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To judge the behaviour of control systems, there are several complex­
plane mapping methods. On the one hand, the open-loop frequency-response 
G(s) H(s) or the inverse one 1jG(s) H(s) may be mapped, and, on the other 
hand, the closed-loop frequency-response 1)1[(s) or the inverse N(s) may be 
plotted, while the variable s delineates a distinct curve in the complex plane, 
for example s = jw. The transition from one of the mapping methods to the 
other may be facilitated by the so-called complex-plane charts. The eight 
mapping possibilities have been described in a previous paper [1]. Here the 
rules for reading the main qualitative control characteristics, as well as the 
stability criteria for the case, the open-loop transfer function has no right­

half-plane poles and zeros may be found. The aim of the present study is to 
give and to summarize in a uniform treatment the stability criteria for the 
eases of the open-loop transfer functions G(s) H(s) these being unstable in them­
selves and not being minimum phase systems, that is, for cases, when some of 
the poles and zeros of the open-loop transfer function are located straight to 
the right from the imaginary axis in the complex plane. 

Among the stability criteria given in the following some generalizations 
referring to the closed-loop frequency response and its inverse, respectively, 
are described here - according to our knowledge - for the first time, 'while 
others, that is, the NYQUIST diagrams and criteria concerning the open-loop 
frequency response and its inverse, are generally known e. g. [2, 3], and are 
introduced merely for the sake of completeness. 

1. Symbols, designations 

In the following only single-loop control systems will be discussed. 
(This limitation does not influence the validity of theorems. Results may easily 
be generalized for multi-loop control systems too). 

The index z and p, respectively, refer to the numerators and denomina­
tors, that is, to functions permitting the determination of zeros and poles, re-
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spectively. The transfer function of the fonvard branch is 

(1.1) 

while the transfer function of the feedback branch has the form 

(1.2) 

,,,-here the functions appearing in the numerator and in the denominator may 
contain factors as K, s, 1 + sT, 1 + 2'sT + s2T2 (exceptionally also a factor 
-ST) e . 

The whole open-loop transfer function is expressed as 

The closed-loop transfer function is denoted by 

while the inverse closed-loop transfer function has the form 

As is ·well-known (see e, g. [2]) 

lVI(s) = I + G(s) H(s) 

Thus, considering the aforementioned 

and 

1 

N(s) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

the expression lYz(s) = lVlp(s) figuring here set equal to zero is the so-called 
characteristic equation. 
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Incidentally it is to be mentioned, that the closed-loop transfer functions 
may also have the following form 

1 
l\1I(s) = .I\111(s) H(s) = lV1z(s) G(s) (1.9) 

and 

N(s) = N 1(s) H(s) = N 2(s) G~S) , (1.10) 

where 

lVI1(s) = 
G(s) H(s) 1 

(1.11) 
1 + G(s) H(s) NI(s) 

and 

1 
1 

Nz(s) = 
G(s) H(s) 1 

1 1112 (s) 
(1.12) 

G(s) H(s) 

By the above-mentioned complex-plane charts [1] the frequency­
responses 1\111 (s), NI (s) and 1112 (s), 1V2 (s), respectively, may directly be 
determined. 

Stability may already be decided by this reduced form. To obtain, how­
e\-er, the qualitative characteristics, the multiplications assigned in formulae 
(1.9), (1.10) must be carried out and the complete transfer functions lV1(s) or 
N(s) must be determined. 

Finally, be the number of the corresponding right-half-plane poles and 
zeros, that is, poles or zeros with positive real parts of G (s), H(s), .M(s), N(s) 
consecutively PG, PH, Plvr, Ps and ZG, ZH, ZM, Z;v, respectively, 'where always 

PM = Zs and P;v = ZM' 
While PG, PH, ZG, ZH and Z/vr = P N = ZG+ PH are known, stability cri­

teria just require the determination of the number of the right-half-plane roots 

of the characteristic equation. Namely, in the denominator lVIp (s) of the closed­
loop transfer function (in the numerator Nz (s) of its inverse), i. e. in the 
characteristic equation, the sum of functions is figuring, consequently the 
roots cannot be directly read, as they do not appear in a factored form. 

The stability criterion may, in general, be expressed as follo'ws: 
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The closed-loop control system is stable, if, and only if Z = 0, that is, 
the characteristic equation has no right-half-plane root. 

Naturally, the system is unstable even if some of the poles of the closed­
loop transfer function (some of the zeros of the inverse closed-loop transfer 
function) get onto the imaginary axis. This limited case may easily be recog­
nized on the basis of the stability criteria to be given. 

2. Auxiliary theorems 

To determine the stability criteria, following auxiliary theorems ",-ill be 
uniformly adopted. As they may be regarded as more or less known, their 
detailed verification will be omitted. 

Theorem 1. Starting from the argument principle of complex variables 
(see e. g. [5, 6]), and based on the logarithmic integral theorem, one finds the 
follo'wing relation: 

~ F(s 

1 
(2.1) 

2:rj 
c 

Thus, for an arbitrary, simple closed path C the above integral furnishes, 
on the one hand, the difference between the number of poles P F and the num­
ber of zeros ZF of the investigated function F(s)-situated inside the curve C 
and, on the other hand, it giyes the number of the net, positive (counter-clock­
wise) rotations of curye F(s) around the origin: the yalue Ro{F(s)}. (F(s) 
must be a single-valued function on and within a simple closed contour C and 
furthermore, F(s) must be analytic and different from zero on the path C). 

It is to be remarked, that curve C has to be plotted contrary to the cus­
tom, in negative (clockwise) direction, while the number of the complete encir­
clements Ro is read in positive ( counter-clockwise) direction. 

Theorem 2. Convention: In order to determine the net differcnce be­
t,Yeen the number of the right-half-plane poles and zeros, curye C must be com­
posed of the total imaginary axi;:: and the joining half-plane circle of infinite 
radius, that is, the contour C coyers the entire right-half of the plane s. 

If there is a pole or a zcro on the imaginary axis, then it must be bypassed 
from the right (in counter-clockwise direction), or from the left (in clockwise 
direction) by a small semicircle of a radius tending to zero. 

Naturally, in the latter case the number of right-half-plane poles or zeros 
increase by one (see Figs. Ija and 2/a). 

Theorem 3. Contour C in the complex-plane s is mapped by the function 
F(s) onto the complex-plane F(s) also in form of a closed curve CF(s)' From 
the curve obtained in this way (to be called simply F(s)), the number of the 
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Fig. 1 a. Choice of the path C and location of the poles and zeros of G(s) H(s) 
Fig. lb. Complex-plane plots of the open-loop transfer function 

Fig. 1 c. Complex-plane plots of the inverse open-loop transfer function 
Fig. Id. Complex-plane plots of the inverse closed-loop transfer function 

Fig. I e. Complex-plane plots of the closed-loop transfer function 

13 

® 

Fig. 1£. ~Iain branches in the eomplex-plane plots of the closed-loop transfer function 

net encirclements Ro{F(s)} can easily be determined. Incidentally, it must 
be noted, that to the small semicircle of a radius decreasing beyond all limits 
and enclosing on the imaginary axis e. g. a pole of multiplicity i, belongs a 
-curve section consisting of semicircles in number i of radius increasing beyond 
all limits and being oppositely directed in the plane F(s) (see e. g. Figs. l/a 
and 2/a). 

Frequently it is sufficient to restrict ourselves to the main branch. 
(Latter is established by mapping the positive imaginary axis). If the dif­
ference of the highest po·wers of the polynomials figuring in the numerator and 
denominator, respectively, of F(s) is denoted by D F, further the main branch 
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Fig. 2a. Choice of the path C and location of the poles and zcros of G(s) R(s) 
Fig. 2b. Complex-plane plots of the opcn-loop transfer function 

Fig. 2c. Complex.plane plots of the inverse open-loop transfer function 
Fig. 2d. Complex.plane of the inverse closed·loop transfer funetion 
Fig. 2e. Complex-plane plots of the closed-loop transfer function 

Fig. 2f. Main branehes in the complex-plane plots of the closed-loop transfer function 

of the curve F(s) encircles the origin through quadrants of number Qp in coun­
ter-clockwise, positive direction and considering the symmetry of curve F(s) 
relative to the real axis, then 

R { '} Qp DF o F(s) = -- - --
2 2 

(Namely, the semicircle of infinite radius of the curve C in the complex-plane 
s is mapped by function F(s) into negatively directcd semicircles of infinite 
radius and in number Dp, if Dp > 0, i. e., if the numerator of F(s) is of higher 
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power, while if Dp < 0, that is, if the denominator is of higher pow-er, then 
positively directed semicircles are formed around the origin with infinitely 
small radius in number -Dp). In the following this theorem 'viII be called 
quadrant theorem. 

To determine the quadrants number, the following recognition may be 
of use: The number of the quadrants equals to the angular difference of the 
vectors belonging to the terminal point, and to the starting point of the curve~ 
respectively, expressed in right angles. 

Theorem 4. Instead of the origin, the net number of rotations around 
the point -1 + jO may be examined, if this leads to simple results, based on 
the following relation 

Ro{ F(s)} = R-l {F(s) -I} (2.3) 

as the general course of curve F(s) with respect to the origin is the same as 
that of curve F(s)-l with respect to point -1 + jO. 

3. Generalized stability criteria 

On the basis of the above four theorems and the formulae (2.1), (2.2) 
(2.3), respectively, the unknown number of the right-half-plane roots of the 
characteristic equations may be determined for the four main cases, as follows: 

a) On the basis of the open-loop frequency response in the complex 
plane and starting from function 1 + G(s) H(s) the following relation can he 
written: 

Z = PG + PH - R-l {G(s) H(s)}. (3.1) 

b) Considering the inverse open-loop frequency response and starting 
from function 

1 
1 

G(s) H(s) 

we have the expression 

Z =ZG +ZH -R-l 
1 i 

G(s) H(s) \ . 
(3.2) 

c) Taking into account the inverse closed-loop frequency response, for 
function N(s) the following equation can be obtained 

(3.3) 
where 

Ro{N(s)} = QN _ DN . 
2 2 

(3.4) 
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d) Examining the closed-loop frequency response, for function lvI( s) the 
following equation may be written: 

Z = ZG + PH + Ro {lVI(s)}, (3.5) 

where 

Ro{M(s)} = QM _ DM • 
2 2 

(3.6) 

Naturally, always 

(3.7) 

The methods serving to obtain the number to bc determined of the right­
half-plane roots of the characteristic equation, or the stability criteria, may be 
summerized as follows: 

a) The unknown number Z of the roots with positive real parts in the 
characteristic equation (the number PM of the right-half-plane poles in the 
closed-loop transfer function lVI(s) or the number of the right-half-plane zeros 
ZN in the inverse closed-loop transfer function N(s)) is given by the difference 
between the number of the whole open-loop right-half-plane poles PG + PH 
and the number of net encirclements of the plot G(s) H(s) about the point 

-1 + jO. 
Then, and only then is the closed-loop control system stable (Z = 0), 

if the open loop frequency response curve G(s) H(s) encircles the point -1 + jO 
exactly as many times as the number of the right-half-plane poles of the 
open-loop transfer function is. (Generalized ~YQUIST criterion.) 

b) The questionable number Z of the right-half-plane roots in the charac­
teristic equation is given by the difference between the number of the right­
half-plane zeros ZG + ZH of the open-loop transfer function and the number 
of net encirclements of the inverse plot 1jG(s) H(s) about the point -1 jO. 

Then, and only then is the closed-loop control system stable, if the in­
verse plot l/G(s) H(s) encircles the point -1 + jO in positiYC direction as 
many times as the number of the right-half-plane zeros of the open-loop 
transfer function is. (Inverse NYQUIST criterion). 

An example of the well-kno"wn rules not always being of common knowl­
edge is, that in a voluminous handbook [3] the formula for determining Z, 
as well as the formulation of the criterion is erroneous. 

c) The desired number Z of the right-half-plane roots may be obtained 
by subtracting the number of (positive directed) net encirclements of curve 
N(s) about the origin from the sum of the right-half-plane zeros number ZG 
of the forward branch and the right-half-plane poles number PH of the feed­
back branch. 
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Then is the closed-loop control system stable if, and only if the inverse 
curve N(s) of the closed-loop transfer function surrounds the origin in a pos­
itive direction as many times, as the sum of the number of right-half-plane 
zeros ZG of the forward branch G(s) and the number of right-half-plane poles 
PH of the feedback branch H(s) is. 

d) The obtainable number Z of the right-half-plane roots of the charac­
teristic equation is given by the number of the right-half-plane zeros ZG of 
the forward branch, the number of the right-half-plane poles PH of the feed­
back branch and the number of (positive directed) net rotations of the plot 
lVI(s) around the origin. 

Then is the closed-loop control system stable, if, and only if the origin 
is encircled in a negative direction by the curve IVI(s) as many times as the sum 
of the number of the right-half-plane zeros ZG of the fOr\\-ard branch G(s) 
and the number of the right-half-plane poles PH of the feedback branch 
H(s) is. 

As the plot Af(s) generally runs into the origin of the complex plane 
11:[(s) , determining Ro {M(s)} encounters difficulties. While in the previous 
cases adoption of the quadrant theorems is not especially advantageous, lending 
itself rather for checking, now its application is advantageous and recom­
mended. 

Equations (3.5) and (3.6) yield now 

(3.8) 

Taking into consideration the quadrant theorem, the stability criterion 
for the closed-loop frequency response may be summerized as follows: Then, 
and only then is the closed-loop control system stable, if the main branch of 
the closed-loop frequency response 1vI(s) runs through as many quadrants into 
the origin in clock-wise, negative direction, as the difference -DM between 
the highest powers of polynomials NIp (s) and lVIz (5) is, plus t'wice the number 
of the right-half-plane zeros of the forward branch and the right-half-plane 
poles of the feedback branch: 2(ZG + PH). Thus, the system is stable if, and 
only if: 

(3.9) 

Naturally, a similar theorem may be established for the main branch of N(s), 
nevertheless, the main branch of the plot N(s) has to nm in a positive direction, 
and accordingly for a stable system the number of quadrants is 

(3.10) 

2 Periodic a Polytechnica El. YI/l. 
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4. Complementary notes 

If we want to determine the questionable number of the right-half-plane 
zeros (or poles) Z, based on the plot of the transfer function components 
Ml (s), Nl (s), or lY.I2 (s), N2 (s), mentioned in clause 1., the following formulae 
offer themselves: 

Z= ZG (4.1) 

or 

(4.2) 

,.,-here 

2 
(4.3) 

On the other hand 

Z= PG (4.4) 

or 

( 4,.5) 

where 

Dl'v!2 

2 
QN2 I DN2 _ R {i\T ( )} I' -- - - 0 ~'2 S • 
2 2 

(4.6) 

Starting out from the above formulae, the methods for determining the 
number of the right-half-plane roots of the characteristic equation, as well as 
the stability criteria can be stated without difficulty. 

In some special cases the formulae may be brought to a more simple 
form. For example, if there is a unit feedback in the system: H(s) = 1, then 
the substitution PH = ZH = 0 must be made. 

At that time, the formulae for determining the number Z of the right­
half-plane roots of the characteristic equation are reduced to the following 
forms: 

a) Based on the complex-plane plot of the open-loop transfer function 

(4.7) 

b) Using the inverse complex-plane plot of the openloop transfer func-
tion 

Z = ZG - R-l !_I_l. 
I G(s) \ 

(4.8) 
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c) Considering the inverse complex-plane plot of the closed-loop system 

Z = ZG - RO {N(s)} = ZG - Ro {NI (S)}. (4.9) 

d) Taking into account the complex-plane plot of the closed-loop system 

Z = ZG + Ro{M(s)} = ZG (4.10) 

_( 1 
Now the criteria b) and c) are of identical form, as N s) = 1 + G(s) . 

If the open-loop is of minimum phase and is stable in itself, then 
PG = ZG = PH = ZH = 0 is to be substituted. 

Formulae for determining Z are now: 
a) Considering the complex-plane plot of the openloop transfer function 

Z = -R-l {G(s) H(s)}. (4.11) 

b) On the basis of the inverse complex-plane plot of the open-loop trans­
fer function 

Z--R 1 I 
- 1 I G(s) H(s) r (4.12) 

c) Regarding the inversc complex-plane plot of the closed-loop system 
y 

(4.13) 

d) Considering the invcrse complex-plane plot of the closed-loop system 

( 4.14) 

In the latter case the stability criteria are as follows: 
The closed-loop system is stable if, and only if a) the main branch of 

the plot G(s) H(s) or b) of the plot IjG(s) H(s) does not encircle the point 
-1 and if, and only if c) the main branch of the curve N( s) does not surround 
the origin. (In all three cases, traversing the main branch in the direction of 
increasing angular frequencies, the reference points -1 and 0, respectively, 
are situated to the left-side of the curves). 

Finally, if the main branch of the closed-loop frequency response 111"(s) 
runs in a clock-wise, negative direction, the system is stable, while in the op­
posite case it is unstable. 

It may also be added, that in the technical literature sometimes the 
plotting of the main branch of Nz(s) = NIp (s) belonging to the characteristic 
equation can also be met "with (e. g. [4]), though this method is, OIl account 

2* 
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of the above-mentioned summation, rather laborious and naturally gives less 
data than the plot of lV(s) or lli(s). For the sake of completeness also the so­
called MI1XAI1J10B - LEONHARD criterion, relative to the main branch of Nz (s) 
is given below: 

(4.15) 

·where D"z now euqals the degree of the characteristic equation. If the closed­
loop control system is stable, the main branch of Nz (s) passes through exactly 
as many quadrants in the positive direction as the degree of the characteristic 
equation is. (Otherwise the quadrants deficiency gives 2Z, that is, twice the 
number of the right-half-plane zeros sought for). 

5. Examples 

For demonstrating the generalized stability criteria and illustrating the 
methods for dctermining the questionable number of the right-half-plane roots, 
Figs. 1 and 2 serve, respectively. In the partial figures both lja and 2/a, the 
loci of the open-loop poles and zeros, as well as the course of the path C en­
closing the right-half-plane is shown. In the further partial figures mapping 
of contour C onto the planes G(s) H(s) (Figs. lib and 2/b), l/G(s) H(s) (Figs. 
lie and 2jc), as ·well as onto the planes .1V(s) (Figs. ljd alld2/d) andlvI(s) (Figs. 
lie and 2je) are demonstrated. All figures are of distorted scale, taking care 
of maintaining the angles rather. This is due to the fact, that when determining 
the net number of rotations, latter is the more important datum. As a con­
sequence of this are the curves directed ill case of S -i>- + j 0 e. g. in figures 
] /b and 2/b, towards the negative imaginary axis, while in reality a straight 
line parallel ·with the imaginary axis is the asymptote. The main branches are 
illustrated in all cases by a thicker line. From the curve of NI(s) only the main 
hranch was plotted in Figs. lif and 2"£, ·'while in the other cases the complete 
plots figure. Some correlated points have also been marked (::!:: jO: ::!:: j =). 

The transfer functions of the forward and feedback branch, as "well as 
the number of poles and zeros of the open-loop are summarized in a separate 
table (Tables 1 and 2). In the same tables the net number of rotations to be 
determined on the basis of the different plots and the number of the quadrants 
in the main branches, respectively, ma)" be found. Naturally, adopting which­
eyer of the general stability criteria given, the results are the same. In our pres­
ent example, if the system is unstable, Z = 2, that is, the characteristic 
equation has two right-half-plane roots. If Z = 0, the closed-loop system is 
stable. 

As a completion it may be mentioned, that in both examples one pole 
of the forward branch G(s) is located at s = O. In figures lja and 2/a the by-
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Table 1 

Summary of the results 

Transfer functions of the forward 
and feedback branch, resp. 

Right-half·plane poles and zeros 

Range of gain factor 

:-\umber of net 
encirclements or 
quadrants from 
the corresponding 
figures 

::\ nmber of the 
right-half-plane 
roots of the 
characteristic 
equation 

R_l{G(s)H(s)} 

f 1 I 
R_1 I G(s)H(s) I 

Ro{N(s)} 

QN 

DN 

Ro {M(s)} 

QM 
D,"I 

z 

Conclusion; Closed-loop system is 

G(s)=K ~ 1 
s(1-;-s) (1 +0,25s) 

H(s)=l 

0, 

K<5 5<K 

! 

O(or 1) -2(or-1) 

0 -2 

0 -2 

-;-3 -1 

-;-3 -;-3 

0 +2 
-3 +1 

-3 -3 

I) 

stable unstable 

Remarks 

From Lse 
Fig. lib. Eq. (3.1) 

From Lse 
Fig. Ije. Eq. (3.2) 

From Lse 
Fig.l/d. Eq. (3.3) 

and or 
Eq. (3.·1) 

From Lse 
Figs. lie Eq. (3.5) 
or 1/ f. and/or 

Eq. (3.6) 

From each 
of the aboyc mentioned 
equation" 

pass of the pole by a semicircle of infinitely :;;mall radius may be seen by a 
full line (running from the right in a positiYe direction), as ~well as by a dashed 
line (trayersing from the lcft in the negative direction). At that time, naturally, 
passing from one kind of by-pass to the other, thc number of the right-half­
plane poles is modified by one (see the two yalues PG in Tables 1 and 2). In 
Figs. Lb and 2/b the semicircles of radius tending to infinity, being oppositely 
directed and corresponding to the semicircles of infinitely small radius may 
be seen likewise as full and dashed lines. 

In all cases the frequency-response CllryeS haye been plottcd for t·\\"o 
cases, in the first one the gain factor being so chosen that the closed-loop 
system should be stable, while in the second one so as it should be unstable. 
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Table 2 

Summary of the results 

Transfer functions of the forward 
and feedback branch, resp. 

Right-half-plane poles and zeros 

Range of gain factor 

R_1 {G(s)H(s)} 

R_1 { G(S)~(S)} 
Number of net 

Ro {!Y(s)} encirclements 
or quadrants QN 
from the corres-
ponding figures DN 

Ro {iVIes)} 

QM 
DM 

]\I umber of the 
right-half-plane 
roots of the Z 
characteristic 
equation 

Conclusion: Closed-loop system is 

G(s) = 
-K~. 1-0.1s 1+0.5s 

s 1-5' 1+0.05; 

H(s) = 1 

PG = 1(or2), PH =' 0, 
ZG= 1,ZH= 0 

2.15 < K 
K < 190 

l(or 2) 

+1 

+1 

+3 

+1 

-1 

-3 

-1 

(I 

stable 

I 

I 

i 

i 

K< 2.15 

-l(or 0) 

-1 

-1 

-1 

+1 

1 

+1 

-1 

-1 

unstable 

Remarks 

I 

I From Use 
I Fig. lib. Eq. (3.1) 

I From Use 
Fig. lie. Eq. (3.2) 

From Use 
Fig. lid. Eq. (3.3) 

andlor 
Eq. (3.4) 

From Use 
Figs. lie Eq. (3.5) 
or 1/!. and/or 

Eq. (3.6) 

From each of the above 
mentioned equations 

Finally mention must be made of the circumstance, that if as a result 
of the adjustment of the gain factor, some of the closed-loop system poles 
(in this case two of them) fall exactly onto the imaginary, axis, then curve 
G(s) in Figs. lib and 2/b and curve l/G(s) in Figs. lie and 2/c pass exactly 
through the point -1, the curve of N(s) in Figs. l/d and 2/d traverses the 
origin, and at that times the curve of M(s) in Figs. lie and l/f and 2/e and 2/f, 
respectively, pass through the infinite point of the complex plane. 



GEjSERALIZED COMPLEX·PLANE STABILITY CRITERIA 23 

Summary 

In this paper, starting out from the argument principle and logarithmic integral 
theorem of complex variables and using some auxiliary theorems, the complex-plane methods 
and formulae for determining the number of right-half-plane roots of the characteristic equa­
tion and the stability criteria are summarized for the four main cases, that is, for the open-loop 
and closed-loop transfer functions (or frequency responses) and for their inverse functions 
(or plots). 
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