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One of the interesting and important problems in Boolean algebra is how
to obtain one of the eight standard forms or reductions for logical functions.
The well-known procedure is as follows [see e.g.: 9]. A truth table may supply
the initial data derived from the statement of problem. Then the data from the
truth table are deposited into the cells of the minterm (or the maxterm) map.
From the “1’s"" (or the **0’s”) in the minterm map (or in the maxterm map)
either one of the standard forms or one of the initial reductions can be obtained.
From each standard form or initial reduction other three forms or reductions
can be determined, successively applying De Morgan’s theorem. There are
altogether eight standard forms, each of which is adapted to a different
physical implementation. Finding all eight reductions is often of academic
interest only, although it is necessary in principle to be able to find all eight
so that a particular one can be found when needed. In most cases only one or
two of the standard forms or reductions is important for the practice.

The aim of this paper is to show, how a preferred standard form or reduc-
tion can immediately be obtained from one truth map, for example from the
minterm map. Of course, if needed also the maxterm map can be taken as

a basis.
1. The eight standard forms

Let it be* m; a minterm of n variables. A minterm is defined as a prod-
uet in which every variable (either plain: v or inverted: v) appears once and
only once. On the other hand, a minterm form of a particularlogical or switch-
ing function is a sum of those particular minterms which describe the func-
tion in question.

For example ms = abc is a minterm of the three (n = 3) variables
a, b, c, and

* The upper index does not signify a power or derivation, it means the number of
variables only.
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fi=m}+ md+ md+ mi+ md= abec - abc + abc 4 abc + abe (le)

is a minterm form.*

Similarly, let it be My a maxterm of n variables. A maxterm is defined
as a sum in which every variable (either plain or inverted) appears once and
only once, while a maxterm form of a particular logical or switching function
is a product of those particular maxterms which describe the function in ques-
tion.

For example M3 = a L+ b - cis a maxterm of the three variables a, b, ¢

while
o MMIMIMi=(a+tb+o)(atbtc)(@atbte)(atbLo)

is the maxterm form of another function.
Similarly, the first function can be expressed in maxterm form as

fi=MiMiMi=(a+b-+c)(at+b+c)(@a+b+o) (Te)
The following relations are valid

mit = M-
and

M 7 = mgnal—k

where the subseripts ¢ or &k employed are based on assuming that all plain
variables v = a, b, ¢...have the value 1" and, therefore, all inverted (comple-
mentary) variables v = a, b, ¢. . . have the value 07", thus each different value
combination represents a binary number. This binary number converted
to a decimal number gives the value of index ¢ or k.

For example mz — abc, because 100 as binary number indeed signifies
4. On the other hand, _Ug =a-+b-+ ¢ and 011 as binary number gives 3.
Applying De Morgan’s theorem, it becomes evident that undoubtedly:

=a-+b-+c= M

o I

m3 — abc

All the above-mentioned definitions and relations are well-known and
figure here only for the sake of completeness.
A minterm form can be expressed as

* f{is a symbolic notation of the fact that f] is a function of three (plain or inverted)
variables.
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an_q

fr=" aqm (La)

i=0

where a; has the value 1 if m{ figure in the function and a; has the value
“0" if m? is absent.

In the above-mentioned first example ¢y =1,a, =1, a,=1, g, =1,
a, =1, while a; =0, a5 =0, a, = 0.

The minterm form (la} can symbolically also be expressed as:

"= 0(A(V)) (1b)

where A denotes an AND operation and O an OR operation, while V is a set
~ of the n variables v = a, b, c. . ., each can be plain or inverted, but figuring
once and only once.

After twofold negation and applying De Morgan’s theorem, we obtain:

Bn—1 an 1

fr= j wmi= [ ¢ m} (2a)
= i=0o
which can also be expressed as
7= NA (NA(V)) (2b)

where NA denotes the so-called NAND operation, that is, the NOT AND
operation.

For example, the function taken as first illustration can be expressed
in the second standard form as:

f3 = (abe) (abe) (abe) (abe) (abe) (2e)

Applying once more De Morgan’s theorem we obtain:

fr= (a; +m}) = —][ (a; + Min—1-) (3a)
i=0 i=0
or symbolically:
"= NA (O(NV)) (3b)

where NA and O represent NAND and OR operation, respectively, while NV
represents the complementary set of the variables v or v that is each of the plain
variables v = a, b, c. . . or inverted variables » = g, b, ¢ must be taken with
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a negation (that is inverted: v or plain: v), but of course, each variable can figure
once and only once.

The illustrative function taken as example can be written in the following
standard form:

fi=(a+bte)latbLte)(a+brelatbta)@+brc) (3¢

Finally, De Morgan’s theorem gives the fourth standard form:

an_3

fr=

(a; + M%a_1_7) (44)

é’;lf\d |

i
furnishing the following symbolic form:

fr= O(NO(NV)) (4b)

where O and NO denote the OR and NOT OR or NOR operation, while NV
is the complementary set of the variables (each being plain or inverted).

According to this standard form the function in question can be expres-
sed as:

fil=(a+b+e¢)+(a+bLe)t(arbrc)r(a+bic)+(@tbtc) (de)

If we apply De Morgan’s theorem once more, we again arrive back to
relation (1a) and (1b), respectively. Thus, the cycle is closed.
Let us now start from the inverted minterm form, that is from:

fr= = (a;mf) (5a)

It must be noted, that now just those minterms appear which are missing in the
expression (la). This standard form can be expressed symbolically as:

= NO (A(V)) (5b)

These relations for the illustrative function yield:

f3 = (abe) -+ (ab¢) + (abe) (5e)

Moving in the overall negation

211

= [I (@ m} (6a)

-0
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or symbolically:
= ANA®)) (6b)
For the example this relation yields
f1 = (abo) (abc) (abe) (6e)

Now applying De Morgan’s theorem

an_1q an_ |

= q (@, + m}) = q (a; + Man1i) (Ta)
= i
This is a standard maxterm form which can also be expressed as
7= A (O(NV)) (Tb)
For the example we obtain the following maxterm form:
fim@+b+a@rb+ra@ti+o (Te)
(This expression has already been previously given.)

Finally, assuming an overall double negation, and then moving one
negation in the inside, the result is:

211
fr= 3 (a0, +Mon1_s) (8a)
=0
Evidently this standard form can be denoted as
"= NO (NO(NV)) (8b)

In our example

fil=@+b+0+@+b+e)+(@a+b+vo (8e)

The cycle is closed, because applyving De Morgan’s theorem again leads
to Eqs. (5a) and (5b), respectively.

Figure 1/a illustrates the minterm truth map (Karnaugh table [3, 4])
for three variables in general and Fig. 1/b that of the problem investigated
in simplified form, because only the values of a;’ s are demonstrated. The stan-
dard form in Egs (1a), (1b) can be obtained from the *1’'s” while the form in
Eqgs.(5a), (5b) from the “0’s”’ of the minterm map. As we have seen from this
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minterm forms (applying De Morgan’s theorem) altogether eight standard
forms can be obtained.

Similarly, our starting point could be a maxterm map. If the identifving
process were repeated for the “0°s” and “1’s” of the maxterm map the same
eight standard forms would be obtained, although the cycles would be entered
at different points.

b 6 b
Ei oGmi | oGmi | olsm; | olem; ; / P ;
a|| otmi | otgmi | otomi | olsmi a P ) 0 0
T T T T -
Fig. la Fig. 1b
S N S b
51 | aoeitf | Beii? | a3 | B 1 1 0 '
a| [t | gyt | 50053 | o0 dl o o o] o
- A c
Fig. 2a Fig. 2b

Fig. 2/a illustrates in general the maxterm truth map for three variables
while Fig. 2/b is the map of the problem in question. The simplified form in
Fig. 2/b gives the values of the inverted coefficients 8, (and not the coefficients
Bi as a maxterm My figures only when 3, = 0).

For example starting from the *1°s” of the maxterm map, that is from
the standard maxterm form

2]

fr=JJ B+ Mg (Tc)
k=0
where gy has the value 17" if M} is not figuring in the switching funection
(in this case f§, =0) and g, has the value “0” when Mj is present (in this
case g, = 1).
By comparison of Egs. (7a) and (7¢) it becomes evident that k=2"—1—i

and a; = Ji = Pyn_1-; OF B =y = ayn_;_;-
In thz example, examined formula (7¢) yields:
fi=@+b+9(@+b+9@+b+9 (Te)

which is the same expression as in the previously obtained Eq. (7e).
It is worth while mentioning that employing the maxterm map the sym-
bolic form can be expressed as

fT=A0(W)) (7d)
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in contrast to Eq. (7b), here W denotes the set of the variables v obtained by
direct read out from the *“1’s” of the maxterm map.

Summarizing the procedure for determining standard forms, Fig. 3 can
be drawn, which is a generalization of the versions given in [9].

Finally, it must be noted that not only the standard forms but also the
reduced forms can be obtained from the outlined procedure with the aid of the
blocks of the maps.

In the minterm map in Fig. 1/b one second order and one first order

block can be identified (see also Fig. 7/a). These give the reduction

fi=a+be (ir)

I

which can be transformed via De Morgan’s theorem as

fi=a(o) (21)
or
fi=alb =0 (31)

(4x)

=5
I
Sl
-
-+

On the other hand, on the basis of the 0°s” in the minterm map two first order
blocks can be identified (see also Fig. 6/c) yielding

f3=ac -+ ab (51)

13 = (ac) (ab) (6r)

$=(@-+c) (@+b) (7r)

This expression could also be obtained directly from the maxterm map. Finally

fi=(@+c) +{a+b) (81)

Egs. (1r). .. (8r) yield the eight reductions for the example in question.

2. The proposed method

Now the problem arises whether it is possible to immediately determine
a certain desired standard form or a reduction selected beforehand. This ques-
tion can be answered positively. The proposed method for immediate deter-
mination of standard forms or reductions was previously prepared and support-



260 F. C54KI

ed by the symbolic expressions summarized in Fig. 3. Each symbolic expression
gives the structure of the standard form in question. In addition to this the
method of read out from the truth maps is also fixed: The variable set V signifies
the application of a minterm map, lower index 1 means a reading out based
on the *1’s” while index 0 means a starting point from the 0°s”, finally the
plain set V of variables refers to the direct employment of the co-ordinates,
on the other hand, NV means an inverse reading out of the co-ordinates.
Similarly W denotes the application of a maxterm map and, for example.
W, means a direct reading out based on the ““1’s™", while NW  refers toan inverse

o5 HINTERH \igicn

| A [ R I
NO[AlG) Ol
NOMIN W) Olain)
VOINOINY;) AlNAGY TRUTH Qo
O[O ANALNI) FABLL OINCH)
Alowig) HNAlowY)
Alotw;) NADN)
i Y M»/?%RM ,.0.5,,1 i
Fig. 3

reading out based on the “0°s”", Of course one sole map. for example, the min-
term map will do.

For the sake of completeness Table 1 is constructed as a detailed illus-
tration of the method suggested.

Table 1

Methods of reading out the co-ordinates of a special standard form

Application of a minterm map Application of a maxterm map
Standz}rd form f the Reading vut fmn:ho ml:eading (J:ut from[hv Stzmd:}rd form
desired e e ! gre e desired

C(A(V,) directly inversely i O(A(NW,)
NANA(Y) directly inversely F NA(NA(NW,)
NA(O(NY)) inversely directly - NA(O(W,)

O(NO(NY))) inversely directly S O(NO(NW L)
NOAN D)) directly : inversely NOA(NW))

ANAY D directly inversely ANANYW)

A(C(NY ) ¢ inversely directly  A(C(W))

NONO(NV,))  inversely | . directly | NO(NO(W,)
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By the way, in Table 1 some kind of duality can be observed. The dual
pairs are: minterm map and maxterm map, “0’s” and “1°s’", direct reading
out and inverse reading out of the co-ordinates, consequently V, and NW,

NV, and W, and so on.

3. Some illustrative examples

In the following part we can find some illustrative examples to show
the effectiveness of the proposed method. We do not care about all standard
forms, instead of this we concentrate our attention only to the standard forms

NO (NO(...)), NA(NA(...)) that is, to the NOR and NAND logic, because

5 azbh OR atbzc
. b Z abc
5 a AND Z

2,4 NOT & g

arb  yop %ﬂ"—*c
Jd e a ——
ST P w0 B poe

Fig. 4

o

1ST(ST
1)
Q
=
&Y

Fig. 5a Fig. 5b

in transistor switching circuits this standard form can most simply and naturally
be realized.

In Fig. 4 the symbolic graphical notations applied in this paper are
summarized for the OR, AND, NOT operations and also for the NOR and
NAND operations and elements. These notations can be regarded as proposi-
tions, too. It is worth mentioning that the NOT circuit on the right-hand side
is essentially nothing else but a NOR ecircuit for one variable, that is, for a NOR
circuit the free inputs must be regarded as 0 signals, or they can also bhe the
same signals as the first input (Fig. 5a). On the other hand, realization of a NOT
circuit with NAND logic is demonstrated in Fig. 5/b. The free inputs must
be 1 signals or the same signals as the first input.

Example 1. Let us determine the standard forms and reductions expressed

by NOR logic for the case in Fig. 1/b.
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Minterm map b

(G+6):(G+0

Fig. 6a Fig. 6b
Maxterm map. Minterm mop
5 - b
BT . [t T 1)
al 0 e 0 0 af 1) ] o o | @
- - c
Fig. 6¢ Fig. 7a

Maxterm map

71
e o [ o)

~~

Fig. 7b Fig. 7c
b
a .
5 T g lbtcl
c
Fig. 8a Fig. 8b

(abjlad

Fig. 8¢ Fig. 8d

Applying the last row of Table 1, that is, the NO (NO (NV,)) relation,
we obtain from the second row of Fig. 1/b for the standard form

fi=@+b+0)+@+b+ec)+(@-b+o

and taking the two first order blocks in Fig. 1b (or in Fig. 6a) into consider-

ation we obtain the reduction:
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This expression, which is naturally the same as (8r), can be realized as
illustrated in Fig. 6b.

The same result can be obtained of course, from Fig. 2b (or Fig. 6c¢)
and by way of formula NO (NO(W),)) in Table 1.

Example 2. Let us solve the previous problem by NAND logic.

From the second order and first order blocks in Fig. 15 (or Fig. 7a)
and applying formula NA (NA(V))) we obtain:

(be

=1}

fi=

This expression can be realized as is shown in Fig. 7b. The same result

Pl

can also be obtained starting from the maxterm map in ¥Fig. 7¢ and by the
use of formula NA (NA(NW ).

Example 3. The switching function a (b - ¢) is given. This can be realized
by OR-AND logic as shown in Fig 8a. Let us determine the NOR and NAND
logic representations.

First of all the minterm map is constructed (Fig. 8b) taking into consider-
ation that a(b -+ ¢} has the form of A (O(NV,)). Then applying relation
NO (NO(NY)) our function can be written as

fi=a+(b+o

which can be realized as shown in Fig. 8c. Finally, employing expression

NA (NA(V))) and the first order blocks in Fig. 85 we obtain:
f3= (ac) (ab)

which can be represented as shown in Fig. 8d.
Example 4. The truth table of the imaginable eighteen basic logical or
switching functions of the two variable ¢ and b is summarized in Table 2.

Table 2

Basic logical or switching functions of two wvariable

a b G 5§ g f, i f ) i &
11 o 0 0 o0 0 o o0 0 1 1 11 1 1 1
L 6 ¢ o o0 1 1 1 1 ¢ o o o0 1 1 1 1
0 1 6 o 1 1 o0 o 1 1 ¢ 0 10 0 1 1
0 0 ¢ 1 o 1 o 1 o 1 o 1 0 1 o 1 0 1
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It must be noted that only ten of the functions have any meaning ar
all. These are summarized in Table 3.

Basic swiiching funcuons of iwo ver

Basic /'41h1'§rm /
eiening’| Sdaceq | Minerm iran map | 3ng
functiory form R
) Z R
P2 P - Grv&, o
t ao NGE
ollalo] e
5 b
5 Gb WHIBITION
4)[7]10]
5 _ b
7 ab [0]0] INRIBITION
dl710
b
i abzab ol . e
dlf o EACLUSIVE OF
2 - 5 cib.a"h
7 a+b [ T
a7 73] NAND
g 73 o
A ab AND
al CONJUNCTION
5 — D azb
7 abrab 710 - N
q m FQUIVALENCE
R el
it arb IMPLIC ATION
ajlof7}
R ~ b
44 c#D 110 IMPLICATION
ol 717]
. b %;0
] a#d ot e S e
a[ DISTUNCTION

Now let us express the then basic switching functions by NOR logic.
Without going into details the results are summarized in Fig. 9. It is worth
to mention that expression NO(NO(NV,)} was applied. The fact can also be
observed that ffand fyi_,_;are inverse (complementary) functions, that is, each
can be obtained from the other by negation.

In this respect the realization of function fz is very interesting being the
complementary one offg. The latter contains five NOR elements. For negation
one more element would be necessary, that is, altogether six elements would
do. Instead of this f§ can be realized through five elements.

Example 5. Let us solve the previous problem by NAND logic.

For this case the results are summarized in Fig. 10. According to Table
1 the expression NA (NA(V,)) was chosen as a basis. Similar remarks as in
example 4 are also valid for this case.
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g oy =
Py 3 gzb = (G5)
——s g atd
a+o ‘ b—
L
# = (b))
a -
575 2 —
ard . arb
o]
iF = (fab))

{G+b)+(a+b]

fa:blfasb]

4. Conclusions

In the foregoing treatise a general method was presented for the immediate
determination of a special standard form or reduction. Only one of the truth
maps, for example, the minterm map is necessary and each of the eight stan-
dard forms or reductions can directly be obtained at pleasure. The essence
of the method suggested is summarized in Table 1.
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The proposed method is perhaps a small contribution to the theory and
practice of Boolean functions.

The significance of the method is particularly thrown into relief because
in transistor circuits the NOR or NAND logic is of primary importance, oppo-
site to the relay circuits, where the NOT-OR-AND logic serves as a basis.
The suggested method gives a key to the systematic transformation from one
logic to the other.

The method was demonstrated in several examples.
and
three — variable functions are considered. The method can be applied, of

In the illustrative examples for the sake of simplicity, only two

course, also to multivariable functions. But as all procedures also this method
becomes more and more complex and laborious with the increase of the number
of variables.

Summary

In this paper a method is presented which makes possible the immediate determination
of a selected special standard form or reduction for Boolean functions using only one truth
map, for example, the minterm map. The results are obtained via De Morgan’s theorem, but
with the method suggested, an application of De Morgan’s theorem is not necessary at all.
For the illustration of the proposed method a few problems are solved. In these examples
emphasis is laid especially on NOR and NAND logic, having a particular significance in tran-
sistor logic circuits,
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