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1. Intreduction

Analysis and synthesis of control systems used to be effected, for the
sake of simplicity. assuming reference signals and disturbing signals, respective-
Iv. of predetermined regular course. Such typieal signals may be, for instance,
the impulse function, the step function, as well as the ramp function, or the
sinusoidal signals. The input signals of control systems, however, show in
reality irregular variations. and may be described statistically only. Also, for
these so called stochastic signals the investigation of the system may be realized,
though with certain limitations. The aim of present paper is to summarize the
most important fundamental conceptions and to bring the mathematical
theorems and relations close to the engineering practice, neglecting the de-
duction of the formulas.

2. Fundamental relations

In the following only stationary random processes are dealt with. A pro-
cess is called stationary, if its statistical characteristics (probability-distribu-
tion, or probability-density functions) are independent of the time origin,
that is, the statistical character of the random process does not change with
time. For stationary processes the ergodic hypothesis is accepted; the time
average and the ensemble average are equal to one another:

x(t) = x(¥) (1a)
where
T
(1) = tim —%— *(t) i (1b)
-T
and
— N
=+ Sl (10)
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In other words, it is assumed, that when forming the average value, the same
result is obtained, either by studying a single process at many different instants,
or numerous processes are observed at the same instant .

3. Function transforms

In control engineering describing the transient responses for typical
signals as zero for negative time, that is, for determining the dynamic behaviour,
generally, the Laplace transform (further on.& -transform) is applied first of all.
The & -trapsform and the inverse iransform of a certain so-called posi-
tive-time function f. (¢) yield

F. (s)=Z[f-0] = } fo(t)ye < dt (2a)

?;. c=jeo
foty= 7 F . (s)] = pan F_(s)e'*ds (2b)

where o
s=0c4jo; 0<t (2¢)

and ¢ must be so chosen, that in the complex plane the integration path should
be on the right side of all of the poles. When f. (t) — 0 if ¢t — co, then function
F_ (s) has only left-half-plane poles.

To study the stochastic signals, the Fourier transform (in the following
F -transform) may be adopted:

<

F(jo) = F[f(2)] = J’f(t) eJet dy (3a)

—ce

=]

£ = FUF(o)] = o J Fjoo) e/ do (3b)

—t

Recently also the two-sided Laplace transform (in the following % -transform)
is frequently applied.

F(s) = 5Tf)] = j Flt) e~ di (1a)

c+jes
J = 7 EE) = | Flodeds (4b)
Cmjoo

where
s=0 -+ jow; — oo < t< oo (4c)
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Here the function f(t) consists of two components: of a positive-time
function and of a negative-time function

Jo =F-(t) - 1.(1) (5a)

where

zjf(t) t<<0 ‘ :_;0 t << 0 5b.c
- o 0<t:fl(t) ) 0<: (5b.c)

According to this also the 7 -transform may be resolved into two parts:

F(s) = F_(s) + F.(s) (6a)
where

F_(s) :_«\1 fo(tyetde (6b)

Fo(s)= | f(t)edt (6¢)

Here, in case of a limited f(t) function F_ (s) has only right-half-plane
poles, swhile function F_ (s) only left-half-plane ones (¢ must be chosen so
that the integration path should fall between the left-half-plane and right-
half-plane poles). As is to be seen, F_(s) is the common #-transform, while
calculation of F_ (s) may be performed by substitution ¢t = —4& (if t < 0,
then 0 < ¥):

F_(s) = j fo(— 9) e (— di) = g‘f_(— 9) e~ (-9 49 (6d)

Thus, this latter function may be reduced to the common.%~transform. Its
calculation is effected as follows: a) by reflexion (substituting ¢ = —9), from
the negative time function f_ (t) a positive time function f_ (—%) is established:
b) determining the & -transform: c) substituting the value —s instead of s.
The -7 -transform is of the most general form among the above-mentioned
three integral transforms. On the one hand, it turns in case of f(t) = f, (1)
to the ¢ -transform, and, on the other hand, substituting s = jo the & -trans-
form may be obtained.Consequently, the .7 -transform may be adopted for
representing also the #-transform, with ¢ = 0 and introducing jo = s.

Concerning the inverse transformations: the inverse of the .9 -transform
may be performed instead of calculating the complex integral generally a)
by resolution into partial fractions and applying tables, b) by the expansion
theorem, ¢) by aid of the CAucHY residue theorem. From the latter, in case of
single poles, the time functions are

fo() = Zvligip{(s —p,) Fs)e}; 0<t (7a)
fo(t) =— ;lligp{(s —pJ) F(s)e}; <0 (7b)

1%
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while in case of multiple poles

{ n-1
- =2'1im-s.———l~——“— d
: ¢ osepe | (n— 1)1 ds"t

[s—py Feel: o<t (8

|

. { 1 dn—l s - } i
fo@)y=— Z_hm _(n 1-)—’ ES———H_I [(s —pu)" E(s) e“‘] s 1< 0 (8b)
s S—Py — .

and finally
fO =7 + 70 (5a)

Here p, means a left-half-plane-pole (of negative real part). while p, a right-
half-plane pole (of positive real part)”

X[t Wi wlt] = Wit < x(t)
—_
Xis) Wisi Yis)=/1s) Xis)
Fig. 1

(=

The single-sided &’-transform may be calculated by the same formulas, at
these times, however, always f_(f) = 0 and f(t) = f, (f). If there is a right-
half-plane pole, this must be arranged to the left-half-plane ones p,, never-
theless, at these times the time function increases beyond all limits. The in-
verse ¥ -transform may also be formed with the same formulae, after sub-
stituting s = jo.

An important feature of the &-, 7 -, .7 -transforms enumerated above is,
that they transform the differential equations into algebraic ones, while the
superposition (convolution, faltung) integral referring to the time functions

¥(t) = | w@®) x(t — 9)dd = | w(t — 9) x(3) dP (9a)

is transformed into a simple multiplication (Fig. 1):
Y(s) = W(s) X(s) (9b)

provided, that X(s) and Y{(s) exist.

*If f(t) = f(t + T). then f_y(t)=f_(t - T) is meant within the range ¢t < —T.
while fi.) (¢} = f.(t + T) in the range —T < t! The functions f{_y (1) and f.) (¢) are pseudo-
negative-time functions and pseudo-positive-time function, respectivelly, because their point
of separation is —7T instead of 0.
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If the input signal is a Dirac unit impulse, x(t) = 06(t). then the output

Tﬂ

ignal is the weighting function itself

v(t) = [ 10(t — 9)8(9) d9 = wly) (10a)

Y(s) = W(s)- 1= W(s) (10b)

4, Correlation functions

Two kinds of correlation functions may be distinguished: cross-correlation
and auto-correlation functions. For stationary processes, by means of time
average, definition of the cross-correlation function of signals x(f) and y(t)

is:

-
Pol®) = lim [ () ¥t = 7) e (11e)
. T—rce :_,T‘
—T
and
T
velT) = lm —— | yv() x(t — 7) ds 11b
#:(7) MzTJ(H )d (11b)
T

respectively.
The auto-correlation function of signal x(t) may be obtained by sub-
stituting into the cross-correlation function y(t) = x(1)

T
@n(T) = il_m % J () xft + 1) dt (12)
-7

Determination of the correlation function is illustrated by Fig. 2.
The main features of the auto-correlation function are as follows:
a) it is an even function g (7) = @y, (—7) ;
b) its maximum is attained at zero shift parameter;

7:l7) | = #:(0)

Delay line
/1T ()=

et S (t-T) ~ ~ R .
: Git-Tlex(t+T) I Multiplicator Average unit

xMilyitsT) 4 1 A Sy 1T/

s A

X 2#7 _fu
ylt=7) . ylt+Tl=
i g1l

Fliegliet]




192 F. CSAKI

¢) latter expression furnishes the mean-square value of the signal
Q\x(o) - xz(t); o e
d) for large shifting times ¢ (7) = x(1)* as generally x(t) = 0, con-

sequently lim ¢y (1) = 0.

If the stochastic signal includes a periodic component

x(t) = a(t) — b cos (wr + 6) (13a)
then

Tee(T) = @oalt) + —g— cos 0T (13b)

Presence of the periodic sinusoidal signal-component mav be gathered from
the behaviour relating to large values of 7, for

lim @, (1) = a?(t) = const (13¢)

T—o

while the second term of Eq. (13b) varies periodically also forlarge values of 7.

Features of the cross-correlation function are
e) it is not an even function, but

(p_\._\,('l') - (/i‘\'.\'(—'T)

so the two cross-correlation functions are reflexions of each other (index-
changing rule);

b) L pu(r) < Ve(0) g, (0):

¢) @, (0) = x(t) y(1) :
d) lim @, () = x(t) y(t) as a rule = 0.
00
Finally it must be mentioned, that no unique correspondence exists
between the signals and correlation functions, the same correlation function
may belong to different signals.

5. Power-density spectra
Though the stochastic signals have no-*-transform, their correlation

functions have., Under the power-density spectra (sometimes briefly: power
spectra) of the signal, - -transforms of the correlation functions are under-
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stood. Consequently the relation between the auto-correlation function and
the corresponding power-density spectrum is as follows

£

@xxjw>::J Fre (7) emiomd T (14a)
1 n:v: . '

P(T) = . l D, (jo)em do (14b)
e A

30

the relation between the cross-correlation function and the power-density
spectrum may be expressed by

D, (jo) _) G (7) e dr (15a)

— 23

Polr) = 5 | Do) o do (15b)

—

These are the so-called WiENer—HinTsHIN relations. Also the forms by
the substitution s = jw are in general use:

Poale) = | plr) e de (162)
1 T
PalD) = 5 | Buls) e ds (16b)
2y )
__j;n
and
Oul) = | gulr) e (172)
; i
(px.\:(T) = . J @xv(s) e”ds (17b)
2y ’
_.jw
Features of the power-density spectra are:
a) D,.(s)=D.(jw) is an even function of s or w, so it is a real
function, con=equentl} D, (s) = D (jo) = Pk (jo) = m(~—~Jw) =0 _(— s);

bj D,.(s) = D,,(jo) s generally not an eV en function, so it is a complex
variable function, but (D,\,(s) = \\(]w) i (jo) = Py — jo) = Py (— 5)

(index changing rule).
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On the basis of the former definitions, after substituting 7 = 0, the
following significant relations may he obtained:

. .
F@=¢d®=§%‘@ﬂﬁmm=§% B,.(s) ds (18)
- .
1 - -
x(t?(T) =¢.(0) = : D, (jo)ydow = 715[]— w(s) ds (19)

Consequently the mean-square value and the mean-product value may
easily be evaluated from the integrals of the power-density spectra.

6. Examination of linear systems® behaviowr

The relation between the input signal x(t) and output signal y(¢) of a
linear system with a given weighting function w(z) is described by the super-
position integral (9e). This is valid both for deterministic signals and for sto-
chastic ones. The transformed form (9b) is valid for nothing but the deter-
ministic signals, as the stochastic signals have no transforms.

With the aid of the correlation functions and the power-density spectra
the behaviour of the linear systems may be characterised. however, not only
in the time domain, but also in the frequency domain.

The following fundamental relations may be stated (Fig. 3). First:

([-"»‘_‘V(T) = J‘mw(ﬁ) (F.\':‘:(T - 79) dg (2«03}

B,.(5) = W(s) Dsls) (20b)
Second:

Folt) = T ) gl — ) dv (21a)

By (s) = W(s) Buols) (21b)

Third, considering the features of the respective functions

o e

g[:_\,x(‘l') - J w(£) (P.\‘:-:(T + ;) d; = ‘\\ l(’(:) q.\:x(_ T ;) d; = Py (_ T) (223)

— e —c

@.“{(S) = W(—S) @x:\:(s) = W‘('— S) @.\‘.‘:(_ S) - @:Q,'('" s) (22}))
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Finally, in the fourth place, on the basis of the second and third relation-
couples:

@) = | 2e(8) [ 10(0) gulr — 6 + 2 dZdo (23a)
@_\',\’(S) = W(S) W(~ S) ®}c>:(s) = 'W~(S)v2 @.\‘x(s) (23}))
or
D,.(jo) = W(joo) W(joo) Do) = W(jo) 2 D, (joo). (23¢).
zil ] ylt! =wft] = (i)
2 Wy G (T =W Ti% J,, (T)

A0 Wis) Beir 5] = W15 oy 57

W T/ Sy (T =T f, (07
Wish | @yuls] = WIS G,l5)

wi-7) G (T = WA T)e P 0] = Gy 177

B iS! Wi-s} BuxlsT = W/l-s) gy (s} = @eyl-5/
.41 7‘ wi-T/ ol T Wit/ Syo (T
S Wi-s) e Wisi By 157

w; (-T) Gprx 7 ()
Wi l-sj E b (5
Fig. 3

As a general rule it may be stated, that the second index of a certain:
power-density spectrum may be changed by the multiplication of the transfer
funection, while its first index by the multiplication of the conjugate of the
transfer funection. So for example:

Qj}r’l,\’:(s) = IV‘l(— S) Wz(s) @_\._\.(S) (24)

The same refers to the correlation function, where the second index may be
changed by a common convolution, while the first by a reflected convolution.

7. Some practical remarks on the analysis of the systems
From a theoretical point of view the so-called “white’ noise is of great

importance. The stochastic signal is called a **white noise”, if the components
of arbitrary frequency are figuring with the same. e. g. unit amplitude. In other
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words, the power-density spectrum of the **white noise” is constant. The auto-
correlation function of the *white noise” is the (unit) impulse function:

(P.\:.\’(T) - O(T) @.\:x(s) - @(](l)) =1 (2‘5)

‘The ““white noise” cannot be physically realized, as an infinite power (or
mean-square value) would belong to it (see Formula 18). In the practical
realization of the noise generators an approximately constant power spectrum
is to be aimed at, at least up to a certain critical frequency.

It must be noted. that from the **white noise” any desired power-density
spectrum may be established with the aid of a filter of suitable transfer func-
tion W(s) (see Eq. 23), consequently any required correlation func-
tion may also be obtained.

gl +misi
Ylth+mii
Noise | nft ) W
generator Correlator b
nt)
G T = S(Z]
o, (T =0

() =T

Fig. 4

(=

On the other hand, the correlation functions and the power-density
spectra permit the determination of the transfer function of complete control
systems, or the transfer functions of some elements. For this purpose merely
the auto-correlation function of the input (or output) signal. and one of the
cross-correlation funetions, (i. e. the respective power-density spectra) must
be determined by measurement or calculation, starting from formulae (20),
or (21), whereafter the desired weighting function (or transfer function) may
easily be obtained. The great advantage of the above method is, that it may
also be realized in working systems. [5] The task becomes especially simple, if
the input signal is a **white noise™, as in this case, according to Formula (20)
the weighting function itself is provided by the cross-correlation function,
while the transfer function is obtained by the power-density spectrum.

Ful®) = | 10(8) 6(r — 9) d9 = w(r) (26a)
D (s) = W(9)-1 = W(s) (26b)

By measuring with an actual noise generator, efforts must be made in order
that the noise generator critical frequency should be higher than that of the
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system to be investigated. The measurement may be carried out also in a
living system (see Fig. 4).

The advantage of the above method is, that it is insensitive to disturb-
ances appearing at different points of the system, further it may also be applied
for multipole systems, that is, for many input and output signals and for
clearing up the relations between the individual input and output signals.

8. Synthesis of control systems

The fundamental principles of the control system synthesis based on
stochastic signals, in other words. the fundamental principles of statistical
design are laid down in the Kory0ocoROF—WIENER theorem. In this theorem
the question is raised, how to choose the dynamic characteristics (weighting
function, transfer function) of the control system in such a wayv that the
deviation, or error, respectively, between the actual output signal and the
desired output signal should be a minimum. As a consequence of this the
statistical design is not a unique task, its result depends on three factors:
a) on the statistical characteristics of the input signal: b) on the statistical
characteristics of the desired output signal; ¢) on the criterion of the mini-
mum error. If whichever of the three factors changes. another result is ob-

r{t/c it [id

. l—— hly

rlt] C ol ) ol cit/

]

rit] wfY )
nlil
g:'“' rit
'+ Sl | witl
sit]
st it
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tained for the optimum weighting function. The optimization is generally
realized on the basis of the minimum mean-square error criterion, not that
this would give the best result, but because this task mav be solved the most
easilv mathematically.

The task of the statistical design for continuously operating linear control
systems affected by stationary stochastic signals may be formulated as follows
(Fig. 5). How to determine the resultant weighting function w(f) and the
resultant transfer function W(s), respectively, of the closed-loop control
system, in order that the &(t) mean-square value of the error signal, that is,
the difference hetween the ideal output signal i(f) and the actual output
signal ¢(t) should be a minimum:

w(t) =7 Wis) = ? in order that &2(t) = Min.

It is worth mentioning, that the stochastic input signal r(t) mav include, in
addition to the signal component s(t) also the undesirable noise component
n(t). Finally relation may often be established between the ideal output signal
i(t) and the input signal component s(t) through the ideal weighting funetion
gi (1) .

The task of optimization may obviously refer to the determination of
the physically realizable weighting function w(t) only. The condition of the
physical realization is, that the weighting function must be zero for negative
time (consequently, the weighting function may include a positive-time
function component only), as the effect can never precede the cause. As the
ideal output signal i(t) does not exist in reality, it being merely a creature of
our imagination, the ideal weighting function g;(z) must not be a physically
realizable one.

In the knowledge of the weighting function w(i) and the transfer function
IW(s), respectively, design of the control system individual parts [Fig.5 G(s)
or H(s)] means no special problem.

9. The main relations of the siatistical design

According to Fig. 5. the error signal is
e(r) = i(t) — (1) 27)

consequently the mean-square error to he minimized is

20 = [i) — (O (28)
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Adopting the definitions of the correlation functions, latter may be formulated
as follows:

F) = 7,(0) — 2] W) g9 40+ [ w(d)

g8

w(Z) @0 — 2y d5dd

(29)
By

the calculus of wvariations, substituting

w(t) = w, (1) + 7w; (1) and
differentiating according to A and by the substitution de?/d 2 = 0, for the

minimalizing optimum weighting function w, (r) the following integral equation
mayv be obtained:

;g‘ () g, (0 — O dl — () =0: 0= (30

This is the WieNer-Hopr integral equation. If it were valid not only for
0 < #, but for all values, then it could be solved by 7 -transforms.

For negative times the left-side term is not zero. but equals a certain
unknown negative-time function f_ (#) (f. (&) = 0, 0 < #).

g8

Summing equations (30} and (31)

I

w,(0) ¢, (0 — ) dl — ¢ (0) =f-(9):

This integral equation can already be solved with the F-transform (pro-
vided the correlation functions have power-density spectra):

W,(5) B,,(5) — B.(s) = F_(s) (33)
Here function F_ (s) has only right-half-plane poles, while the other functions
have poles in the entire complex plane.

Let us resolve the power-density spectrum @,(s) into two factors:

B,,(s) = Bils) i) (34)
where @}, (s) contains all left-half-plane zeros and poles of @, (s), while
D, (s) all of those of the right-half-plane.

To avoid misunderstandings it must be noted, that

¢’r/(T) = wrr——(z) 'I— ¢rr+(r)
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its & -transform would bhe

D, (s) = D, _(s) + D, (s)
and generally

Di(s) = Drr(s): Drils) F= D, _(s).

Substituting relation (34) into equation (33), after division and re-

arrangement

2,05 | F_(s)

D(s) T D(s)

W (s) Prils) = (33)

At the right side the second term has exclusively right-half-plane poles, as
F_ (s) is a transform belonging to a negative-time function, while the com-
ponent @, (s) has only right-half-plane zeros. Consequently

F_(s) _ [ F_(s)° (36)

Do(s) L 9i(s)

Also the first term mayv be resolved into components:

w0~ o] (50 . &

Thus, taking Eqs. (36) and (37) into consideration, starting from Eq. (35)

R

rr

W,(5) Bi(s) = [

It is evident from Eq. (38), that the optimalizing transfer function may not
be a physically realizable one, as a rule, as at the right side of (38) there are
generally figuring left-half-plane, as well as right-half-plane poles. If we
restrict ourselves to the transfer function W,(s) that may physically be
realized, then at the right side of Eq. (38) only the part furnishing the left-
half-plane poles must be considered, so

W ofs) Bils) = [Z%%} (39)

According to this, the physically realizable optimum transfer function is

) = — 1 @”-(S)
Pl =g [@;,(s)L o
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Calculation of the right-side terms of equation (39) may be effected generally
on the basis of the instructions given below:

(28] _ gt | 20

) 41).
D2(s) I 195G e

Often, when the part of Eq. (39) in square brackets contains a rational:
fractional function only, our aim may be achieved more quickly by resolving
into simple partial fractions and omitting the terms containing the right-half-
plane poles.

The course of determining the physically realizable optimum transfer
function W, (s) is illustrated in Fig. 6. for a general case.

¢£1 is/ ~of B 151] ,@ri is)]
Prp 15/ @ ¢/'—,"(5)/ @ L’(j;r‘sl//-f

@ Wi Is)

AN
&>

M= muitiplicator
S= separafer
J = invertor

Fig. 6 .

In Table 1 the formulae, that may be derived from the above general
formula and those serving for the determination of the optimum transfer
function W, (s) are summarized for some special cases. It is to be remarked
that in the formulae the power-density spectra of the input signal and of the
noise, as well as the ideal transfer function Gy(s) are figuring only.

10. The value of the mean-square error

Knowing the optimum weighting function and the transfer funetion,
Tespectively, the mean-square value of the error may also be determined.
Again restricting ourselves to the system shown in Fig. 5, the mean-square-

€IrTror 1S
1 1
1) = ul0) = —— j D,,(jo) doo — —— j @, (s) ds (42)
27 2mj
—r —je
where

Peel(7) = Pui(T) — @:el7) — P(7) + Pee(7) (43).
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and

Q')EE(S) = @ii(s) - Qc(s) - (Dc( s) + C‘D (5) (44)

‘respectively.

Latter may be written, considering the index changing rules, as follows
.@Es(s) - Gl(_ S) Gi(s) @55(5) - :Gi(_ S) Wm(s) @SI'(S) -

- Wﬂm(—s) G[(S) (“DI‘S(S) + Wrni(_s) Wm(s) (‘Drr(s) (45)
which may be formulated. taking into account

@ rs(‘s) = (‘bs:(s) - @ns(s>
also in this way:

D (s) = [Gi(—5) C(s) — G(— s) W (s) — Wo(— 5) Gi(s) +
"— Wn (_ q) /nz(s ]® (S) [Wm(_' S) W‘m(s) - (46)
- W-m(_ ) G, (S)] @ ( ) [W—m(_ S) W-m(s) —
- Gt(_ S) W‘m(s)] (*Ds.'z(s) -+ [ m(_ S)] W—m(s) @lln (S)
TIntroducing the notation
W (s) = Gis) — Wp(s) (47)
@ES(S) - W‘a(_ s) W‘s(s) QSS(S) -
- WI;'I(— S) W’s(s) (plzs(s) -

- We(_' S) Wm(s) @S.”L(s) -+ (48)
—.L_ W"’!( ) Wm( )®i?ti(s)

we get

In case of uncorrelated signal and noise component

®as(s) = Wss(s)z (pss(s) + anz(S)%z @nn(s) =

= Gy(s) — Wi(s)2 D(s) 4+ Wi(s) 2 Dy(s) (49)
For a noise-free system, however,
@55(5) = ‘Wr‘hs(s)::'?_ @ss(s) = iG_,-(S) ”"117m(s);1:2 @ss(s) (50)

Knowing the power-density spectrum of the error, the mean-square error
may relatively easily be determined, as @, (s) being an even function, can
be formulated in the following way

Jj= Jeo
5 1 1 | C(s)C(— ) -
()= — | D, = 5
(" 275 o(s) ds 2aj J D(s) D(— s) 1)
—j= —j®

and for evaluating the latter integral, ready formulae are at our disposal e. g

L[7-9] *
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For the sake of simplicity in the power-density spectra and in the transter functions the independent variable s is omitied.
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11. Trends for the further development of the theory

In the foregoing the fundamental relations of the control system analysis
and synthesis exposed to the effect of stochastic signals were summarized.
We restricted ourselves to single-pole linear systems of continuous operation,
with stationary signals, the base of design was the minimization of the mean-
square error. The theory introduced here will be extended to sampled data
systems and (or) to nonlinear and (or) to multipole systems, moreover, to take
non-stationary signals into consideration. as well as to adopt other optimization
criteria, and so on.

Summary

This paper of reviewing character summarizes the main concepts of the stochastic
signal theory. characterizes the correlation functions and the power-density spectra. and in
it is briefly shown. how to apply these functions to the analvsis and synthesis of single-pole
control svstems. Finally some possibilities of further development are given too.
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