THE SYNTHESIS OF SAMPLED-DATA CONTROL
SYSTEMS WITH FINITE SETTLING TIME

By
Gy. Fopor
Department for Theoretical Electricity Polytechnical University, Budapest

(Received June 26. 1962)
Presented by Prof. Dr. F. Csixr

1. Survey of designing methods

Two methods have been evolved for designing impulse-compensated
sampled-data control systems. One of the methods can be called deterministic,
its main point is the following: The change in time of the input signal is regard-
ed as given and the change of the ouput signal with time is examined. Typical

input signales are

i 1 R
x (1) =1t), x () =1@)-t, x(t)= — e, (1)
i.e. in the general case
Y (t) = l(t) ——1— -t m = 1:2-,35 (2)
(m—1)!

where m denotes, also in the following, the ordinal number of the determined
input signal. The v(t) output signal of the system is examined in respect of
transient performance. To do this it is advisable to introduce the difference
of the actual output signal v(r) and of the desired output signal v (1). the error-
signal

p(t) = v(t) — v (o). (3)

In the case of a follow-up system v(t) = x(t). The data characterizing the
transient performance are e.g. the following: settling time 7T;; maximum
overshoot [#(f) | ma: maximum overshoot inrespect to sampling time [y(kT)].x,
where T is the period time of sampling: the square integral of the error

O = | (1) dt, (4)
0
or the quadratic sum of the error in the sampling moments

92 = N2 (kT). (3)
k=0
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A recurrent requirement is that the settling time should be finite. This
may pertain either to the sampling moments only, when

plk] = wkT) =0, k=T JT, (6a)
or it can be prescribed for the continuous actuating error, too:
pt) =0, t=>T,. (6b)

This requirement means a restriction in respect to the form of the trans-
fer function of the closed system [8, 11, 12].

The second designing method can be called stochastic when the input
signal is regarded as random, having known statistical characteristics. Be the
input signal the sum of the control input f(t) and of the noise ¢(r)

x(t) :f(t) 5 (P(t) — e < < ==, (7)

The required y,(f) output signal is a function of the control input f(¢).
In the case of a follow-up system y(t) = f(t). By defining the error again in
the form

() = (1) — ¥(0) (8)

and by assuming a stationary control input, the problem is the evaluation
of the stationary expression for the error. That system is usually regarded as
optimum for which 2, the quadratic mean value of the error series is minimum,
where

1 N
V=lm — % [k
’ \Lni 2N -1 —_ 7 [ ] (9)

o
(32
I
€,
135
Ex
~

1 7
R=—

Various methods are known for determining the transfer function of the
closed system, satisfving the above condition [3, 12].

2. Formaulation of the problem

The performance of a system designed according to the deterministic
method is naturally not good in the case of a random input signal and the
effect of the noise cannot be taken into account at all. Beyond these a trouble-
some effect arises which does not occur in the case of continuous systems.
The output signal of a system tuned for an input signal of higher order (m =
= 2, 3) in the case of an input signal of lower order contains strong over-
shoots. This effect can be reduced at the price of increasing the settling time
in such a way that additional parameters are adopted. Afterwards these para-
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meters are determined e.g. in such a way that the square integral of the error
©? or the quadratic sum of the error J? should be minimum [2, 5]. Other
conditions can also be prescribed, these are, however, more difficult to handle
mathematically [10, 13].

Systems designed by statitical methods, in turn, have not the favourable
characteristic which in case of a defined (e.g. constant) input signal that the
steady-state error should become zero within a finite time. We can state that
systems designed by this method have bad transient characteristics.

In the following the question will be examined, how the two designing
methods could be coupled. Hence, the problem can be formulated as follows:
For the closed system a transfer function should be determined which charac-
terizes a system having the following features:

1. The complete system is stable

2. The compensating elements can be realized

3. In the case of an input signal x,(t) of determined order, the steady-
state error becomes zero after the elapse of a finite settling time T, namely
a) only in the sampling moments, b) at every moment (ripple-free system).

4. In the case of a control input and noise of determined statistical
characteristics the quadratic mean error {* should be minimum.

5. In the case of a high-order input signal tuning, no excessive overshoot
should occur in the case of an input signal of lower order.

From the above requirements the fifth one cannot be defined unequi-
vocally in mathematics. In the given cases it should be individually decided
whether the arising overshoot is permissible or it should be reduced at the price
of increasing the settling time.

X

The build-up of the examined control system is shewn in Fig. 1. G; is
the controlled svstem, Gy is the hold circuit and D is the symbol and transfer
function of the impulse-compensator, respectively. From the point of view

-~ — 1y
7\-@—7

Fig. 2
g

of the transfer function, our results can be applied for the system shown in
Fig. 2 as well which contains two impulse-compensators. From the point of
view of eliminating the sustained effect of the disturbing signal, this may be

1%
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more advantageous [7], the effect of the disturbing signal, however, will not
be examined.

To ensure perspicuity, the question will not be discussed generally, but
it will be assumed that the control input f{t) and the noise ¢(t) are independent
of one an other; more exactly they are not correlated. For the sake of simplicity
only the follow-up systems will be examined.

3. Calculation procedure

The most convenient method of calculating impulse-compensated samp-
led-data control systems is the one or two-sided discrete Laplace transform-
ation. Be the variable of the Laplace transformation s, then the variable of the
discrete Laplace transformation will be z = ¢’", where T is the period time
of sampling. As series expansion is generally carried out in respect to the
powers of =%, in the following the variable

=z l=¢"" (10

will be used. The basic correlation of the one-sided discrete Laplace transform-
ation, or Z-transformation is

2f)=F(Z) = SfT) 25 = Sf[k] 2%, (11)
k=0 k=0

while that of the two-sided transformation

o

Zf)=FZ)= X flk]ZF=

= N[k 2"+ Xf[- K Z = f[0]. (12)

For statistical calculations the autocorrelation and cross correlation
series are defined:

N
rouln] = lim E\I__I PO (13)

¢\7
ro[n]= lim———l——— N x[k] x[k <4 n]. (14)

New 2N =1 22y

and the two-sided :Z-transforms of the same, as formed on the basis of equation
(12):
o (Z) = Z 1y (15)
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The expression of the transfer function of the closed system shown in
Fig. 1 is

W(Z) = Y(Z) _ D(Z)G(2) ’ (16)
Z(Z) 1 —D(Z)G(Z)
where in the case of a hold circuit of zero order
, 1 —esT . _
G(s) =G, (s) G, (s) = ——— G, (s). (17)
s

If W(Z) is already known, the expression for the transfer function of the
impulse-compensator will be )
1 Wz
Dz =-+ W4 (18)
GZ) 1-W(Z) )

To the statistical synthesis, the prescribed transfer function W, (Z) is
introduced:

Y(Z) = W(Z) F(Z), (19)

where Y (Z) = Zv,(t), F(Z) = Zf(t). The system having the transfer function
W, (Z) would, therefore, produce the required output signal from the control
inputs in the sampling moments. The actual output signal will be different as,
on the one hand W(Z) == W (Z). on account of the other assumptions, and
on the other hand at the input side noise is also acting beside the control input.
It can be proved [12], that the quadratic mean of the error series as defined
under (9) will in the general case be

- 1 "B EZ_ 9

9 »
P
]C

where curve Cis the unit circle of the Z-plane, further by using the designation
(Z) = Wz (21)
R,(Z) = [W(Z)W(Z) + W(D)W(Z) — W(Z)W(Z) —
— W(Z)i7 (2)] Eﬁ(Z) ~ [W(Z)W(Z) — W(Z)I??'O(Z)]qu(Z) + (22)
+ [W(Z)W(Z) — W(DW(Z)IR {Z) + W(Z)W(Z)R,,(Z).

On the basis of our simplifving preconditions P:f,;(Z) = R, (Z) =0,
further for the case of follow-up systems W (Z) = 1, consequently equation
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(22) is reduced to the following form:
R,(Z) = [W(D)W(Z) + 1 — W(Z) — W(Z)IRHZ) + W(Z)F(Z)R,,(Z). (23)

This expression should be substituted into equation (20).

4. Satisfying the deterministic prescriptions

From the point of view of mathematics our problem can be formulated
in this way: The transfer function W(Z) of the closed system should be sought
for which determination satisfies prescriptions 1—4 as laid down in Chapter
2 and eventually satisfies point 5 as well.

To ensure a finite settling time, W{(Z) should be a polynome:

W(Z) = Sw,Z (24)

i=1

We write the transfer function of the controlled system and of the hold
circuit in the following form:

G3(2)G,(2)

—_
)
vt

-

where all the G{(Z) are polynomes and the zeros of G,(Z) and G,(Z) fall outside
the unit circle, while the zeros of G,(Z) and G,(Z) are inside the unit circle.
If the controlled system in itself is stable, then G,(Z) = 1.

To ensure stability, W(Z) should contain the instable zeros of G(Z), i.e.
the factor G,(Z). If a ripple-free system should be designed in accordance
with condition 3b, then W/(Z) should contain all the zeros of G(Z), i.e. the
factor G(Z)G,(Z) [11]. Consequently as a final result

W(Z) = A(Z)B(Z) (26)

4(Z) = Saz @7)
F=0

B(Z)= Nb,7 (28)

where the a, coefficients, as well as the degree n of the polynome are unknown
values, while the b; coefficients are known:
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B(Z) = G,(Z) (292)
B(Z) = G,(Z)6,(Z). (29D)

By comparing equations (24)—(28) it is evident that

a bi-—lﬂ r=n _;- q- (30)

w; =

'l\/)"‘

=
i
=

The Z-transform of the error defined by equation (3) is
Y (Z) = Y(Z) — Y (Z) = [W(Z) — 1] X(Z). (31)
If the examined input signal is of the m-order, then by transformation

®n(Z)

Xn(£)= (1—Z)m’

(32

where @,(Z) is a polynome of (m — 1)-order. The steady-state error be-

comes zero, i.e.

Vo(Z) = [W(Z) — 11Xn(Z) (33)

is a polynome, if [W(Z) — 1] contains a factor of the form (1 — Z)™. Further,
to ensure stability, [W(Z) — 1] should contain the instable poles of G(Z),
that is

W(Z)—1=(1—2)"G(Z)C(Z). (34)

where C(Z) is a polynome. If G(Z) = 1, then this is equivalent to the follow-
ing (m — 1} equiponderates of condition [7]:

fim S 2 _ 1 =0 (35)
=1 dzZ" [0 u=1,2,....(m—1).

From this it follows that we should have n = m — 1.
After carrying out the operations we obtain the following eqations:

n 1 /(
Sag=— Po= b, m=1,2.3 (36)
k=0 Po i=1

n q

Nhay=—-"1, p= Nib,m=2,3 (37)

ﬂ [302 l z;l
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n 2 2'—’01 ; g
zkm—l)a,.:_ﬁ—ﬂ-;ﬁi’—% fo= Sili—Dbym=3  (38)
k=0 0 [==1

If the a, coefficients satisfy the above equations then conditions 1,
2 and 3 are satisfied.

5. Satisfying the statistical prescriptions

The other unknown coefficients in the transfer function can be deter-
mined on the basis of condition 4, that is, the quadratic mean error J® should
be minimalized by using equations (20) and (23). Equations (36), (37) and
(38) previously obtained can be taken into account by the Lagrange method.
By applving the residuum theorem, as the final result the minimum of the
function

n
F— ¥ ResM—:/ﬁo[\“ak— ! }_

-

Zi<1 VA Lf:l /71[) i
n £ h n 2 2 "3_, oo ‘
~j—21[}“ka,.+ Py +/’.3[/\“k(k—1)a,,— -ﬁ—__’iﬂ] (39)
— Ay | X kay+ 3 : — |
k=0 /30 k=0 Po

is to be determined. If m =1, then 4, = 7, = 0 and if m = 2, then /, = 0
should be taken.

As W(Z) is a polynome, it is evident from equation (23) that the poles
of R,,(Z)'Z which should be taken into account are: Z = 0 (this is a multiple
pole), the poles of R(Z) inside the unit circle (Z = ;) and the poles of R,(Z)
inside the unit circle (Z = »).

By differentiating the expression for 17 in respect to the coefficient a,

k34

we obtain the following system of equations:

Nday -ty Ar = 2,r(r—1)y=B
;:O 1 (Y 1 v (40

r=20,1...n.

Coefficient -4, in the system of equations depends only on r — k, hence

Ap=A4,, p=r—k (41)
n—-qg g
A, =3 > (bi+j+p —bip) -’Uj -
R s o
+ N Nbb,., (42)
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further the expression for B, at the right side of the equation is:

(43)

The expressions for M;, NV and P; can be determined from the available
data:

o= LR - Bo(0)] - s AT ReoR
- j—“.T[ ff( ) + R (0)] *7/_,—2;— es jj(#z)—
Jo i —
+ 07N ResR,, (v) (44)
T v '
N =2| By (0) + Ryp (0) + 3 — Res By () =
i Nadd
1 .
+ > —Res R, (1’1)] (43)
R ’
P RO L M T4 gk 46
i=77 ff()—‘;, es jf(“l) (40)

where e.g.

- AR (Z
Ry (0) = [ dJZJ( )]
Z=0

Res R;; (1)) = [Res Ry (Z)] ;- .. (47)

The transfer function formed with the aid of coefficients a;, obtained
by the simultaneous solution of the system of equations under (40) and of
equations (36), (37), (38) satisfies prescriptions 1 —4 as laid down in Chapter 2.

6. The characteristics of the system

From the aspect of transient performance, one of the basic characteristics
of the system is the settling time T which depends on the order of the transfer
function:

Ti=rT=(n-+qT. (48)

Other characteristics are the error function y,(f) or the error series
/'
yp[k] arising as a result of the input signal. It is evident that in the case of

p=1
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p[k]=—1+

l\d =

it (49)

[

i

yy [eo] = lim y, [k] = 0.

K—= (50)
Similarly in the case of p = 2
k1
(k] = Sy il =y, [k —1] +y [k —1], (51)
=0
[ =S 1
p, [o0] = (1) = - e = (52)
l 0, mz>2

1 -
T vo [k — 1]+ — wa (K] (53)
oo m=1
- 1 nz -
Yy [oo] = —O—U' (£) =—9—_: it — 1w, m=2. (54)
2 2 0
0, m=3

In the knowledge of these equations, [yp[k]]max can be formed which is
important especially in the case of p = m — 1, further the quadratic sum of
the error:

n-—(
U5 = ;I wrlk]l, p=m. (55)
=0
For the continuous error function the characteristic [1,(t)]max and the
square integral of the error O cannot be determined by the above calculation,
for this purpose the modified Z-transformation should be adopted. These
characteristics, however, do not in general contain considerably more inform-
ation than the previous ones, consequently it is usually not worth carrying
out the complicated calculation [6, 8].
From the point of view of statistics, the system can be characterized
by the quadratic mean error ;% From equation (20)

3 1 27 n n 1 _ .

o o — — : N =

&= T; >dgaa; — ¥ Brag— X —— Res Ry (1)) — Ry (0). (56)
& k=0 r=0 k=0 UM

where all the denotations are already known from earlier equations.
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The question of the order n of the polynome A(Z) should still be exam-
ined. Thus to be able to influence characteristic {? at all, it is necessary to have
n 2= m. The higher the order n is chosen the lower will naturally * be; con-
sequently the better will the performance of the system be statistically. On the
other hand, by increasing n the settling time will be longer, hence the transient
performance of the system will be worse. On evaluating the transient perform-
ance, naturally the other characteristics should be also taken into consider-
ation.

At the price of increasing the settling time, overshoots arising in the case
of input signals of lower order can also be reduced. For this purpose the poly-
nome A(Z) is chosen with the order n, = n 4+ n,. The n  pieces of still unde-
termined coefficients a; can be taken intuitively [10, 13], but it is more
advisable to prescribe that either z?f, or Q; should be minimum [2, 5]. This
last condition can be adopted only in the case of a ripple-free system, as
otherwise 9; is infinite,

On choosing the order n, another aspect should also be taken inte
account. The expression for the transfer function of the impulse-compensator

on the basis of equations (18), (26) and (34) is
() 42Z)
C.(Z)(1— 2y C(Z)

D(Z) =

D(z) = B AE) (57b)
(1—2"C(2Z)

where the second expression is valid for the case of a ripple-free system. As the
order of C(Z) depends on the order of A4(Z), hence on n, therefore the order
of D(Z) also depends on n. The higher n is the more complicated the build-up
of the impulse-compensator is, moreover depending on the method of realiz-
ation and on the numerical values, the impulse-compensator should eventually
contain more active elements.

7. Example

To illustrate the procedure, let us examine a concrete case. In the system
shown in Fig. 1 let the continuous transfer function of the controlled system
be

K
s (5) = .1 5
s(s -+ 1)

If the period time of sampling is T = 1, then

Z(1 +2332)(1 +~0.162)

G(Z)=K
(1—2Z)(1 —0.372)
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We intend to eliminate the steady-state error only in the sampling
moments. Hence, in accordance with (29b): B(Z) = Z(1 - 2.33 Z), that is
b, =1, b, = 2.33. Further it is evident that G(Z) = 1.

The stochastic control input of the following for which the control
system is being designed, is shown in Fig. 3. If the reversals occurring in the

n 0
=

Fig. 3

time unit follow Poisson’s distribution and their average value is v, then the
autocorrelation function will be [1]

. o =207
ij(f) = c~e
This autocorrelation function characterizes other stochastic signals, too,
which are important in practice. The spectral density of the autocorrelation
function [1]

“

Accordingly the bandwidth is w;= 2y. From equation 2 7/T = o
we obtain

- c? ta
R (Z)= - . o==e%
=T T e

Let us take the noise to be completely irregular (white noise), hence
re. (1) =ke?0(t), R__(Z) =he?,

where k characterizes the relation of the average powers of the control input
and of the noise, as

P, T

P kwj-

¢

Here o, is the bandwidth of the white noise which was taken as infinite
from the point of view of the autocorrelation function.
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Evidently the only pole of R;(Z) within the unit circle is u = a, while
R_(Z) has no poles. It can easily be controlled that

i

Res Ry(a) = ca,

» RE(0) = ile¥(a’ — o).
By using these values the expression of parameters (44), (45) and (46)

will be
M;=2c¢d, N=2c&1+k), P=2cd"

Thereupon the writing of the system of equations necessary to determine
the coefficients affords no more difficulties. The solution of the system of
equations will not be described in details, only the results are given.

The calculation was carried out for the following cases:

a) m=1 n=
by m=2, n=

[ O]

For the purpose of comparison, the calculation was carried out also for
that case when only the deterministic characteristics were taken into account.
The following cases were examined [5]:

¢) m=1, n =0, minimum settling time

d) m — 2,

e) m=2,

n = 1, minimum settling time
n = 2, minimum ¥7.

In all five cases the characteristics were examined for T =1 and
vT = 0.5, further the values k = 0 (noiseless case), k = 0.2 and k = 0.4 were

taken.

Tabie 1
Characteristic values for the case m = 1, n == 2
T,=4T
T == 1 0.5
k= 0 0.2 0.4 0 7 0.2 T 0.4
g == 0.154 0.148 0,144 0.220 0.200 0,187
ty = 0.020 0.026 0,030 —0.046 —0.022 —0.070
a, = 0.127 0.126 0.125 0.126 0.122 0.120
1] = —0.846 —0.852 —0.856 —0.780 —0.800 —0.813
(2] = - 0,469 —0.480 —0.499 —0.314 —{.356 —0.388
3] = —0.296 —0.294 —0.292 —0.294 —0.284 —0.289
3 = 2,021 2.042 2.066 1.79.4 1.848 1.890
wl =1 = —2.612 —2.626 —2.647 —2.388 —2.440 —2.482
[ =] = S — - . . .
et == 1.280 1.336 1.393 1.183 1.250 1.333
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Table 2
Characteristic values for the case m =2, n=2
T, = 4T
~vT= 1 0.5
k= [} 0.2 0.4 0 }, 0.2 0.4
dy = 0.546 0.542 0.540 0.578 0.566 0.559
a, = 0.020 0.026 0.030 —0.046 —0.022 —0.007
a,= —0.265 | —0.268 —0.270 —0.232 —0.244 ~0.252
(1] = —0.454 —0.458 —0.460 —0.422 —0.434 —0.441
9 [2] = | 0.837 0.832 0.830 0.880 0.864 0.855
wBl= | 0.618 0.625 0.630 0.542 0.570 0.587
1= | 2.288 2.293 2.296 2.246 2.248 2.269
(1] = —1.000 ~1.000 —1.000 —1.000 ~—1.000 —1.000
wl2]= | —1.454 —1.458 —1.460 —1.422 —1.434 ~1.441
ya[3] = —0.618 —0.625 —0.630 —0.542 —0.569 —0.586
wal =] = —3.072 —3.082 | —3.090 —2.963 —3.003 —3.027
e = 3.314 3.794 | 4.271 2.795 3.288 3.771
Table 3

Characteristic values of the system designed only by the deterministic method

Case c) a4 | o
; i

m == 1 1 1
n = 0 1 2
T)T = 2 3 4
ag = 0.300 0.811 0.641
a, = 0 E ~—0.510 —0.171
ay= 0 ! 0 —0.170
w (1] = —0.700 —0.189 —0.359
w2l = 0 1.189 0.963
¥, ]:'3{] = Q 0 0.395
0] = 1.489 2,450 2,206
ol =] = —1.700 0 0
wl =] = wa —2.189 —2.755

With the help of the tables the results of the designing methods can be
compared. In case a) (Table 1) there is a steady-state error even for a linear
input signal (m = 2), while for a quadratic input signal (m = 3) the steady-



THE SYNTHESIS OF SAMPLED-DATA4 CONTROL SYSTEMS 125

Table 4

The statistical characteristic */c® of the system designed only by the deterministic method

yvT= 1 0.5

k= 0 0.2 | 0.4 0 ! 0.2 0.4
c) case 1.529 1645 | 1760  1.320 L446 1554
dj case | 4551 5.345 6.132  3.495 4.290 5.278
¢) case  3.468 3.996 | 4528 2850 3378 3.906

state error is infinite. The statistical characteristic {%j¢* in turn, is very good
that is the sonsequence of the fact that the deterministic condition can already
be satisfied in the case of n = 0, hence, on choosing n = 2 we have two free
parameters to minimalize (?/c®. In case b) (Table 2) there is already no steady-
state error if m = 2, yy[k] in turn may have considerably high values. Case ¢)
can be compared to case a) (Tables 3 and 4). Typical are the better transient
and the worse statistical characteristics, as well as the more simple transfer
function of the impulse-compensator. Cases d) and e) can be compared to
case b), the conclusions being largely the same. Attention should be called,
however, to the fact that the maximum of y,[k] in case a) is lower than that
arising even in case e ), where one parameter was determined by minimalizing 9}.

Summary

A method has been given to directly determine the transfer function of sampled-data
control svstems. on condition that the steadv-state error should disappear in the case of a
determined input signal and the quadratic mean error should be minimum in the case of a
random contro) input and noise of determined statistical characteristics. Examinations were
carried out only on follow-up systems, on the condition that the control input and the noise
are not correlated.

The procedure was illustrated by an example. Relying on the results of the example
the quality characteristics of systems designed by different methods can be compared.

The method can be generalized for svstems containing several impulse-compensators,
as well as for the case of not incorrelated control input and noise.
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