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Introduction

The propagation rativ of transmission lines is generally calculated on the
basis of the Kelvin Telegraph Equations, which are equations for the voltage
and current of the transmission line. The Kelvin Telegraph Equations can also
be obtained on the hasis of KIRCHHOFF's equations written for a sectiou of the
differential length of the transmission line, as well as directly from Maxwell’s
equations. Iu neither of these methods is the axial displacement current in
the dielectric taken into consideration, arising in the case of a lossy lead.
Transmission lines were examined on the basis of the electromagnetic field
by Mie [1]. Mie has solved the problem of .two leads having an identical
cross-section and material in the bipolar coordinate system.

In the following the calculation of transmission lines on the basis of the
electromagnetic field, but differing from that of Mie, will be presented, where
known resultsare obtained from the boundary conditionswritten for the electro-
magnetic field. On the other hand the limitations of known methods of calcu-
lation will be pointed out. In this theory the axial displacement current is also
taken into consideration and the examination of systems consisting of leads
having a different cross-section or material, or of multileads systems is similarly
possible. In theory voltages and currents have a role only as quantities exciting
the field. Consequently reflexions can be calculated with this method only
indirectly. The electromagnetic field of the transmission line is built on the
theory taken from the Sommerfeld surface waves,

The Sommerfeld surface wave

The Sommerfeld surface wave is the cylindrically symmetrical electro-
magnetic field of current I flowing in a cylindrical lead of finite specific
conductivity [2], [3]. The equation describing the electromagnetic field can be
obtained by determining a solution of Maxwell’s equations in eylindrical
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coordinates, with such a eylindrically symmetrical Tm mode, by which the
time variable is sinusoidal and in which a travelling wave of propagation ratio
» is described in the axial direction, ie. in the direction of the coordinate .

The so obtained seolution is
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where & denotes the permittivity of the dielectrie medium surrounding the

1—j

g

the complex permittivity

lead, o its specific conductivity, & == ¢
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containing the specific conductivity too. and u the permeability. Z (x) and
Z (x) arc the zero order and first order cylindrical functions, respectively, the
solutions of Bessel’s differential equations of the zero and first order.

Equations (1) and (2) should be written separately for inside the lead
and for the field outside the lead, while the propagation ratio v is identical
in both parts of the space. Equations written for inside the lead are discussed
in detail in the literature on skin effect [3]. Consequently this subject will not
be discussed here in detail, only some results will be made use of. On writing
the quotient of the tungential componenis of the electric and magnetic field
strength (E_ and H. vespectively) for the surface of the lead. on the bazis of
the field inside the lead. we find that

E. _p Julpa) (3)
H, o, Ji(pa)

Here
pl= — jouc, (4)
In equation (3), J,(x) and J;(x) denote BessgL’s functions of the first kind.
and first order of the zero respectively, o.. 1, and a the specific conductivity
permeability and radius of the lead, respectively. The expression for p® as given
in ecuation (4) is valid if the displacement current in the lead can he neglected
in comparison with the conduction current. This condition is valid with good
approximation in the case of the usual lead materials even at a frequency of
several 10 Hz. The H;value arising at the surface of the lead can be expressed
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by the current in the lead, on employing the excitativn law, as

Equation (5) is naturally correct. if H,_ is written either from the equations
valid inside the lead, or outside of it. Upon substituting (5) in (4} we find that

E 12 L0 _pp oLy =1.7 (6)

T e o e '
The inside impedance Z, of the lead on taking the skin effect into account.
relating to the unit length of the lead is defined by the relationship (6). The real
part of this is the internal resistance of the lead R,. the imaginary part is the
internal reactance. while L, denotes the internal induction coefficient. These
values are independent of the propagation ratio -~ as leug as (4) i= velid. For the

numerical determination of Z, an easily manageabie formula can be deduced
on the hasis of (0).

Formula (6) has been written on the basis of the field inside the lead.
The tangential components of E and H [E.. T“!) are continuous on the surface
of the lead. Consequently the quotient E. H_is siwilarly continuous. It follows
from this that E. as written in equation (6) cau he made equal with the value
E. as calculated frem the field outside the iead at the point r == . In the later
course of the calculation, the field inside the lead or leads is 1aken into acecount
just because of the relationship between the value E. arising at the surface of
the lead and the current I in the lead. as given by equation (6). In the case
of several leads the assuniption ix that the electremagnetic {ield inside the lead
is distorted only to a negligible extent by the field of the neighbouring leads.

Outside the lead. the boundary condition for the infinitely large radius

can: be satisfied if

—
-L]

where HY(x) denoies Hankel’s function of the n-order and of the first kind.
The constant C figuring in (1) can be expressed by the current I of the lead.
when using (5) and (7).

g 1

C=1 (8)

Jjowe, 2ma HY (ga)

Let us write eqguation (0) taking (1). (7) and

o ) (g
£ 1 M o
jowe, 2za  HY (ga)

(8) into consideration.

g
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(9) is a transcendent equation for g, from which the propagation ratio y can
he obtained on the basis of (2), when determining g°
In practical cases g is at least one order of magnitude smaller than the

phase factor of the plane wave propagating in the given medium. Thus, if <€ /
. a

(where 7 denotes the wavelength of the plane wave), then ga <C — << 1. Con-
A

sequently HANKEL's functions can be appreached by their approximative small
argument expressions.

X

HLP (x) 7 L In (—mjix)
T
m = 0,890536. . . (10)

.
H (1) 7o = =L

=0 ax
By approximating (10), relation (9) is simplified.
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— ———In(— mjga) = Z, (11)
Jjowe, 2
The conduction current of the lead of the Sommerfeld wave is clesed off by
the displacement current outside the lead.

The eleciromagnetic field of Lecher’s lead

Lecher’s lead consists of a pair of cylindrical leads, which have identical
radius and are made of the same material (Fig. 1). The radius of the leads
is designated by a, the distance hetween the axes by d. The current I flowing
in one of the leads returns thrdhgh the other. The resultant field is produced
as the superposition of the fields of the two leads, with the assumption that
the distribution of current density in one of the leads is influenced only to
a negligible degree by the field of the other lead. This is the case if d < a.

On the basis of the aforesaid, the value of E, at the point P being at
distances r; and r, from the two leads, is on considering formulae (1), (7) and (8),

g 1

E.=J]—-=% HD (g7} — HW ar, 12).
T Gy 8 6r) — HE (5] (12)

Let us write equation (6) for the surface of the lead designated by 1, on the
basis of (12). r, = a, ry ~~ d.
g 1

E.=17Z, == HY (ga) — HY (ed)] =1 (Z2,, —Z 13
z b o, 2.7‘avH§1) (ga) [ o (ga) o (g )] (£, 12) (13)
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where Z;; denotes as a definition the exact value of the self-impedance of the
lead designated by I, and its approximative value, on the basis of (10), is
found to be

g 1 HYg g

Z, = Fo E—1In(—mjga 14
H joe, 2ma HEY («d) Jjwe, 27 ( jee) (19

On defining the expression for the mutual impedance Z,, is similarly,

g HP (gd — g
Z,, = —= o (2d) rz ——=—1In (— mjgd) (15)
jwe,  2ma, HY (ga,) Jjwe 2z

Z,, and Z,, denote the impedances per unit length of the lead.We have written
in formula (15) the subscript 2 below radius a, taking into consideration that

Fig. 1

this is the guiding radius of the lead designated by 2. The approximative
expression for Z,, can be employed, if d < 2.
On the basis of (14) and (15). on substituting the approximative
expressions for Z;, and Z,, into formula (13), we find that
g° d
Zy=12y —Zy=—""—In— (16)
Jjwe 2 a
On the basis of (16) g> can be determined and thus we obtain 32 from
relationship (2). As a consequence of the symmetry of the leads, when writing
equation (13) for the lead designated by 2, we again obtain (16) (Z,, = Z,,).
With the self-impedance defined in (14). the relationship corresponding
to formulae (9) and (11) written for the Sommerfeld lead, is found to be

Zn = Zb (17

The reciprocal value of the multiplier of g2 figuring in formula (16) can
be expressed by capacity C between the leads and by the conductance

LT = o S —jC 4+ 6 (18)

In — In— In —
a a a




On expressing g2 from (16) and taking formulae (5) and (7) into considera-
tion. we obtain
g = (R, - joL,)(joC + G) (19)
The external inductivity of the two leads is given by
7 d
L,=""1n-— (20)

3
T a

The expression for A figuring in formula (2) ecan be written according
to (18) and (20) in the form

R =jowe. jou=joL, (joC -+ G) (21)

Substituting (19) and (21) into formula (2) the value of 1 can be determ-

ined.

>

vt =[2R, +jo (2L, — L,)] [G + joC] (22

Relationship (22) is identical with the expression for y as determined
with the help of the Kelvin Telegraph Equations. The electromagnetic field
of Lecher’s transmission line is essentially the sum of two identical Sommerfeld
surface waves advancing in opposite directions to each other. Consequently
in the case of Lecher’s transmission line the total displacement current flowing
in the dielectric medium in the axizal direction is zero. Thus, by neglecting of
displacement current, as was done during the calculation on the basis of the
Kelvin Telegraph Equations, it supplies Ly a certain approximation a correct
result. The accuracy of the approximation depends on the accuracy of appro-
ximating the Hankel functions figuring in formulae (14) and (15) by the
expressions given in (10). If we want to write for g° an equation more accu-
rate than that given in (19), we should approximate H(!) (gd) figuring in
(13) more accurately than by formula (10). The more accurate approximation.
on considering the following term too, is given by

2y x2 . .
HY () = 2L {1 — ~—J In (— mjx) (23)
x—0 T 4

Considering (23), we obtain from (13) that

B o (— mjgd) (24)
d

4 In—

a

2 (R, + joL,) (joC + G) = g2|1 —

Relationship (24) is a transcendent equation for g Solving this and
substituting the solution into (2) we obtain an expression for ;> more accurate

than that given in (22).



)
St
~1

THE THEORY OF TRANSMISXION L]JNEN

Two-lead iransmission line of asymmetric arrangement

Let us now examine the case when the equality of the radii or of the
specific conductivity of the two leads is not set as a condition.

We shall later see that it cannot be presumed in general that the current
in the two leads differs only in the sign. The Sommerfeld surface wave lead
is the example that the conductance current of the leads is closed outside the
lead by a displacement current. Thus, the equation of continuity is not injured
even if the total current of the leads at a given cross-section is not zero.

In the follewings our calculations will be limited to that case when the
approximation (10) iz valid for the Hankel functions. The characteristics of
the two leads will be designated by the subscripts 1 and 2 respectively.

On writing the value of E, for the surface of the lead, similarly to for-
mulae (12) and (13), by considering what was mentioned in connection with
equation (6). we find that

Lz,=12,~+12,
(25)
L,Z,=12, +1,Z,

where I, and I, designate the current in the leads, Z;; and Z,, the interna
impedance of the leads, Zy;, Z;; and Z,,, Z,, the self and mutual impedances
as defined by equations (14) and (15). Taking the approximation (10) of the
Hankel functions into consideration. so Z, = Z,,. Assuming that [, = I,
we generally obtain two different values for g2 i.e. the two equations are contra-
dictory. If only the equation obtained from the difference of the two equations

is satisfied, then it can already be assumed that I, = —I,. The equation
obtained in this way is, on considering (14) and (13),
Zyy Ty =Ty - Ly — 2Ly =& 1 26
m T Loe T Ly T Las T Sbpe T n (26)
joeg Va, e,

where a,, ¢, denote the radii of the respective leads and d the distance between
their axes. The reciprocal value of the multiplier of g* as figming in (26),
similarly to (18), is

jwe, 7

d

V a; a,

=juC + G (27)

In

Expressing »* from equations (2), (21), (26) and (27), we find that
7= [Rlu + Ry +jor (L + Ly, + Lbz)] [G —{-ij] (28)
Formula (28) can be obtained from the Kelvin Telegraph Equations. This

means that in the case of asymmetric leads the solution supplied by the
Kelvin Telegraph Equations contains an approximation, since the two equations
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given under (25) are not individually satisfied, only the differerice between
the two.

(25) is a homogeneous linear system of equations for I; and I,. This has
a solution different from the trivial one, if

(Zn - Zbl) (Z2-2 - sz) - ;22 (29)

{29) is a transcendent equation for g°. In the case of Lecher’s transmissicn line

Zpy == Lo = Zy, Zy, = Zny, thus
Zyn—Z2y=%=2y

11

By putting the positive sign at the right side of the equation we obtain
(16). For the interpretation of the solution valid for the case of a negative
sign we shall return later.

By substituting (29) into some of the equations given under (25) we
obtain the ratio of the two currents.

I — V Zoy — 2y (31)
Iz | le - Zbl
In the case of Lecher’s transmission line
L ==1 (32)
I,
By using the upper sign we find that I, = —I,. This is just the case

discussed in the previous chapter.

By taking the lower sign I, = IL,. In this case the pair of leads transmits
a Sommerfeld surface wave by essentially forming a single lead. Different
propagation ratios belong to the two current ratios,

If the leads are asvmmetric, then we obtain two different current ratios
again by taking the two different signs in (31). but the magnitude of the currents
is generally not equal. By taking the upper sign, as in the case of Lecher’s
transmission line I, = —I,, the examined mode will be called the L-mode,
while the mode corresponding to the lower sign is called the S-mode.

The g* values pertaining to both the L and S-mode can be deterniined
from (30) (gi, 23). Substituting these values into (2), the two 3* values can
be obtained.

yi=k+g
vi =k + g

Naturally different Z,,, Z,,, Z;, values belong to different g> values.

From these the ratio of the currents can be determined for the two modes.
/ Z22L - sz Ils / Z-z‘zs - Zb2

93 Ly —Zy Iy | Ziis — Zn
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On the basis of formula (34), the equations of the waves expanding in
direction z are given by
il (3, t) — IIL e—:',_Z-'rjwt -+ Ils e—'/sZ—I—-jc)l‘
(36)

i, (1) = IlL_-—.lLe—""Lﬂ‘”t +1I,,4, el Tiet

The degree of the establishment of the L and S-mode in a given case
depends on the kind of excitation. If the transmission line is excited from its
voltage sources and it is not specified that the currents in the two leads at
the feeding puint should be equal whereby the problem would become redun-
dant, then only the L-mode comes into existence. If only one of the leads is
excited by a current generator, while no excitation is acting on the other lead,
then only the S-mode comes into existence. If, in turn, both leads are excited
by a current generator and the values of currents flowing in the leads at a
given place are specified as I, and I, then generally the L and S-modes jointly
come into existence. Let the given place be z = 0. Then in view of formula (36),

L =1, + 1 (37)
1
Iz =TIy A -+ &Ils—”is

Frem formula (37) we obtain

L=ttt g LoAd (38)
A, — A, A, — A4,
In the matrix equations (37) and (38)
I=A41, I, =471 (39)
where
=[5 L[ 0
I, I
and
G )
A; A A— A4, | —4, 1

Multi-lead systems

In the case of multi-lead systems the value E, can be written for the
surface of each lead as the sum of the E, values produced by all the leads,
that is equal to the current in the lead multiplied by the internal impedance
of the lead (similarly to equation (25). If the number of leads is designated
by n, the equation which can be written for the k-th lead is given by

Lz,=12Z,+1,Z,,+...+1,Z4+...~1,Z, (42)

4 Periodica Polytechnica EJ, VITI/3.
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The equations written for the surface of each lead supply a homogeneous system
of equativns for the I values, consisting of n equations. This system has a
solution different from the trivial one if

; Z11 - Zbl le s Zm
D = Zy Loy — Zsy ... Zy, = (43}
Zrzl ZnQ v Znn - Zln

where Z;, denotes the internal impedance of the leads as calculated by equation
(6). Zy, the self-impedance defined by equation (14) for the k-th lead, while
Z;; the mutual impedance between the k-th and j-th leads as determined
with the aid of (15).

— 1)'2

:Z =]
L
joe, 2w

In (— mjgdy) (44)
where dy; denotes the distance between the axes of the k-th and j-th leads.
The g values can be determined from (43). The numerical calculation is
cumbersome since (43) is a transcendent equation. The equation generally
has n roots. Thus, we generally obtain n values for »* too. This means that in
a system consisting of n leads generally n modes come into existence, all having
different expanding ratios. A determined current ratio belongs to every mode.
Let the Greek letters «, 3, .. .. » designate the different modes. The current
ratios pertaining to the k-th mode can be determined from the expression
Dy, arising in the case of the k-th mede for D. The quotient of the currents
of the 1-th and k-th leads is the quotient of the minor pertaining to the 1-th
and k-th clements in the last row of Dy,

n
Lo Db, (15)
Il:i: Jir8

This means that in the case of a given mode, by preseribing the value
of some of the leads, in the present case that of the lead designated by 1. all
the other currents have a determined value. .

Equation (39) can be generalized for the case of several leads. The currents
of the individual leads can be summarized in column matrix I in the case of
a given value ~ Similarly the currents pertaining to different modes of the
lead designated by 1 this can be summarized in a column matrix I,. From 4
a square matrix can be formed

I, I, 1 1 1
I, I , , )

I— :.. Il — 1.5 4 — :1.2,1 fizﬁ. . .:121, (—16r
In ,I.h; -’_lnu thp" . "4,'11,-7
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The correlation between I and I, is given by
I=41, I,=4"1 (47)

In the case of a given I the values of I, helonging to the various modes
can be determined with the help of (47). These are all expanding with different
+~ expansion ratios, Consequently the ratio of the currents in the leads depends
on the z coordinate. At a given place z, the i(z) values can be determined
on the basis of (47) from the i,(z) values,

Ila g—‘/‘az
. Igem% | .
L(z)={ - i(5)=41,(3) (48)

L ez
I,.e

The case of multiple roots, ideal leads

Our considerations so far were concerned with the case when equation
(43) has n pieces of different roots. If the equation has identical roots, the
number of expansion ratios is less than n. At the mode belonging to a doukle
root, the value of the current in the given lead does not determine the other
currents on the basis of (45). On this occasion the given mode is possible in
the case of as many arbitrarily chosen current values as the number specifyving
the multiplicity of the root indicates. Actual current values are determined
by the excitations. The case of the multiple roots will however not be discussed
in detail, only a special case, the conditions of the ideal lead will be examined.

In the case of ideal leads the internal impedance Z; is zerc. The Sommer-
feld surface wave does not come into existence in this case. Consequently
the conditions of ideal leads can only bhe discussed as limit cases.

In the case of Z; = 0 and of Lecher’s lead we obtain for g° zexo from (19).

In the general case g® == 0 is also a solutivn of (43) where 0 is an n-fuld root.
By substituting the value g° = 0 into equation (21) we ohtain for the expansion
ratio that
v=2hk=2Ljolue, (49)
In the case of an ideal lead the expansion ratio is identical with that
occurring in the given dielectric medivm for plane waves. In the dielectric
medium no displacement current flows in the axial direction, consequently
the total current of the leads should supply zero inagiven cross-section. Actually
arising current values are determined by the excitation.
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Approximative calculation of pairs of leads

The numerical solution of equation (43) is cumbersome. If several parallel
pairs of Lecher's leads are arranged in the space, a simpler not transcendent
equation can be deduced from (43) with the same approximation as in the case
of asymmetric pairs of leads in equation (26) an approximation in comparison
with (25) and (29) respectively.

Even when the individual pairs of leads are of symmetrical arrangement,
even in that case, the electric conditions will be asymmetric depending on the
arrangement of the other pairs of leads. Let us first examine a system consisting

o

of two pairs of leads (Fig. 2). The currents in the first pair of leads are designated
by I,;, I,,, while in the second pair by I,;, I,,. Radii a;;, ay,. distances r;), 1y,
b, by, d,, d, are indicated in Fig. 2.
Let us write the equation (42) for the E, values arising at the surface
of the individual leads, by considering (14) and (44).
— g2 . . I
1,2y = —=—[I,; In{~ jmgay;) + I}, In (— jmgry;) +
jowe, 2x
+ Iy In (— jmgb,) + I, In (“jmgdl)]
1,7, —.;g:_'[‘[llln(—jnzgrll) + I,y In (— jmgay;) +
joweg 2

Il

+ Iy In (— jmgdy) + Ly In (— mjgb,_,)]
I, Zy, = __:__5”__ [In In(— jmgb,) - I,,In(— jmgd,) +
jwe, 2
+ Iy In (— jmgay,) + IppIn (~jmr22)]
Iy, 2y = _’:‘_g':“ [1;;1n(— jmgd,) + I, In (— mjgb,) -+
Jwe 2w
+ Iy In (— jmgry) + Iy In (‘“jmgazz)] (50)
In the following the approximation will he employed, in which I,; =
= —1I,, = I, and I, =—I,, = I,. In this case the 1st and 2nd equations
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given under (50), and similarly the 3rd and 4th equations, generally become
contradictory. As to avoid contradictions in the employed equations, all the
four equations under (50) will not he satisfied separately. On deducing the
1st and 2nd equation, and the 3rd and 4th equation under (50) one from the
other, we obtain two equations. The satisfaction of these two will not be
contradictory with the above approximation.

o2 i
1,22, =5 — [11 In L 7, In ’22] (51)
Jwe T Iy Qoo
o2 | T T
I22Zb2:‘;lIlln 2 I, In 22:[
joe, a5, Ass

where
Ty == le dy, a,= ] b, b, (52)

By generalizing formula (51) for a system consisting of n pairs of leads, the
equation written for the k-th pair of leads is given by

2 e Top -
IRQZb,:z—_g—[Illn—ﬂ;TIgln—ii+-...-{—InInL" (53)
J W&, @1k Qo @y,
Writing equation (53) in the form of a matrix equation,
o2
—=—M —Z,|I=0 (54)
Jwe,
where
I, Zy, 0 .0
I, 0 Z,...0
I= Z,=2
-In 0 0 an
B r ¥ Ty,
In—tL  In 22 In 17
ayy s Ay
T Ty r
In—3  In-—32 In 22
M= @y Qg o (55)
].Il Tn 1 111 ! .n 2 111 rn n
[ a‘nl an? a‘nn ]

(54) is a homogeneous linear system of equations for the I values. This has a
silution differing from the trivial one, if the value of the determinant formed
from the coefficients of the equations is zero, i.e.

o2 i

& M-z, =o. (56)

joe, |
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Equation (56), contrary to (43), is not a transcendent algebraic equation
of n-order for g*. The equation generally supplies n pieces of roots, That is to
say, by the approximation described here the number of roots has been reduced
from 2n to n. On the basis of (2), to each root of g> a * value and a mode
pertains. Similarly as in the case of relationship (47), given currents can be
decomposed in accordance with their mode and thus the expansion of the
waves can be calculated.

As we shall show in a paper to be published later, equation (56) can be
deduced from the Telegraph Equations generalized for systems of leads, just
the same as equation (26) can be deduced from the Telegraph Equations. The
deduction from the Telegraph Equations has the advantage compared to the
calculation method presented here, that there the voltages are also figuring.
Thus if voltages at the beginning of the transmission line are given, further
if we want to calculate the reflexion of transmission lines, the calculation on
the bhasis of the Telegraph Equations is more adwsable. The deduction of
equation (36), however, has shown the degree of approximation when using
the calculation based on the Telegraph Equations instead of the previously
discussed more precise calculation.

Summary

The theory of transmission lines consisting of cylindrical leads can be discussed on the
basis of the electromagnetic field, as the superposition of the Sommerfeld surfaces waves of
the individual leads. In the case of Lecher’s pair leads of, if the radius and the distance of the
leads are negligible in comparison with the wavelength, the approximative expression for the
expansion ratio is identical with the result obtained from the telegraph equations. In the
course of calculations performed with the help of the Kelvin Telegraph Equations the axia
displacement current in the dielectric medium is neglected. In the case of leads of different
radii or materials, if the axial displacement currents are taken into consideration, it becomes
evident that the currents in the leads are generally not identical. In the case of a multi-lead
system the number of modes with different propagation ratios pertaining to waves expanding
either in the positive or negative direction is identical with the number of the leads. At each
mode the ratio of the currents in the leads is a determined value. Accordingly in the case of
given currents, when caleulating a system of leads, currents should be decomposed to modes
and if necessary, at a given place, modes should be composed. In the case of ideal leads values
of different expansion ratios coincide and are identical with the expansion ratio arising in
the case of a plane wave in the dielectric medium.

The described method has two difficulties in the course of practical calculations. One
is that transcendent equations are to be solved by numerical calculations. The other is that
voltages are not figuring directly in the equations, consequently the calculation of the reflexion,
the input impedance in the case of a given termination is cumbersome.
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