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Beside the spatial distribution o (r) of the electrons in an atom in some
cases it is needed to know also w (p). the distribution of electrons in the mo-
mentum space [ (p) dvy, = © (p) dpx dpy dp; gives us the number of electrons
in the atomic system with momentum components between the values py
and py -~ dpx, py and py 4 dpy, p; and p; 4 dp. respectively: p denotes the
absolute value of the momentum, dv, the volume element of the three dimen-
sional momentum space].

In the framework of the statistical theory of the atom BurRkmARDT [1],
Koénya [2], as well as CoursoN and MarcH [3] discussed the determination
of the radial momentum distribution 2 (p) = 47p®> w(p). In a later paper the
author has proved [4], that the two density distributions o(r) and w(p) are
approximate solutions of the same order of the wave mechanical many-body
problem and that the relation between the two density functions corresponds
to the wave mechanical transformation theory. These relations can be expressed
as follows:

1 1

olr) = — P, ()
o(p) =~ = B (p). @

h
where i = P k being Planck’s constant. In equation (1) P(r) is the maximal

value of the momentum, which the electrons — considered to bee free — in a
spatial volume element at the distance r from the nucleus can posses. In equa-
tion (2) R(p) denotes the maximal value of the radiusvektor, which the elec-
trons in a volume element of the momentum space lying at the distance p
from the origo of the momentum space can posses.

With the help of these formulas we can unically derive the two density
functions from one another. If o(r) is a known and monotonically decreasing
function of r, so we get from equation (1) the momentum value

p = P(r) = (322t ng’ (). 3)
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where the momentum distribution function w(p) is given by eq. (2), R(p) being
the inverse function of P(r).

In the case of the reversed problem if w(p)is a known and monotonically
decreasing function of p, we obtain from eq. (2) the value

r = R(p) = (3% i’ (p) (4)

of the radius-vektor, where the spatial distribution function p(r) is given by eq.
(1), P(r) being now the inverse of the function R(p).

Our goal is here to give a simple deduction of eq. (1) and (2) in § 1 and
to examine the function w(p) qualitatively in § 2.

g 1.

a) Determination of w(p) from o(r). Let us consider the spatial density
of electrons as given. We suppose that it is a monotonically decreasing func-
tion of r. In the volume element dv, at the distance r from the nucleus there
are pdv, electrons which can be regarded as free. These electrons are distrib-
uted in the momentum space in such a way, that their total energy will be
minimal. By the given value of r the potential energy is fixed, so their kinetic
energy will be as small as possible. This means that they fill the states around
the origo of the momentum space. In consequence of the Pauli-principle the
maximal number of elecirons in one state can be two. So these electrons must
fulfil all states [5] from zero up to the maximal momentum P(r) given by eq.
(3). This means, that the electrons present in the spatial volume element dv,
are distributed with the constant density

L e L (5)

3 B8 4

in the sphere with the radius P(r) around the origo of the momentum space.

Let us now consider the volume element dv, of the momentum space
belonging to the momentum p, where the momentum distribution has the
value w(p). From all the spatial volume elements which fulfil the econdition
P(r) = p, a contribution according to eq. (5) is given to the momentum distrib-
ution w(p).

Since the function P(r) is also a monotonically decreasing one these
spatial volume elements forme a sphere with the radius R(p) around the
nucleus. The radius R(p) is determined by the condition, that on the surface
of this sphere

p=P@),
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p being the given value of the momentum. We can see that R(p) is the inverse
of the function P(r) defined by eq. (3).
Following from these we obtain

1 d 1 1 o 1 1
op)= | S = | = —
3 4md s om e 3w
F(nzp 0

R3(p),

which is the result in eq. (2).
b) Determination of o(r) from w(p). Let be w(p) the electron density in
the momentum space a given and monotonically decreasing function of p.

bir}

p=Plr

r=Rp/ r
Fig. 1

(=4

Now we take a volume element of the momentum space dv, belonging to the
momentum p, where the electron density has the value w(p). By choosing the
momentum value p we have fixed also the kinetic energy of the w(p) dv,
electrons in dv,. The distribution of these electrons in the coordinate space will
be again such that the total energy will be minimal and this means that the
potential energy must be minimal. Thus these electrons take place around the
origo of the coordinate space. as near to the origo as allowed by the Pauli-
principle. From all these it follows [4], that these electrons are distributed in
the coordinate space with the constant density

1 de

1=z
R3 = — 2 {6
;P = (6)

w(p)dv, !
in the sphere with the radius R(p) determined by eq. (4).

To the value of the density function g(r) on a place at the distance r
from the origo of the coordinate space all the volume elements of the momen-
tum space dv, give the contribution (6) for wich R(p) = r. Now the function
R(p) is monotonically decreasing and so these volume elements of the momen-
tum space forme a sphere with the radius p = P(r) around the origo of the
momentum space. On the surface of this sphere the condition

r=R(p)
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is fulfilled. From this it follows, that P(r) is the inverse function of R(p) de-
fined by eq. (4).
From the proceedings we get at once:

P(r)
1 dv 1 1 ¢ 11
o= | === sap— L1 py,
o(r) ! #3  4n3 73 o2 J p-ap 7 3 (r).
R(p)zr p

which is the result in eq. (1).

The simple deductions given here show clearly the close symmetry
between the two treatments (the descriptions of the electron distribution in
the coordinate and momentum space respectively). This is a consequence of
the supposition, that we can regard the electrons inside the spatial volume
elements as a free electron gas.

§ 2.

The behaviour of the spatial distribution o(r) is well known as well for
the T— F model as for the Thomas—Fermi-Dirac model involving the exchange
interaction and for the development of this model involving the correlation
correction also [5], [6]. The detailed examination of the momentum distrib-
ution function w(p) has not yet been carried out, only the papers [2] and [3]
discuss some characteristics of the radial distribution function G(p).

The derived general relations make it possible to look over the behaviour
of w(p).

a) The momentum distribution in the T—F model. The spatial distribution
o(r) in the T—F model can be determined from the solution ¢ = ¢, (x) of the
T—F differential equation ‘

g =-Lo (7)

satisfying the boundary conditions

N , Z — -/'\T
PO =1, ) =0. xqils) = — (8)

for free atoms and ions. or

¥ (0) = 1, xo%0 (%) = @ (%) )

for compressed neutral atoms,
With the help of this function ¢,(x) one obtain

[ Vs
o) = —Z [ Fo|™
4’ | x
]_ { 97[2 Y,
[ R R 2
4 ( 2Z )
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where Z is the atomic number, N the number of the electrons, r, = ux, is
the boundary radius of the atom and a, the first Bohr radius of the H-atom.

In the T—F model it is characteristic for the density function o(r)
[5], that in all cases

or) ~ , ifr—0. (10)

For great values of r
1. in the case of free neutral atoms r; is infinite and

Q(r)w—rle-, if r—co; (11)

2. in the case of free positive ions r is finite and according to eq. (8)
o(rg) = 0;

3. in the case of compressed neutral atoms according to eq. (9) rq is
finite and o(rg) == 0.

From these facts we can establish to the electron density o(p) in the
momentum space the followings. According to eq. (3) and (10)

The inverse function of P(r) is thus
|
R(p)~ s if pree

and so according to eq. (2), both for free atoms and ions and for compressed
atoms

w(p)rvis—,if p—> o (12)
P

Thus now we find the same behaviour for w(p) in the case of large p values
{as well for free atoms, ions and for compressed atoms), as for o(r) in the case
of large r values (for free neutral atoms only).

Examining o(p) in the case of small values of p, it follows for free neutral
atoms, that

Pry~— ., if 100,
fad .
S0
P /3
hence

w(p)w—}—— , if p—>0. (13)
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Comparing the eq. (10) and (13) moreover the eq. (11) and (12) one can
see, that for free neutral atoms the functions g(r) and w(p) show an identical
behaviour.

In the case of positive ions and compressed neutral atoms when in the
coordinate space a finite boundary radius r; exists, the density w(p) dees not
break off in the momentum space, but tends to zero in order according to
eq. (12) and disappears only in the infinity. However tending with p to zero,
the value of w(p) does not tend to infinity, but takes up the finite value

1

1
w(0) = — . 14
(0) 78 32 0 (14)

pl

a: free neuira!
atom

b: positive ion

wlp/

g

c.cempressed
neutral atorm

In the case of compressed atoms (p) reaches this value already at
Po = P(ro) = (3% 7o'k (ry) - (15)

Therefore the value of w(p) is constant in the interval 0 < p < p, (¥ig. 2,
curve ¢).
b) The momentum distribution in the T—F—D models

For these models instead of eq. (7) o(r) can be obtained from the solution
y = i, (x) of the T—F—D differential equation

. 3
o x [ Bt /;0] (16)

satisfying the boundary conditions
/32 ! Z - ‘/-\T ~
v (0) =1. % (xg) = 2%« x5 (5g) — Yo (%) = — ———.  (17)

16
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The density function o(r) is given by the formula

4 VA iV 3
o) = | [+ (18)

where e is the elementary charge,
_ at i)
3(da)tse2 Z'

3 130V
Hyg = — |— e=,
4 |z
' 0 taking only the exchange
i interaction into account,
I ==
‘0

0,1582 ¢ regardl?lg the correlation
correction too [6].

We can see from eq. (18) and from the first eq. of (17) that the function
o(r) tends again to infinity at r = 0 according to eq. (10). Thus our establish-
ment for w(p) in eq. (12) is valid also in these models.

It is characteristic for all cases {examining now only free atoms and ions).
that we have a finite boundary radius ry in the coordinate space and that the
value of the density at this boundary radius is the same for all atoms and ions

(r)) = S 0,002127 a. u. in the case of the T—F—D model,
e\l = | 0,003862 a. u. in the case involving the correlation too.

In consequence of these characteristics in these models the electron den-
sity @(p) in the momentum space has an analogue shape as the curve ¢ in Fig.
2. The value p, corresponding to eq. (15) is the same for all atoms and ions:

, _' 0.3979 a. u. in the case of the T—F—D model,
Po = ) 0.4854 a. u. in the case involving the correlation too.

Now the function w(p) has the constant value corresponding to eq. (14)
in the interval 0 < p < po.

Summary

In this paper we have presented a very simple deduction of the relation between the
distribution of electrons in the coordinate and momentum space in the framework of the
statistical theory of the atom. We examined further qualitatively the behaviour of the two
density function, by which we have found a symmetry of very high degree especially in the
case of the T—F model for free neutral atoms.
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