (j=1,
.. J). The other parts of the system. demonstrated in Fig. 2. are just the same
as in Fig. 1. Everywhere synchronuous samplers arc assumed.

sl it il
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nalt)

Fig. 2
£

Taking the generalization of the index changing rule [1]into consider-
ation and observing that the input first penetrates the controller and there-
after the plant, the power-spectrum matrix in Eq. (10) can now be expressed
as:

Dyofz) = Dy if5) — Poprz) Wi(2) Wi(z) —
— W ()W) Doiz) + (27)
W) W (5) By 2 () )
(kB =1,..K: j.j=1..J: LI'=1i,..L)
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where W,C, (2) and W'jfl (z) are the pulse-transfer-function matrices of the con-
troller and the plant, respectively, obtained from the corresponding weight-
ing-function matrices performing = transformations.

Similarly to Eqs. (12) let us introduce another auxiliary K > J matrix
G (2) and its adjoint matrix G}y (1) with the following relations:

(28)

Since the power-spectrum matrices and the transfer-function matrix
of the plant can be considered as given, the auxiliary matrices are also known.

On the basis of Eqgs. (28) the power-spectrum matrix of the errors in
Eq. (27) can also be written as

ch«fl(:) = (piz ii(:) o W},(:_l) _(/: H (:'~l) (‘ka"'i;(z) G’:(:> er(:) -
(5™ Gy (570 — Wi (571 WS (570)] ¢ (29)
4 D) [GSE) W) — WEE) W]

The trapsfer-function matrix of the controller W,fj (2) and its adjoint matrix

Vig (z71) are contained in the last term only. The sum of the mean-square
errors will be minimum if the last term hecomes a zero matrix, From this
sufficient and necessary condition and from Eq. (28) the physically unrealiz-
able optimum pulsed-data transfer-function matrix of the controller can be
obtained:

W55(2) = (@ D)7 Brafe) W] (30)

Since here the inversion of the plant matrix does figure, it is necessary to have
J = L. Naturally the physically unrealizable transfer-function matrix is
not acceptable. If, instead of W;y (z) the physically realizable optimum pulse-
" . . N . .
transfer-function matrix WA.;I {z) is emploved, then instead of
N T (AT () — e 2

G)":r; (~) 24 I{j(“')n.j!(‘) — @F,:;»lz("') (‘31}

the following relation will be valid:

r ) W) W) Wi p(emt) = Prif2) (=) = Fi (=) (32)

where F,, (z) is a still unknown matrix with transfer-function elements hav-
ing only poles outside the unit circle. Eq. (32) is the direct generalization of
Eq. (19). It must be emphasized that the matrix factor ]T,'J (z—1) is inevitable
in Eq. (32) as W]‘I (=) W,'J (s7') must be treated as a power-spectrum matrix,
and must be factorized:

Wike) Wi (=) = (W) Wi (7)) (Wida) Wi (1) (33)
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Taking Eq. (21) and Eq. (33) into consideration, substituting the factorized
matrices into Eq. (32), furthermore separating the physically realizable and
unrealizable matrix components on both sides of the equation, finally, after
sume algebraic manipulations the physically realizable optimum pulse-trans-
fer-function matrix of the pulsed-data cascade controller can be obtained:

X
TP ()W) T (=) e (34)

4

This is the final explicit solution formula for the pulsed-data control system
with semi-free configuration. Substituting W' () backwards in Eq. (27) in
place of Wj; (z) and employing Eq. (4), the minimum value of the sum of the
mean-square errors can be computed.

3. Optimum pulse-transfer-function matrix fer the semi-free
ce)nflguratlon with constraints

Now, it will be shown how the optimum multipele pulsed-data cascade
controller can be determined for multivariable systems with constraints.
The convention of notations is the same as previously and the problem is
demonstrated in Fig. 3. Tt is assumed that even the manipulated variables,
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Fig. 3

acting between the controller and the plant, are submitted to constraints.
Generally, an indirect manner can be taken as a basis, and for this purpose
some constraint weighting-function matrix u';-}l (1} is  constructed (j = 1.

.J: h=1, ... H; H< L) The pulsed-data output row vector b7 (i)
(h =1, ... H) of this transfer link represents the indirect variables. or in
other words, the modified manipulated variables 1o be constrained.
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Let us assume that the sum of the mean-square values of the indirect
variables is limited. Then the unequality of constraint can be expressed in
the following form
tr [by (nT)b,(nT)] N [by (nT)by(nT)] =
TN

1 ; . 35)
=l 0D = 5 PGz s )

(h.h' =1.... H)

2!

B

where by (nT) b, (nT) is a symmetrical H > H matrix composed of the
matrix multiplication of column vector by, (nT) and row vector b, (nT),
which are H % 1 and 1 x H matrices, respectively, while “tr’” denotes the
trace that is the sum of the principal diagonal elements of the matrix. Further,
Ppop, (0T) is the autocorrelation-sequence matrix with zero shifting time.
while @, , (s) is the corresponding power-spectrum matrix.

As a minimization criterion, again the sum of the mean-square-error
components is adopted. This sum can be expressed once more with Eq. (4).
Taking Eq. {(4) and Eq. (35) into consideration just as if one would apply the
Lagrangean conditional extremum technique, the optimum design of the
pulsed-data cascade controller is reduced to the minimization of the follo-
wing expression

. i p— 1 ] o
tr [(/'x[,x,(OT, /)] = fr [x‘,uv(nT., Aa(nT, /)] = ¢ tr{ Dy, o[z 4)]z71dz (30)
day o]
where the matrices figuring here are the following

xpnT. 2 x (0T, 2) = ey (nT)enT) + 7b,.(nT)b.(nT)

and
Gk 0T s ) = o, ofnT) = 2y 5, (nT)
and
Dy x5, 2) = Deref3) =+ 7. P,p(3)-

Our task is again to find an expression for the power-spectrum matrix
D, . (3, 4) and then to minimize the latter. Applving the generalized index-
changing rule and considering Fig. 3. the power-spectrum matrix of the errors
can be expressed as in Eq. (27), while the power-spectrum matrix of the modi-
fied manipulated variables is

Doyoi(3) = Wi (57) W5(z71) Dy, W (3) WH(3) (37)
(kk'=1....K; jj =1, .. J; hoh=1,...H)
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i

where th (#) is the J X H pulse-transfer- fuuctlon matrix of the constraint
determined from the weighting-function matrix w_* () performing z trans-
formation. W,” (z71) is the adjoint H x J matrl.\ of the former. In most
cases K = J = L = H can be assumed without loss of generalityv.

Let us now introduce an auxiliary power-spectrum matrix @, (3, 1)
implicitly defined by the following relation:

W}"j’(5~i) W/ (‘“.—1) (]3,[ "L )W 1( )W (

I T 52 B2 W (0 T2 = (38)
= T (=) W5 (=) Doy, D) W) T3 2).

It can be shown that the auxiliary power-spectrum matrix @, , (3, 4)
is uniquely determined by Eq. (38) if it does not depend on the choice of trans-
fer-function matrix Wj; (z) of the cascade controller itself. (See later in “4.
Some supplementary remarks”.) Now, taking Egs. (27). (37) and (38) into
consideration the power-spectrum matrix figuring in Eq. (36) can be expressed
as follows:

q).\‘z -\'1(55 )) - (—Dil’i/ @1 r, ) ( ) ( ) e
- H;/f'f'(::*]) 1'T/c"k/("5w ) fz;'iz(z) - (39)
L W () WS o(57) Doz, 2) Wi (2) Wi(z).

The form of this expression is quite similar to Eq. (27). Thus, the same
technique can be employed as in the case of the semi-free configuration without
constraints.

Therefore let us introduce an auxiliary K x J matrix G,Sj,‘ {z. /) and
its adjoint G.‘T},f_., (z7t, 4) with the following implicit definitions

o ) G . .
Q)a};'ak("? /) (l:xj(" /) Wi ( ) - @f;':'ll(‘/‘) (40)

Wi (5716551 /)@a;a(~a}~): Dipri(z). ‘
As D, . (5, 4) does not only depend on z but also on 4, thus, the auxiliary
matrix is also a two-variable function of z and 4. The physical realizahility of
J]}J (3. 4) is, of course. not garanteed. on the contrary, it is physically unrea-

lizable. Substitution of Egs. (40) into Eq. (39) gives

f —l) j 1-'( “1‘ /') @al a)( /) GF\]("" ") jl( )
— [ (=Y Gf»‘;i-'(f% A) = WL (=) W (s7Y)] (41)
A Q)ai:'ﬂk(:7 )) [Gil]\(‘:' ;) Wl}((:) B WIS](:) le(:)] ‘

- . . TN . .. .
Since the pulse-transfer-function matrix Wy} (s) and its adjoint are contained
only in the last term. the power-spectrum matrix @ (s, /) together with
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the trace of it, will be minimum if the last term hecomes a zero matrix. From
this condition and on the basis of Eq. (40) the physically unrealizable optimum
pulse-transfer-function matrix and its adjoint can be obtained from the
following relations:
@a,z.-fa; z /) WC“O( A‘) ijr’(z) = (I)fwil(:)
f — ka(,—1 % J .
Wl’j’(“" 1) VS%O(“ 1, 24) @flz.-»ﬂi;("v 2) = Dy (z) .

(42)

From the first relation the optimum matrix Wy;” (s, 4) itself can easily
be determined, but this step is not necessary at all, because unrealizable trans-
fer-function matrices give no solutions. Let us substitute a phvsically realiz-
able op timum pulse-transfer-function matrix VC " (z, 4) instead of W, °(z. )
into Eq. (42) then the following relation can be derived:

Doz )W DT U Wm0 = Do (2) W (271) = FEi(= /) (13)

where Ff":» (s, ~) is still an unknown matrix with transfer-function elements
having only peles outside the unit circle. This expression is quite similar to
Eq. (32) and therefore, the same technique can be applied as was previously
used.

Taking the spectrum-factorization relation
(«])a a1 A=, ;) @01;»»(1;;(2'3 ;) — (—[)(l;-‘(l::(::‘ ;) ('l"l)
and Eq. (32) into consideration, Eq. (43) may assume the following form:

P (2. ) W5 ) (W) W (7)™ =
= [P (5. )] Lot 5) WL o {(F ) W) 7 = 145)
[P (2 AL F (2 2) [(F =) W (2 0) ]

Separating again the physically realizable and unrealizable matrix

components on both sides of Eq. (45) the next two relations can be obtained:

By oz 1) W55, 7) (x,( i) =

e (46)
{185 o (5 ] By () WL (W) P ()]
and
0= 0% a5 )7 Bt W (PR P 0]

[ Paar (2 A FE (2 2) (W) W] (7)) 7]

where the symbolism used is the same as In connection with Egs. (24) and
(25). Finally, from Eq. (46) the physically realizable optimum pulse-transfer-
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function matrix of the pulsed-data cascade controller in case of constraints
can be expressed as follows:

L
S
2
=
X}
n

Wi oY) (W) W) ] o x (48)

The expression of W,”] "z, /) may now be substituted into the condition
of constraint. This can be performed by first substituting W ij Mz, ) and its
adjoint matrix instead of W',fj (z) and its adjoint, respectively, into Eq. (37).
Hence the power-spectrum matrix @, , (z, 2) is obtained. Substituting the
latter matrix into Eq. (35) the parameter / can be adjusted so that the condi-
tion of constraint, that is, even the unequality (35) will be satisfied.

After having determined the proper value of parameter /, the latter can
be substituted backwards into Eq. (48). Thus, as a result of this technique
the physically realizable optimum pulse-transfer-function matrix of the
pulsed-data cascade controller :J " (z) iz obtained. Naturally, following the
procedure outlined previously the parameter /. is already missing from the
final solution formula. Wj;™ () is the explicit solution of the problem in case
of the semi-free configuration with constraints,

Substituting the so obtained matrix expression of ﬂ,“, " (z) and its ad-
joint into Eq. (27) instead of W",,fj (z) and Ti"jc.;c, {71, respectively, the power-
spectrum matrix of the error can be computed. Henceforth, applying Eq. (4)

the least sum of the mean-square-error components can be determined.

4. Some supplementary remarks

Evidently, the semi-frec configuration with constraints is the most gener-
al case, and from the final solution formula of the latter, that of the semi-
free configuration without constraints can casily be obtained. Tt is only nec-
essary to substitute 4 = 0 into Eq. (48). which is then reduced to Eq. (34).
ws in the same time from Eq. (38)

(I)H}.«ﬂ};(:’? /) = (Dfi;'l'::(:)' (“19)

The final solution formula of the completely-free configuration, Eq. (20) can
also he obtained from Eq. (48) after substituting / = 0 and taking an unity
matrix instead of the pulse-transfer-function matrix W} (z) of the fixed part.

All cases of the single variable systems can readily be obtained from the
corresponding cases of the multivariable systems. too.
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Let us now concentrate our attention to the most complex problem,
that is, to the semi-free configuration with constraints. It must be emphasized
that in the latter case the success of the proposed method depends on the
condition that the auxiliary power-spectrum matrix @, , (3, 2) must be
independently determined from the choice of the pulse-transfer-function matri-
ces Wy, (z) and W}, (7). Unfortunately, this condition is not guaranteed a
priori.

et

o Ll myld| . et Sl

il

By lti=m) iy

i
—~t

Fig. 4

From Eq. (38) the auxiliary power-spectrum matrix can be explicitly

expressed as
Qjakra}:(z: ;) = gv)nrh(z) _" 4 [ -j’k'(z—l)}_l [erf’j'(z_'l)lﬁlx
MW (7)) Wil 50 Dy (=) W5 (3) () [ (3) ] [ A=)]

It can be seen that for arbitrary power-spectrum matrix @ (s) the
independence of the power-spectrum matrix @, (s 1) is ensured only
when

Win(=) [Fj{=)]7 = G(z) 1, (50)
(G=1....J. h=I1=1 .. H=1L)

where G (z) is some scalar pulse-transfer function (or exceptionally a poly-
nomial), while I;; is an unity matrix of the J X J type. This condition yieldes
the following auxiliary matrix

([)a;;:a;; (: ;‘) - [1 _-’ /. G(:“‘l) G(:)] j)r(:) (5 1)

which is indeed independent of Wj; (z) and W}y (7). This circumstance
emphasizes the fact that for a given plant matrix the constraint matrix can
not be optionally chosen but there most be an interdependency between them
to ensure the independency of the auxiliary matrix. This is in contrast to the
single variable systems where Eq. (50) is inherently guarantied, because for
j = 1 being I;; = 1, that is a scalar quantity. Thus, in single variable systems
the necessary independence is a priori ensured.
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oy
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-

In the following we will abways assume that Eq. (50) is valid. Now, let
us concentrate our attention to the constraint matrix Wj;, (z). If the manip-

e
<

ulated variables are directly constrained then W, (z) must be an unity ma-
trix Ijy (J = H). and w}‘}l (t) must be a diagonal delta-function matrix d; (1)
(Fig. 4). If, on the other hand, the manipulated variables are indirectly con-
strained the pulse-transfer-function matrix W;—(h (z) may assume quite a gener-

s, 0t ¥ el
S — —®——>-
et oriit) R t) y
*Ca * /: & W,’r:, k{,‘;”/ C///T C,/(f)
bt
e Vbati=c, _ B =Cl)
winlt]=wf 1) — :
Fig. 5
i . i)
T
Sy lll 1 o5l
AN mylt) . mll Ipiti 15t c'm'i
*cg.*_c/( e Wil ot ) ol il o
Nl

bail=lyi o bypti= 14t
. Ot -

i

al form. For example, if even the sum of the mean-square values of the con-
trolled variables are limited, then the constraint matrix WJ'}, (2) becomes the
very same as the plant matrix W}, (z) (Fig. 5).

If the plant matrix ijl (s) can be expressed as the matrix multiplica-
tion of two corresponding pulse-transfer-function matrices

Wiz) = Wiz) Wik=) (52)

and even the sum of the mean-square-value of the pulsed-data variables acting
between the two control links mentioned above has to be limited, then W} (z)
must be taken as identical to W';;, (5) (Fig. 06).



368 F. CSAKI

Now the results obtained may easily be generalized also for multiple
constraints. For example, if the manipulated variables are simultaneously
submitted to two or more constraints (Fig. 7) then instead of unequality (35)
a system of unequalities is valid:

1 N o
P [QB?M‘JD;’({)(:)] . (35%)
2y
W Bl
|
i
1
l“ig. 7
Furthermore, instead of Eq. (36) we have the following relation:
[ {0T 2q o .. }._,-)] =
= z. (36%)
Here the corresponding poswer-specirum matrices are
. o) — Kk (w—1 ~
Q}Diuvi‘(f)(") - W” JE ,( )I 1) ,n ( )H-j 1

where UJ,Z (,)( ) (i =1, ...1I) are the corresponding constraint matrices.
In case of the semi-free configuration with many constraints the conditions of
independence
k ‘ —1 =y s
w H()( W (=)]~ (z)( (50%)
(1 = 1. oD
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must be fulfilled, where G () (i =1, ... I) are some scalar pulse-transfer

functions (or polynomials) and I;; is an unity matrix of the J X J type.
Naturally, in this case both the auxilliary power-spectrum matrix

([)a ax (2. 24 ... 7 ) and the physically realizable optimum pulse-transfer-

<om

function matrix IT’ (s, A4. + .. /;) becomes a multivariable function of the

parameters /. Accordingly, instead of Eq. (51) we obtain

Doz dye o 1)) = |1~ x;: (G Gyl2) | D, (=) (51%)
vt = il Y m, i il i _c_,_/i); ol
rolil & k//,‘r. £t By it - myle) w0 N - cyl
by ft) K 1 eyt
Fig. 8

Finally, the explicit solutien formula for the semi-free configuration with
multiple constraints becomes:

[cf)a ey IIEO ) T 7 (48%)
i - ") TPL (51
¢ [(sz(~' (51 )N~ ] . [(" L)) T ]
The adjustment procedure of the parameters /7, must now be performed
in such a way that the most rigorous of the unequalities (35%) can be fulfilled.
After having determined on the basis of Fig. 8. the optimum pulse-trans-

fer-function matrix of the pulsed-data-cascade controller, the pulse-transfer-
function matrix of the series controller in the closed loop can be expressed as

Gife) = [I — Wie) W) ]~ Wid=)

if there is no feed-back controller. If. on the other hand, the series controller
is missing, the pulse-transfcr-function matrix of the feed-back controller is

Hifz) = [Wi(a) Wit~ (W)
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5. Illustrative examples

To ilustrate the proposed methods only a very simple two-variable
pulsed-data system serves as an exarmgple. Each of the two inputs contains a
useful signal component and the second one is also influenced by a white noise
component. The useful signal components and the noise component are not
correlated, while the signal components themselves are correlated. The ideal
or desired outputs are assumed as identical with the signal components of the
inputs. Only the completely-free and the semi-free configurations are treated
here.

Example 1. Let the continuous-data power-density-spectrum matrices be

) 4 i 7 7’2 A
1 & (1 8)(2-+5) 0 0
(1):& A $) = ; ([)n,v_- nds) = ' ‘
24 1 01
(2 — s)(1-+s) 4 — s |
where 00 <21, and
o ROES Dpysi(s) = 0
Correspondingly, the pulsed-data power-spectrum matrices are
2 e 24 0 (deed) 7
(I -ze T)y(1l-3"1eT) 3 (1 -z Tl —z"te2T)
(—D\,t;(:) - )
24 (1-—e37) L *lw (1—e—tT)
3 (1 -z 2T)(1—zte=T) 4 (1 ze2T)(l -z-le2T)
and

0 .
(Przl.,n;:(:) - 1(' 0 } .

0 1

Thus, after addition the power-spectrum matrix of the inputs is

A e) _ 24 (—e) T
(1 -zeT)(1 =7l T) 3 (1 —ze~T)(1 —z71e2T)
QY);:'T:«(~) ==
24 ey (P @esg
31 s ste) (1 set)(Ioztemh)
where

(U St TRy s [P
l’,_i,_e , S ) , Te (P/Q)




OPTIMUM PULSNE-TRANSFER

On the other hand

(I)rk, ilz) = @skriz(;) —+ ®r1;_.,iz(:) = [@,]:,5}:(:'.) -+ @n;,-»s;,-(:')] ~Y:’:Z(:)

because Yy, (z) = I.

FUNCTIONS

On the basis of Eq. (21) in the present case

Q)SF: SI:(:)

LAl Sl S 0
1 —ze—2T
@ (z) =
2.4 1--e81
3 2 (1 —e—2T) U-—z)
N 1-—ze—2T "1 Cze—2T B
and
B 24 1 —e3T T
12 (1—e2T) 3 /2 (1 —e27)
11 2T 1 _z—Lleg—2r
Dryry(z) =
0 g-:=""
]—z-1e-2T
where
; 1 - — . - R
f =~ [YP2P0= @ K |P PO - K] (U 7).
Here
. e 3T
Keod o e
3 I'2(1 ~em2T)
is substituted.
Correspondingly,
- R -
_Llo-zer 0
21 =)
[@r, 1 (3)]72 = ; &
R e 3T)(1 — ze~7) 1 — ze—2T
3 (1—e2T)(U -z V) U—-zV |
and
,}_:_l e~ 7! _4 (1 —e ) (1 —z1eT) 7]
V20— o) 3 (U )
[@r}xvr.&-(:)]_l = T
R
0 doer
U—z1V
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Hence
(D7 (] D if) =
[ )2(1 = e27) 24 (1—-e0) 1 _
T e 30 I ) (1 e
2 42 — p—aT2
— [_l_(l e*‘iT) P A LI__J);_,),
4 9 (1 —e2T)
0
. 1
/\ — . T
} T —=7)(— =)
Separating the physically realizable matrix component:
{[®f_z,»f;;'(;)]_l cz)fi:r i (:)]+ =
e ETEy) 24 (1= o) L -
1 —3z71e 7T 3 V21— e2T) (11— sle2T)
9 42 e a—3TY2
= l (1-— e~iT) - = A .M(_l ‘EM)W
4 9 (1-—e2T)
0
1 1
>< [N — . e
_ U —e2TV 1—z71e2T |

Finally, for the case of the completely-free configuration the physically real-
izable optimum pulse-transfer-function matrix can be obtained according

to Eq. (20) as

A 1 — =37 1 2 42 (1 — 372y T
Lo Gy Ly 20T
3 (1 —e2T) Ly 9 (1 —e2T)]
a1
W)= X e+ e | S
U—e=TF Ul |1 s1eT
242 — p—3Ty2 1
0 [ ey 2 =) ! N
4 9 (1—e2) | (U—e2TV) U—3z1F

Example 2. Taking the same starting data as in example 1, let us look at
the following plant matrix of nonminimum phase

Wile) = [B;—p C~G—>‘ '
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where g and y are positive integer numbers. Now the more complicated for-

mula (34) must be applied. The steps of the calculation are:

@y, if2) W";,j,(;ﬂ) _
2(1— ) B 24 (1—-e?T)CF
(1 —ze"T)(1 —z-1e2T)

(1 — ze"T)(l —z71e T 3

|24 (1—eT)BY 1 (l—eT)Cr
(1 — ze2T)(1 — z=1e~T) 4 (1 — ze 2Ty (1 — z—1e—2T)

3

It can easily be shown that

[(W}z(i‘) Wf’j'(fl))—]'i -

thus
YW [(Wi W ()] =
2(1 —e2T) 5" 2.4 . (1 —e=3T)z -
(1 -ze7T)(1 =71 T) 3 (1--zeT)1—31e2T)

(‘D'/’;‘il(z

24 (L—e¥h)s" Lo (e
: :e'ET)(l — 1 e”‘-’T)

(1

l
2
e

and the phvsically realizable component is

Pl )] Lo if5) W () (W) W (57 7] 2

— V?T(l __ —'3T)et”":"T 2 4 . (1 . e——:;T) S e‘“_‘_"'T 7 —

1 — zle T 3 1/'_2—(_1_“._ e*if) (1 -—1 ¢—2T)

242 1 . e—8TY2 0

= 1 (1 e—iT) 24 (1 — e37) v
4 9 (1 —e2T) |
0
e“l}’T 1
o em:}.}.. 1 =1 e—gf

Finally, following Eq. (34), the pulse-transfer-function matrix of the physi-
cally realizable optimum pulsed-data cascade controller can be determined in

4 Periodica Polytechnica EL IXN/4.
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the form:
Wen(z) =
— _aT ) -
_l_e—ﬁT i_(l_.iwl e 2T 1] — (—1—(1—-e‘47) —
B 3C (1 —e27)
. 24% (1—e=3T) B 1 . 1 1—zleT
B 9 (1—e2) | (U—eTV) U-—z1F|1—z1e2T
9 42 — 3Ty —2vT
0 L[Llg_enury 24 (A= F) e EUU S
| C |4 9 (1—e2) [(U—e?TV) U—z1F _

Hence, the overall pulse-transfer-function matrix of the whole system is

Wiz) = Wil(z) Wiz) =

[ :i.ﬁ_:_ejf)_e 1.,,‘%.(1 —emiT) —

3 (11— e27)

—2y T

2% (1 emdTp

1 1 { 1 —z1e 7T

B 9 (I—eN)] (U—e™V) U P |1 — el
2 42 __ 3Ty T
0 i(l_,__e~47) AR (e ) i e - 1 -
! 0 (I—eT) [([U—eTp) U220
In case of 3 = 0, 7 = 0 this expression is reduced to the form given for the

completely-free configuration in example 1.

Summary

It is shown here how the results obtained for continuous-data multivariable control
systems can be generalized for the case of strictly digital or pulsed-data multivariable systems.
The inputs and outputs are assumed as pulsed-data stationary ergodic stochastic processes,
The optimization criterion is the least sum of the mean-square errors between the sets of
actual and ideal outputs. Applying the so-called simplified derivation technique explicit solu-
tion formulae can be obtained in a relatively simple way. Thus, this technigue which was for-
merly proposed by the authoris now extended for multivariable pulsed-data systems, too.
Not only the case of the completely-free configuration but also the cases of the semi-free con-
figuration as well as the case of the semi-free configuration with constraints is investigated.
Two simple examples are also given for the sake of illustration.




OPTIMUM PULSE-TRANSFER FUNCTIONS 37

ot

References

. Csiki, F.: Simplified Derivation of Optimum Traunsfer Functions for Digital Stochastic

Processes. Periodica Polytechnica, Electrical Engineering. 9, 237 (1965).

(Csiki, F.: Simplified Derivation of Optimum Transfer Functions in the Wiener-Newton
Sense. Third Prague Conference on Information Theory, Statistical Decision Functions
and Random Processes, 1962.

. Csixr, F.: Simplified Derivation of Optimum Transfer Functions in the Wiener-Newton

Sense. Periodica Polytechnica, Electrical Engineering. 6, 237 (1962).

. Csiki, F.: Simplified Derivation of Optimum Transfer Functions for Multivariable Systems.

Periodica Polyvtechnica. Electrical Engineering 7, 171 (1963).
Csix1, F.: Simplified Derivation of the Optimum Multipole Cascade Controller for Random
Processes. Periodica Polytechnica, Electrical Engineering 8, 1 (1964).

. Csiki, F.: Simplified Derivation of the Optimum Multipole Cascade Controller for Multi-

variable Systems with Constraints., Periodica Polytechnica, Electrical Engineering 8.
117 (1964).

. Youra, D. C.: On the Factorization of Rational Matrices. IRE Transactions, Information

Theory, IT. —7. No. 3. 1961. pp. 172—417.

. Davies, M. C.: Factoring the Spectral Matrix. IEEE Transactions AC-8. No. 4, 296 (1963)

Prof. Dr. Frigyes Csixi, Budapest, XI., Egry Jozsef u. 18—20. Hungary

e





