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In two previous papers [1, 2] a method 'was given for the synthesis of 
sampled-data control systems wit.h finite settling time, with the help of which 
the finite settling time and the minimum statistical error can be ensured 
with respect to both the reference input and the disturbing variable. In the 
foIlo, .... ing on the one hand, the generalization of the method will be discussed, 
on the other hand the effect of the uncertainty of the parameters 'vill be 
examined. Concerning the symbols we refer to the above mentioned two 
papers. 

I. Generalization of the problem 

In the case of follow-up systems the requirement is that the controlled 
variable Y should be identical at the sampling instants t = kT ,dth the deter­
mined reference input XD(t), or "ith the useful portion f(t) of the random 
reference input xs(t) . 

YD[k] = x[k], x(t) = XD(t); (1) 

ys[k] =f(k], xs(t) =f(t) + rp(t). (2) 

Accordingly the desired transfer functions of the system are 

w, (Z) = YD ( Z) = 1 . 
D X(Z) . 

(3) 

JP: (Z) = Y~( Z) = 1 . 
s F(Z) 

(4) 

Such a system cannot be realized on account of various reasons. By the 
method given earlier [1] however we are able to design an impulse-compensator 
in such a way that the controlled variable of the closed system changes, on 
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the one hand in accordance with prescription (1) after a determined number 
of sampling moments r (settling time Ts = rT), if the reference input is of 
the order m at the maximum, i.e. 

t m- 1 

xnlt) = l(t) ----, m = 1,2,3 ; 
(m - I)! 

(5) 

on the other hand. in the case of a reference input of determined statistical 
characteristics the statistical error 

is minimum. 

1 N 
~2 = Hm --- ;5' (y[kJ - Ys[k])2 

N->= 2N + 1 k~N 
(6) 

Let us now design a system the controlled variable of which depends 
on the reference input in a more general way than that prescribed by (1) and 
(2). respectively, for the case of a follow-up system. 

On the one hand the output signal should be at the instants t = nT 
some prescribed superposition of the values assumed by the determined 
reference input at the instants t = nT, (n - l)T, (n - 2)T •. .. , (n - u)T, 

yv[n] = hox[n] + h1x [n -1] + h 2 x [n - 2]+ ... + 
(7) 

u 
+ lzu x [n - u] = ..::2 hi x [n -- i] • 

i=O 

If e.g. ho = 1, hI = hz = ... = lzu = 0, then this is a follow-up system. 
By the system of coefficients ho = 0, hI = 1, hz = h3 = ... = hu = m a 
delay of one sampling period is prescribed. The above formula can be rewritten 
in a form containing the reference input x(t), its first, second, ... , u-th dif­
ference. We insist that the controlled variable should change after the finite 
settling time Ts = rT in the way given by (7). Accordingly the required 
transfer function for a determined reference input is given by 

u 

WD (Z) = "'5' hi Zi . (8) 
i=o 

The coefficients hi figuring in formulae (7) and (8) can be regarded as 
undetermined on account of a proportionality factor. It only depends 011 the 
amplifier of the reference input forming organ, that we can ,Hite the coef­
ficients hi = Klzi in the place of the coefficients hi' The correlation between 
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the controlled variable and the reference input remains unaltered thereby. 
As ",-ill be seen later, it is adyisable to normate the coefficients as follo·ws. 

(9) 

In another form, this means that 

WD (Z = 1) = 1; WD (Z) = 1 - (1 - Z) C(Z), (10) 

where C(Z) is a determinable polynomial. With this restriction, the follow· up 
system simply means the case u = O. 

Let us similarly generalize the required controlled variable pertaining 
to the random reference input. The value of this at the instants t = nT should 
be a linear superposition of the values assumed by the useful portion of the 
reference input at the instants t = iT, accordingly 

ys[n] = Lvf[n + v] + Lv+d [n + v 1] 

kof[n] + kd[n - 1] + ... kvf[n - v] 

I .-

~ kd[n 
i=-c 

(ll) 

i] . 

If ko = 1 and v = 0, then this is a follow· up system. If kI = 1 and 
k i = 0 (i =1= 1), then the problem is to delay the reference input. If k-I = 1 
and k i = 0 (i =1= -1), then the problem is a prediction performed 'with time 
T. From this it is obvious that in the case of a random reference input the 
shifting time may also be negative. Generalization is not restricted by the 
fact that in formula (ll) the shifting time is changing between -vT and 
+vT, since any of the values k i may be zero. 

It is a demand that the statistical error ~2 given by (6) should be 
minimum. Accordingly the expression of the transfer function to be approxim· 
ated, pertaining to the random reference input is 

v 

Ws(Z) = ~ kiZi. (12) 
i=-v 

A normating subcondition can be prescribed for the coefficients k i as 
well, e.g. Ws(Z = 1) = 1. 

2. The solution of the generalized problem 

The condition of the case that the settling time is finite, even for a 
reference input of m-order is 

(13) 

2* 
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where C1(Z) is temporarily an arbitrary polynomial. Namely in this case, 
the transformed error function Y(Z) - Y D(Z) is a polynomial, assuming 
that the reference input is of m-order (or of lower order). If the controlled 
system is stable in itself, then this is equivalent to the folIo"wing 111 pieces of 
condition equations: 

[ 
dll W(Z)] = l dI1WD(Z~ 1 ,fl = 0,1, ... (m -1). (14) 

dZ!' Z=1 dZ!I JZ=1 

In accordance with our previously used symbols [1], let 

W(Z) 
11 q r 

A(Z)B(Z) = ~ a"Z" .2 biZ i 
= ,2'WiZi, (15) 

"=0 i~·1 i=1 

where B(Z) is a polynomial known on the basis of the data and specifications, 
while A(Z) i8 a polynomial to be determil~ed" The sYStem of equation8 (4) 
then take8 th(' form 

m = 1. 2, 3 : (16) 

11 

::E ka" = ---,,,-,-,,---.-:....co-, m = 2, 3 ; 
"=0 PG 

(17) 

where the expression for the parameters Pj' %j is 

q ., 

Pj= ...... ~ C~ ')' bi' j=0,1,2, 
1=] L ]. 

(19) 

as m the ca8e uf de8ignlng follow-up systems, while 

11 ., 

....., L. I '-1" %j = ..;;;;;. . l i,] - ,L... 

i=j (i - ])! 
(20) 

In the case of a follow-up system %1 = %2 = ° . 
The statistical error can be expr('ssed Ly the transformed autocorrelation 

functions in the followiIJg way: 

Rvv(Z) = rW"(Z)W(Z) + Jf7s(Z)Ws(Z) - W(Z)Ws(Z)­

- Ws(Z) W(Z)] Rff(Z) + W(Z) W(Z) Rq:<p(Z) , 

(21 ) 

(22) 
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where W(Z) = W(Z-l). We assume that the useful signal f(t) and the noise 
cp(t) are uncorrelated. From the here on the steps of the calculation are similar 
to those described or discussing the follow-up system [1], only the expression 
of the following parameters is somewhat more complicated on account of the 
more general form of Ws(Z). 

The expression for the statistical error is 

r r-l 

(2 = ~ ~ 10, l{;·, ·lVI· 
- .-;:...:;;; I IT] J 

i=l j=l 

1 r r 
-1V "" 10+ - ~ w·p·..L Q. ::> .-;;;;. I ~ lit 
~ i=l i=l 

(23) 

This is formally completely identical ,,-jth the formula for the follow-up system. 
The expression for the parameters are found to be 

(24) 

(25) 

p = v~ k. , . _Ry)(O) ..L v~ k. . R9}(O) -
I ... ITJ ., ''-;;;;' I-J " +2ki RJAO) + 

j=l J. j=l J. 
(26) 

f' i+v 

+ ~ ~ ~ k i k i +j f.l~-l Res RfAf.lh), 

(27) 

h i=-v j=i-v 

where e.g, 

R(j)(O) = [ d
j 

RfA Z) ] 
ff dZj , 

2=0 

Res RfAf.lh) = Res RfJ(Z). 
Z=/Jh 
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The parameters l\Ij and lV are the same as in the case of a follow-up 
system, the expressions for the parameters Pi and Q are, however, more 
complicated. If ko = 1 and k i = 0 (i =1= 0), then Pi and Q have the simpler 
forms sho'wn previously. 

In consequence of the formal identities the same system of linear equa­
tions for the determination of the unkno'wn coefficients Uk, as in the case of 
a follow-up system, are obtained. The practical course of the calculation is, 
therefore, not detailed here. 

3. The effect of the disturbing variable 

The output signal of the system containing a single impulse-compensator 
has a finite settling time with respect to the disturbing variable (acting at 
the output of the system), if the order of the disturbing variable is not higher 
than m [2]. In the more general case examined now, the transfer function 
pertaining to the disturbing variable, by force of (13) and (10) is 

Y(Z) 
W,,(Z) = ;'(Z) = 1 - W(Z) = 1- WD(Z) - (1- Z)mc1(Z) = 

(28) 
= (1 Z) C(Z) - (1 - Z)m C1(Z) . 

The transfer function pertaining to the disturbing variable is now not 
identical with the error transfer function. In the case of a disturbing variable 
having the form of a unit step, the transform of the controlled variahle is 
found to he 

1 
Y,,(Z) = JV;lZ) -- = C(Z) - (1 

l-Z 
(29) 

Since Y ll (Z) is a polynomial, the effect of the step-formed disturbing 
yariahle disappears after a finite settling time. This is not valid, howeyer, 
for a disturhing variahle of higher order, as is evident from formula (28), 
eyen in the case that m > 1. 

If an impulse-compensator is applied also in the feedhack loop, so as 
to eliminate or to reduce the effect of the disturhing yariahle, then the finite 
settling time and the minimum statistical error can be ensured separately 
for the reference input and for the disturbing variable. If 'we content ourselves 
with the compensation of the step-formed disturbing variahle, the method 
serving for the determination of the transfer function of impulse-compensators 
described in [2], can be employed accordingly. 
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4. The effect of the variation of the parameters. 

With the knowledge of the transfer function of the controlled system, 
the settling time of the system designed 'with the help of the method described 
in [1] is theoretically finite. In actual practice, ho'wever, the parameters 
of the controlled system are not exactly known, and neither can the impulse­
compensator be produced in such a way that its transfer function would be 
exactly identical with the prescribed value. We should also take into consid­
eration a slight alteration of the parameters of the system in the course 
of time. 

It is obvious that in consequence of a slight alteration of the parameters 
the statistical error is also modified to a small extent only, i.e. it , .. ill differ 
only slightly from the minimum value. The question arises however, how 
the transient performance of the system is altered in consequence of a slight 
variation of the parameters. \Ve shall prove that the error values occurring 
at the sampling instants are of the order of magnitude of the variations, and 
generally tend to zero with growing time. Accordingly though the system 
is not of finite settling time, still the recovery time remains finite. 

Let us examine the error sequence i.e. the difference between the actual 
and the required values of the controlled variable at the sampling instants. 

'IjJ[k] = y[k] - YD[k]. (30) 

From this the error transfer function is 

W,.(Z) = W(Z) - WD(Z) . (31 ) 

where the expression for the transfer function of the closed system is 

W(Z) = D(Z) G(Z) 
1 + D(Z) G(Z) 

(32) 

On the other hand, by expressing in view of (13) and (10) by theoretical 
quantities we find that 

W(Z) = 1 - (1 - Z)C(Z) + (1 - Z)mc1(z). 

From the two formulae the nominal expression for D(Z)G(Z) is 

D(Z) G(Z) = W(Z) 
1- W(Z) 

1 -(1 - Z) C(Z) + (1 - z)m C1(Z) 

(1 - Z) C(Z) - (1 - z)m C1(Z) 

(33) 

(34) 
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Let us now assume that D(Z) and G(Z) depend on certain parameters 
Ql' Qz,···· Such parameters are e.g. the gain factor, the time constants, etc. 
Let Q; denote the nominal value of the i-th parameter. Let us assume that 
the individual parameters are altered. to a small degree. The actual values 
are marked by a comma. 

(35) 

Then the altered. (actual) value of D(Z)G(Z) in the first degree approx­
imation is 

D'(Z) G'(Z) ~ D(Z) G(Z) + ~ [ 8D(:~iG(Z) tLlQ;­

= D(Z) G(Z) -:- :E S;(Z) .dQ; , 
; 

(36) 

where D(Z)G(Z) denotes the nominal expression and the function Si(Z) can 
be regarded as known. On substituting the former from (34), the expression 
for the error transfer function, in view of (31) and (32), will be 

W'(Z) - D'(Z) G'(Z) _ WD(Z) = 
'P - 1 + D'(Z) G'(Z) 

(37) 

(I-z)mC1(Z)+[(I-Z)C(Z) - (I-Z)71C l (Z)](I S·(Z) Llo· 
I "I 

I+[(I-Z) C(Z) - (I-Zr C1(Z)] ~ Si(Z) LlQi 
1 

On expanding in series do'vll to the linear term, 

W~(Z) = (1 - z)mC1(Z) [(1 - Z)C(Z) -
(38) 

- (1 - Z)mC1(Z)]2 ~ Si(Z).dei . 
i 

If the reference input is of p-order (p < m), then the transform of the 
error is 

P '(Z) = W'(Z) ~p(Z) = (1 - z)m-p C (Z) rJ> (Z) -L 
P 'P (1 _ Z)P 1 P I 

+ (1 - Z)2-P [C(Z) - (1 - z)m-l C1(Z)P rJ>p(Z) ~ Si(Z) Ll!?; , 
(39 ) 

where rJ>p(Z) is a polynomial of the (p - I)-order. The first term is a poly­
nomial, denoting the error component which becomes zero after the finite 
settling time and which also arises in the ideal case. On most occasions, the 
second term is not a polynomial since Si(Z) is generally not a polynomial 
hut a rational fractional function. Accordingly this term descrihes an error 
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component appearing at the sampling instants also after the elapse of the 
settling time. This error component, ho"wever, is proportional to the small 
deviations Llei' hence it is small in itself as was stated earlier. 

Let us also determine the steady-state error. According to the limit 
value theorem of the discrete transformation, 

VI; [=] = lim V~ [k] = lim (1 - Z) P; (Z) 
k-;.= 2-+1 

On employing this in formula (39), 

1Pl [=] = 0, m = 1,2,3; 

1J!2 [=] = 0, m = 2,3; 

(40) 

(41 ) 

(42) 

1J!3 [=] = ~ [lim C2(Z) Wp (Z) Si (Z)] JQi' m = ~ _ (43) 
2-..1 

The steady-state value of the actuating error is accordingly zero in thp. 
case of a step function or of a ramp function reference input, while in the 
case of an acceleration step function reference input it is finite, but proportional 
to Ll (!i , hence small. 

It follows from the preceding that the system with theoretically finite 
settling time -will not in reality have a finite settling time. The errors appearing 
at the sampling instants however have the same order of magnitude after 
the elapse of the settling time as the deviation of the parameters from their 
nominal value. We should therefore have no fear that the system with finite 
settling time ,viII perform in reality "quite badly" in consequence of the 
uncertainty or alteration of the parameters. 

5. A numerical example 

Let us assume that the transfer function of the controlled system is 
given by 

G (s) _ Ko 
S - s(sTo + 1) 

(44) 

The task is to design a follow-up system the settling time of which 
is minimum and which follows only a step function reference input ·without 
steady-state error. The nominal parameter values are 

ko = 1, 0 = 1. (45) 
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By omitting the details of the calculation only the results are given 
here. The following cases were examined: 

1) Ko = 1.0, 
2) Ko = 0.9, 
3) Ko = 1.0, 

8=1 (nominal values); 

8 = 1; 
b = 0.9. 

0,50, 

o/'j 
0,25 

0, 

-0,25 

-,0,50, 

-0,75 

-Wo, 

010 

A&f 
. I 

0, 

005 f-._ ..... __ ._ ... 

o 

-0,05 

i/J'a 

2 J 

Fig. 

-o,fO~--~--7-----------·--~--~ 

-QI5L-__ ~ ________________ ~ __ ~ 

5~I!T 

0, 2 3 4 5-I!r 

Fig. 2 

The error signal was determined 
a) in a not ripple-free system, 
b) in a ripple-free system. 
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The curve 'ljJla = Yla - 1 in Fig. 1 represents the error signal of the 
not ripple-free system in the nominal case, while the curve VJ1b represents 
the same signal, if Ko = 0.9. Since the overshoot is smaller, this case is even 
more advantageous in practice. 

The corresponding curves for the ripple-free system are also illustrated 
in the figure. Here dynamical characteristics are already impaired by deviations 
from the nominal value. 

For a better demonstration of the effect of parameter variations, we 
have charted in Fig. 2 the difference between the actual and the nominal 
errors. In accordance \\'-ith the parameter variations of 10 p.c., the order of 
magnitude of the absolute value of the error differences ;\-ill be 10 p.c. of the 
maximum error value. It is evident from the figure that the error differences 
are decreasing rapidly, as we have already proved theoretically. 

Summary 

A method has been given to design a sampled-data control system the settling time 
of which is finite and the statistical error is minimum. The required transfer function pertaining 
to the determined reference input may be an arbitrary power series in terms of Z, with finite 
number of terms, while the required transfer function pertaining to the random reference 
input may be an arbitrary generalized power series, with finite number of terms. On deter­
mining the transfer function of the closed system and of the impulse-compensator a similar 
system of equations is to be solved as when designing a follow-up system, only the coefficients 
should be calculated in a little different way. The procedure is also applicable in the case of 
separate compensation for the disturbing variable. 

It was proved that the error of the system having theoretically a finite settling time 
is small and tends to zero on most occasions, even in the case when the system parameters 
deviate a little from their nominal values. On the whole. the sampled-data control system 
with finite settling time is not more sensitive to the variation of the parameters than the 
system of continuous operation. 
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