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1. Introduction

In most cases the statistical design of time-invariant continuous linear
control systems is performed usually on the basis of the following simplifying
conditions: the stochastic signals are assumed to be stationary, the ergodic
hypothesis is adopted, finally, as a criterion of the optimum synthesis the
least mean square error is taken.

The optimization problem can be solved by one of the methods specified
in Table 1. The first two methods were proposed by WIeENER [1, 2] and nowa-
days may undoubtedly be considered as classical ones, the third method
can be found in the book of Tsiex [3] while the simplified method was first
demonstrated by BoDE and SmanNNoN [4] but only for the case of uncorrelated
signal and noise components. Recently, the author of this paper proposed a
much simpler and direct method [3, 6].

The first method is somewhat awkward, because time-domain notions
are only used. This difficulty will be alleviated by the second and third methods,
which take advantage of the simplicity of the transform techniques and give
the result in the form of transfer functions in the frequency domain. The fourth
method completely relies on the frequency domain technique and avoids con-
volution integrals as well as the variational calculus.

A paper published previously [5, 6] has shown how the simplified method
can be applied for the cases of the completely free configuration, semi-free
configuration and semi-free configuration with constraints. This paper is only
concerned with the completely free configuration, but instead of single-
variable systems the multivariable (multipole) systems are investigated. (The
semi-free configurations will be treated in a later paper.)

The optimum synthesis of multivariable systems was first solved by
AnmarA [7] in a general way, applying the second method combined with
matrix calculus. This paper could still not give a satisfactory answer to the
question: is the spectrum factorization of matrices performable in every case
or not. This problem was positively solved by Youwra [8]. Unfortunately,
the proposed procedure is very difficult and cumbersome. In some more
simple cases the factorization procedure proposed by Kavanacs [9] could be
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applied. Remarkable is the optimization procedure proposed by Hsierm and
Lroxpes [10] which is also based on the second method, but essentially
without consistent matrix calculus, it makes use of the undetermined coeffi-
cients to obtain results. The present paper completely solves the problem of
optimum synthesis in the frequency domain without variational caleulus
taking to a great extent advantage of the matrix calculus.

2. The proposed method

In the following treatise double-index notation will be used. If both
indices are variable we have a matrix, if one index is fixed or is missing and
only the other index is variable we have a vector, finally, if both indices are
fixed this notation refers to a scalar quantity. A column vector has a variable
first index, while a row vector has a variable second index (the others being
fixed).

The block diagram of a multivariable system is shown in Fig. 1. The in-
put signals are represented by a row vector r, (where k= 1... K), the weight-



SIMPLIFIED DERIVATION OF OPTIMUM TRANSFER FUNCTIONS 173

ing functions are represented by a matrix wy (wherek=1...K,I=1...L),
finally the output signals are represented by a row vector ¢.; (where l == 1...L).

The row vector of the outputsignals can be expressed by the following
convolution integral:

e (t) = ﬂ g (t — 0)wy (9)di= S g (2) wy (¢ — ) d (1)
where the integrand is a row vector originating from the matrix multiplication
of a row matrix and a K XL matrix.

Fig. 1

The problem of optimum synthesis is demonstrated in Fig. 2. Here s.;
is the row vector of the useful signal components, while n.; is the row vector
of the noise components, both belonging to the whole input row vector r.; .
The ideal or desired outputs are represented by 7., ({ = 1. .. L). This row vector
can be determined from the signal-component vector s., by matrix multiplic-
ation with weighting-function matrix y; and by one of the following con-
volution integrals:

e o0

L= & st — 1)y (0) dI = ‘ s D)yt —20)d (2

S

Tt is worth mentioning that the weighting function matrix yy; is in general
not physically realizable (that is, the elements of matrix yy; are not physically
realizable in every case),

The row vector of the error is the difference of the row vectors of the ideal
and real output signals:

e (t)=1,(t)—c,(1). (3)

In case of completely free configuration as a criterion of the optimum
synthesis one of the following two assumptions may be adopted: the sum of
the mean square errors or the mean square errors separately should be con-
sidered as being minimum. In the first case the least-mean-square error-figure

1
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can be expressed by the trace of a matrix, i.e. by the sum of the diagonal
elements of a matrix, while in the second case by a simple scalar quantity,
not speaking of the averaging process™:

T j=
—_ 1 N
tre, (t)e.,(t) = lim trfe, (t) e, ()] dt = tr @e, ¢, (0) = trQep ofs)ds (4)
Teree 277 2mf
-T —je
where
) T
Foa(t) = e (e +7) = lim —— j e (0) e (i +7)dt ()
T—= 2T
-T
St galt) Lyt
Sl i@' e, it
+C\ r"k/f/ W,'(///}
nglt!
Fig. 2

is the correlation-function matrix of the errors. The power-density-spectrum
matrix of the error signals can be obtained by the Fourier-transformation

as follows (with s = jw):

_ J=
Deye,(5) = -7 [Q?epel (T)] = g Dy () €57 dT (6)
.._j;.:
while the inverse relation is:
o
_ 1 : -
Pere; (T) =71 [Qjez'ez (S)] - . ‘ gﬁ€1'€t (S) e ds (7)
275
Evidently:
e, (B) e () = [ii. (1) — ¢ ()] [f.t+7)—c, (t+ 7)] (8)
thus,
Pep.e (T) = @i (17) — Qi q (T) — P i (T) + @ ¢ (T) (9)
or
Qez g (S) = (Di‘ i(s) — ®ivcz (s) — qjct i (s) + @Cerz (s)- (10)

* The column vector ¢ 1is the transposed of row vector e..
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The task is just to minimize the trace of the power-density-spec-
trum matrix P, (s) expressed by the above mentioned matrix equation
(10). The expression of the mean-square error becomes, namely, after substi-
tuting s = jeo:

S

Jtr Be, o (jo) doo (11)

— ca

tre, (t) e, (1) =

T

which is a real-variable integral, the trace of the power-density-spectrum
matrix being function of s® or w? i. e. it is a real variable function. Thus, the
above mentioned integral (11) evidently becomes minimum, if and only if
the integrand is the least possible. Generalizing the index-changingrule [11],
the power-density-spectrum matrix can be expressed as:

®€z'fx(s) = @ipiz (S) - ¢ir"k (s) WZ[ (s) — I’771’!5 (— 5) @fl: i (s) T
+ Wi (= 9) Pry, (5) Wi (5)
k, F=1...K), (LI'=1...L)

(12)

where @, ,, (s) and D, ; (s) are matrix functions (or scalars), while in case of
variable (or fixed)indices [and I’ @ ,, (s) is a L X Kmatrix (or a row vector), @,_;,
(s} is a K XL matrix (or a column vector), further on W, (s) is a K X L matrix
(or a column vector) W, i (s) is a L X K matrix (or a row vector) and @, ,,
(s)isa KxK matrix. It is assumed, that the elements of the latter matrix
arerational fractional functions of s and @, ,, (s) = D, (—s).

Let us introduce a K X L matrix (or a column vector) Gy (s) and a LXK
matrix {(or a row vector) Gy (—s) this latter being the adj oint,that is, the
complex conjugate transposed matrix of the former one:

@rri (5) Gy (5) = Dryiy (s)
(13)
G, (—s) Dr,ri(s) = Dir, (s)

where the auxiliary-function matrix (or vector) Gy, (s) is, in general, physically
unrealizable. As @, (s) and @, ; (s) are from the beginning given Gy (s)
and Gy (—s) are also given. With the aid of the auxiliary matrices (or vectors)
introduced in definition (13) the power-density spectrum of the errors becomes:

Dee () = Piy i (s) — Gy (S) Pryr, (5) Wy (s) —
— Wi (— 8) Py (5) Gy () + (14)
T W (— 8) Py (5) Wiy (5)

or

®91-91 (S) = @it’iz (s) - Gl’l;’ (—' S) Q§’k Tk (S) Gk[ (s) +

+ [Gow (= ) = Wi (= )] By s ) [Ga(s) — W) )
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It must be emphasized that matrix Wy, (s) as well as the adjoint (or complex
conjugate transposed) matrix W, (—s) are only contained in the last term.
The power-density spectrum of the errors is the least, when the last term be-
comes zero. As the last term is also a quadratic form, it can be zero,if and onlyif

G (s) —Wi(s) =0

" G (—s) — W (—s)=0 (16)

By substituting the pair of equations (16) into equations (13) yields:

Drore () Wi (s) — Pryiy (s) = 0
Wik (— 8) Prory (8) — Piyr, (s) =0 (17)

Thus, the physically unrealizable optimum transfer functions are:

W5(s) = Gy (5) = [Dror, ()] 7 Pra (5) _
or i , ; (18)
szzu (—“ 5) - Gl'l;/ (- 5) - thrf;; (S) [@ri:"}; (s)]_l :

It must be emphasized that the determination of the optimum transfer function
has a meaning at all, if and only if the trace of the remainder on the right side
of Eq. (15):

Pipiy (s) — Grie (— 8) Prin () Gy (3) (19)

also being a function of s* or »? becomes negative nowhere. This follows from
the physical notion of the power-density spectra belonging to auto-correlation
functions and the mean square value respectively.

Taking the restriction of the physical realizability of the transfer function
Wi (s) into consideration, and this must be done in every case, then instead
of the first relation of Eq. (17) at most the following relation is valid:

Dryore (8) WEi(S) — Proiy (5) = Fiyy (s) (20)

where W}] (s) is the matrix (or in the case of fixed index [, the column vector)
of the physically realizable transfer function, while Fi;(s) is a yet unknown
matrix (or column vector), which contains no transfer function component
with left-half-plane poles. In this case the last term (i. e. the last quadratic
form) on the right side of Eq. (15) is, as a general rule not zero, but with respect
to physical realizability it is the least practicable value, as in Eq. (20) only the
physically unrealizable component Wy (s) of the physically unrealizable
optimum transfer function W}, (s) figurs, while the physically realizable
component Wy (s) is completely missing. Namely;

Wi (s) = Wi (s) + Wiy (s) (21)
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Incidentally, taking Egs. (17), (20) and (21) into consideration:
Prory (8) Whi(s) = — Fii (s) - (22)

The power-density-spectrum matrix is assumed to be a real paracon-
jugate hermetian matrix:

Qrk'rl: (S) = Oryry, (‘— s) (2‘3)

i. e. it is in conformity with its transposed complex conjugate (or adjoint)
matrix. According to [8] those matrices can be factorized as:

@’;"k" (s) (‘D;;ff (S) = @"k-f;.- (S) (24*)

where the second matrix factor

®’_:;;-‘f;. (S) (25)
and also the inverse matrix
[Dr,.r, (s)] 72 (26)

contain elements with exclusively left-half-plane poles and zeros, while the
first matrix factor

Dr, 1 (s) 27)
and also its inverse matrix
[Dr,.r,. ()] (28)

have onlv elements with right-half-plane poles and zeros. Incidentally, the
adjoint of matrix (27) is just the same as matrix (25):

P (—8) =P (5) (29)
Thus, from Eq. (20) on the basis of Eq. (24) we have:
D 1 () Prr, (8) Wit () = @i i (5) + Fie (s) (30)
or after multiplying with expression (28) from the left side

Prri (8) Wit (8) = [Prory ()] 7 Priy () + [P, ()] 72 Fir (s). Gy

Decomposing the matrices (or vectors) figuring on both side of relation (31)
into physically realizable and unrealizable matrix (or vector) components, it
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becomes evident that the second term on the right side of Eq. (31) can have
right-half-plane poles only and so it can not supply any physically realizable
matrix (or vector) component, while the term on the left side of Eq. (31)
purely consists of a physically realizable matrix (or vector) component,
Thus, Eq. (31) can be separated into two parts:

D7, (5) Wit () = {[Prory. ()] 72 @r,iy (5)] (32)
and
0={[Dr.,. )72 P i, (5)} - + {[Pr, .. ()17 Fe(5)} . (33)
- " = 1

wyil) wypfil

Wz;/f/ Wgz/,/'

lc.,/‘l/ 10.2/,‘/
1=t + 3= ol [2ltI=55ll

Ie,./z/ Iez/u

Fig, 3

—

Finally, from Eq. (32) after multiplying with (26) from the left, the phy-
sically realizable optimum transfer-function matrix (or column vector) is
obtained:

Wit (s) = [P ($)]7H{[Dr, 1 (9172 Bry i (8)] - (34)

It must be emphasized, that expression (34) is the direct matrix generaliz-
ation of the well-known closed formula of single-variable systems for the case
of multiport systems.

3. Illustrative example

For the sake of perspicuity only a very simple two-variable system is
treated (Fig. 3). Of the two inputs each contains a useful signal component,
while the second input is corrupted by a white noise component, too. The use-
ful signal components and the noise components are not correlated. For the
sake of simplicity let the ideal or desired outputs be identical with the signal
components of the inputs. The task of the investigation is to determine the
effect of the various cross-correlation degrees on the sum of the least-mean-
square errors, the two useful input signal components being correlated.
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The starting point is formed by the following data: (k”; k’; k = 1,2;
=1, 2)

4 24 7
1—s? (L —s)(Z+5s)
Ds; 5 (s) = 04 1
2 —s)(1+s) e
0 0
®"knk(s)=[0 1]

and

®$k‘nk (S) = @nkv'si: (S) =0.
Thus, the power-density matrix of the inputs:

D 1i (8) = s, s, (8) + Pn,.n. (s)

therefore,
B 4 24
1—s? (1—s)(2+5)
Drur, (s) =
24 5 —s?
_(2—s)(14-s) 4 — s?

On the other hand:
@rk'il (S) = Qisk' i (s) + @”z.--iz (s) = [®5k Sk (S) -+ ®nk'5i: (s)] Yui (3) = @Sk»sk (s)

as in the present case:

Yu(s)=1.

First, let us determine on the basis of Eq. (18) the auxiliary-function matrix,
which, according te Eq. (16) is also the optimum transfer function matrix:

1 A2 —s)yA+s)
2(5 —A*— &Y

le(s):IVhCl': 1 42

0 42

B 5— 42 —¢?
as
(1 — %) (5 — s?) 4 @2—9(1+y
5 — A% —§* 2 5 A% — s*

[@fk Tx (s)]—l =

4 (1—s)(2+s) 4 — ¢
2 54— 5— A% — s
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The transfer function matrix Wy (s), as depicted in one of the previous
matrices, is unrealizable physically.

The essence of the spectrum factorization is the determination of factor
matrices figuring in Eq. (24). In the present case, the spectrum factorization
procedure is relatively simple, giving:

r r; (Q) = -
1/r3-.~1~~—s
2—s |
2 A -~
1+s 2+s
r r;
5—.42+s
and - -
2
(D7 r, ()] =
A 1—s 2—3s
|2 5 — AP V5 — 42 —s _
15 A 1 s
2 2 Vs — A2+
[Q)r:“rk(s)]_l =
2-+s
0 _ * _
15— 42— _
Thus,
- 5 y -
1-+s 9 s
[@;T (S)]—l@fﬁ- il(s) =
1 — 4

0 S
L (5= —s)(2~s)_

Separating the physically realizable matrix component:

1-ts 245

{[err; (S)] ! (‘D”.r.« iy (S)}* =
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Finally, on the basis of Eq. (34) the physically realizable transfer-function

matrix is:

1 A1-+s 1 1 — 42
2 215 42 4 42 L g)

Wis) =

(15— +2)(J5— A4 +5)

From the latter matrix the desired column-vector components can readily be
determined. On the other hand, it is worth mentioning that clearly Wji(s)==
£ W (9] -

Let us now determine expression (19), that is, the difference of the first
two matrices figuring on the right side of Eq. (15).

} 0 0
@91'91 (S) ! =

0 1—

2

iwkﬁwgl 5 — A*—gs
It becomes clear that the possible values of A4 must be in the domain
0<< 4Ll

The third matrix on the right side of Eq. (15) is:

0

(53 — 42 +2)(5 — 4* — s?)
Thus, the addition of the two latter matrices yield:

0 0
(Dgz'et (s)

|
I
|
|
i
|
i

0 [1 +
[= 2 9)2
W=t (1’ 5 — A -':“ 2)

With the aid of formula (4) and the theorem of residues the mean-square
error of the first output is:

min e}(t) =0
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‘While the mean-square error of the second output:

B 1— 42
min_ (1) = — =
Wy=W 2 VD — A

This would be the least-mean-square error, if W, (s) = W7, (s) and W, (s) =
= W3 (s) were valid. With the restriction of physical realizability

— o 2 o442
min e (1) = [1 + 1-4 ] 14
Wa=Wg

(V5 — 42+ 2)* |12])5 =42

ar

a1
08
06
04
02
cai gz 05 A
Fig. 4

This is the physically realizable least value of the mean-square error. The sum
of the least-mean-square errors is maximum when 4 = 0 (i. e. the input signal
components are uncorrelated) and is minimum (that is zero in the present
case) when A =1 (i. e. the correlation is maximum).

The sums of the least-mean-square errors as function of A4 are demon-
strated in Fig. 4.

Summary

After reviewing the synthesis methods (based on the least-mean-square-error criterion
of optimum time-invariant continuous linear control systems, the present paper givesa sim
plified derivation for the completely-free-configuration multivariable systems, applying, in
general, the matrix calculus.
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