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1. Introduction 

Analysis and synthesi8 of control system8 u8ed to he effected, for the 
sake of simplicity, a8suming reference signals and disturhing signals, respective­
ly, of predetermined regular course. Such typical signals may he, for instance, 
the impulse function, the step function, as well as the ramp function, or the 
sinusoidal signals. The input signals of control systems, however, show in 
reality irregular variations, and may he described statistically only. Also, for 
these so called stochastic signals the investigation of the system may be realized, 
though with certain limitations. The aim of present paper is to ;;;ummarize the 
most important fundamental conceptions and to hring the mathematical 
theorems and relations close to the engineering practice, neglecting the de­
duction of the formulas. 

2. Fundamental relations 

In the following only stationary random processes are dealt ·with. A pro­
cess is called stationary, if its statistical characteristics (probability-distribu­
tion, or prohahility-density functions) are independent of the time origin, 
that is, the ;;;tatistical character of the random process does not change with 
time. For stationary processes the ergodic hypothesis is accepted; the time 
average and the ensemhle average are equal to one another: 

where 

and 

1 Periodic. Polytechnica El. Vli3. 

x(t) = ;(i) 

T 
- 1 ~ 

x{t) = lim -.- J x(t) dt 
T-,,,, 2T. 

-T 

(la) 

(lb) 

(le) 
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In other words, it is assumed, that when forming the average value, the same 
result is obtained, either by studying a single process at many different instants, 
or numerous processes are observed at the same instant to' 

3. Function transforms 

In control engineering describing the transient responses for typical 
signals as zero for negative time, that is, for determining the dynamic behaviour, 
generally, the Laplace transform (further on.2"-transform) is applied first of all. 
The g -transform and the inverse transform of a certain so-called posi­
tive-time function f + (t) yield 

where 

c-'-je: 

f+(t) = g-l [F +(s)] = 21. S F +(s) elsds 
nJ 

c-jo: 

s = (J + jw ; 0 < t 

(2a) 

(2b) 

(2c) 

and c must be so chosen, that in the complex plane the integration path should 
be on the right side of all of the poles. Whenf+ (t) -+ 0 if t -+ 00, then function 
F -'- (s) has only left-half-plane poles. 

To study the stochastic signals, the Fourier transform (in the follov.ing 
Y-transform) may be adopted: 

FUw) = Y[f(t)] = Jf(t) e-jwt dt 

f(t) = y-1[F(jw)] = ~J~ FUw) ejUJt dw 
2n 

(3a} 

(3b) 

Recently also the two-sided Laplace transform (in the following ,9':transform) 
is frequently applied. 

where 

F(s) = Y[f(t)] = S f(t) e- si dt 

f(t) = y-1 [F(s)J = _1_. cJ+!COF(S) elsds 
2nJ 

c-jc::. 

s = (J + jw; -=<t<= 

(4a) 

(4b) 

(4 c) 
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Here the function f(t) consists of two components: of a posith-e-time 
function and of a negatiye-time function 

(Sa) 
where 

t < 0 ; F:-(t) = JO t < 0 
0< t If(t) 0 < t 

(5b,c) 

According to this also the c.9f':.transform may be resoh-ed into two parts: 

F(s) = F -Cs) -i- F -,-Cs) (6a) 
where 

o 
F _Cs) = J f-(t) e- st dt (6b) 

'" 
F _Cs) = J f -(t) e- st dt (6c) 

o 

Here, in case of a limited f(t) function F _ (s) has only right-half-plane 
pole", while function F -,- (s) only left-half-plane ones (c must be chosen so 
that the integration path should fall between the left-half-plane and right­
half-plane poles). As is to be seen, F -r- (s) is the common .2" -transform, while 
calculation of F _ (s) may be performed by substitution t = -{} (if t < 0, 
then 0 < {}): 

o ~ 

F -Cs) = .I' f-( - 0) esl} (- dO) = Jf-( - fJ) e-( -s)& df} 
~ 0 

(6d) 

Thus, this latter function may be reduced to the common.2" -transform. Its 
calculation is effected as follows: a) by refIexion (substituting t = -fJ), from 
the negatiYe time function f _ (t) a positiYe time function f _ (-fJ) is established; 
b) determining the.2"-transform; c) substituting the value -s instead of s. 
The ,y:.transform is of the most general form among the above-mentioned 
three integral transforms. On the one hand, it turns in case of f(t) = f-l. (t) 
to the .2"-transform, and, on the other hand, substituting s = jw the Y-tr~ns­
form may be obtained. Consequently, the Y-transform may be adopted for 
representing also the Y-transform, with c = 0 and introducing j(t) = s. 

Concerning the inyerse transformations: the inyerse of the g:transform 
may be performed instead of calculating the complex integral generally a) 
by resolution into ,partial fractions and applying tables, b) by the expansion 
theorem, c) by aid of the CAUCHY residue theorem. From the latter, in case of 
single poles, the time functions are 

f-'c(t) = 27lim {Cs - p,) F(s) etS
}; 0 < t (7a) 

't-' S--Pv 

f-(t) = - Zlim{(s - P,ll) F(s) ets}; t< 0 
[f S-P,U 

(7b) 

1* 
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while in case of multiple poles 

f-,-(t) = 1: lim 1, __ 1_ d"-
1 

[(s - p,,)" F(s) ets]l; 0 < t (Sa) 
" S-PI" (n I)! ds"- 1 

( 

- 1: lim -- [(s P'Lt F(s) ets
]; t < 0 I d

tl

-

1 
i' 

;: s-p,-, (n - I)! ds tl - 1 
(Sb) 

and finally 

(Sa) 

Here p" mean", a left-half-plane-pole (of negatiye real part), while P,It a right­
half-plane pole (of positiye real part)* 

x (t! y/r) = 'u.T/rj ~xftJ 
Xis} YIs} - ~/,'sl X(s} 

Fig. 1 

The single-sided,2' -transform may he calculated by the same formulas, at 
these times, howeYer, always f- (t) = 0 and f(t) = f+ (t). If there is a right­
half-plane pole, this must be arranged to the left-half-plane ones pv, never­
theless, at these times the time function increases heyond all limits. The in­
verse Y-transform may also he formed ,,,ith the same formulae, after suh­
stituting s = jOJ. 

An important feature of the .5!' -, J-, cr:transforms enumerated abo,-e is, 
that they transform the differential equations into algebraic ones, while the 
superposition (convolution, faltung) integral referring to the time functions 

(9a) 

is transformed into a simple multiplication (Fig. I): 

Y(s) = W(s) X(s) (9b) 

provided, that X(s) and Y(s) exist. 

* If f(t) = f(t -;- T). then fH (I) = f- (I -;- T) is meant within the range 1 < - T. 
while fH (t) = I)t -;- T) in the range - T < t! The functions f(-) (t.) and f( _) (I) are pseudo­
negative-time functions and pseudo-posith'e-time function. respectivelly. because their point 
of separation is - T instead of O. 
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If the input signal is a Dirac unit impulse, x(t) = 6{t), then the output 
signal is' the weighting function itself 

y(t) = r 1I)(t {}) 6(19) dO = 11)\1') 
="cc 

(lOa) 

Y(s) = W(s)·l = W(s) (lOb) 

4. Correlation flillctions 

Two kinds of correlation functions may be distinguished: cross-correlation 
and auto-correlation functions. For stationary processes, by means of time 
average, definition of thc cross-correlation function of signals x(t) and y(t) 
is: 

and 

respectively. 

T 

1 
(P:·:v(T) = lim .1 x(t) y(t -;- T) dt 

. T-·oo 2T 

9yx(1:) 

-T 

T 
1 . 

~~~ -2T-' J y(t) x(t -'- T) dt 

-T 

(lla) 

(llb) 

The auto-correlation function of signal x(t) may be obtained by sub­
stituting into the cross-correlation function y(t) = x(t) 

T 

, ( ) - -. _1 f .() I· -'- ) 1 rxx T - ~1~ 2T x t x t • T (t (12) 

-T 

Determination of the correlation function is illustrated by Fig. 2. 
The main features of the auto-correlation function are as follows: 

a) it is an even function rrxx (1:) = ((xx (-1:) ; 
b) its maximum is attained at zero shift parameter; 

Fig. 2 
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c) latter expression furnishes the mean-square yalue of the signal. 

ifxAO) = x 2(t); 
a) for large shifting times ifxx (T) = x(ir as generally x(i) = 0, con. 

sequently lim ifxx (T) = O. 

If the stochastic signal includes a periodic component 

x(t) = aCt) -i- b cos (cot + El) (l3a) 

then 

(l3b) 

Presence of the periodic sinusoidal signal-component may be gathered from 
the behayiour relating to large yalues of T, for 

lim ifaa(T) = a2.(t) = const (13c) 
T-:r:: 

while the second term of Eq. (13b) ,-aries periodically also for large yalues of T. 

Features of the cross-correlation function are 
a) it is not an eyell function, but 

so the two cross-correlation functions are reflexiolls of each other (index­

changing rule); 

b) ifXy(T): V<Pxx(O)t[vv(O); 
c) (Pxv(O) . x(t) y(t); .. 
a) li~ <Pxy(T) = x(t)y(t) as a rule = O. 

Finally it must be mentioned, that no unique correspondence exists 
between the signals and correlation functions, the same correlation function 

may belong to different signah. 

5. Power-density spectra 

Though the stochastic signals haye no Y-transform, their correlation 
functions haye. Under the power-density spectra (sometimes briefly: power 
spectra) of the signaL 7-transforms of the correlation functions are under-
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stood. Consequently the relation between the auto-correlation function and 
the corresponding power-density spectrum is as follows 

(l4a) 

(14b) 

the relation hetween the cross-correlation function and the power-density 
spectrum may be expressed by 

(lSa) 

(ISb) 

These are the so-called \\iIEl'iER-HIl'ITSHIl'i relations. Also the forms by 
the substitution S = jet) are in general use: 

(16a) 

(16b) 

and 

(17a) 

(17b) 

Features of the power-density spectra are: 

a) cJ>xAs) = cJ>xx(jw) is an eyen function of s or w, so it is a real 
function, consequently cJ>xAs) = cJ>xAjw) = cJ>fAjw) = cJ>xx.( - jw) = cJ>xx( - s); 

b j cJ>xv(s) = cJ>x\,(jw) is generally not an even function, so it is a complex 
variable function, but cJ>xy(s) = cJ>xy(jw) = cJ>j.Ajw) = cJ>yx( - jw) = cJ>yA - s) 
(index changing rule). 
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On the basis of the former definitions, after substituting 7: = 0, thA 
following significant relations mav he ohtained: 

(18) 

jc:c 

r ifJXY ( s) ds (19) 

Consequently the mean-square value and the mean-product value may 
easily he evaluated from the integrals of the power-density spectra. 

6. Examination of linear sFtcms' behaviour 

The relation het'ween the input signal x(t) and output signal yet) of a 
linear system with a given weighting function w(t) is described by the super­
position integral (9a). This is valid both for deterministic signals and for sto­

chastic ones. The transformed form (9b) is valid for nothing but the deter­
ministic signals, as the stochastic signals have no transforms. 

With the aid of the correlation functions and the power-density spectra 
the hehaviour of the linear systems may he characterised, however, not only 
in the time domain, but also in the frequency domain. 

The following fundamental relations may be stated (Fig. 3). First: 

!fxy(7:) = .\:C zr(B) (Px;.:{7: - B) dB (20a) 
co 

(20b} 
Second: 

co 

!fvv(T) = \' w(B) g\;.:{7: - ~ . ~ 

B)dr (21a) 
- co 

(21b) 

Third, considering the features of the respectiYe functions 
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Finally, in the fourth place, on the basis of the second and third relatione. 
couples: 

or 

rpyy(i) = .r 10(0) .r 1V(;) 9\Ai - {f +;) d; dO 
-cc -cc 

Wyy(s) = W(s) W( - s) W:",(s) = W(s) 2 W xAs) 

Wy:.(jUJ) = W(jw) W*(jw) <Pxx(jw) = W(jw) 2Wxx(jW). 

xi!} 

~xrl;J 

tn /sl 

:ji x/(;) 

:f;y;:(si 

A,:!?} 
'tn/sf 

7.JftJ I y(t/ =wftJ * Xii! 

cA re; =7:Jf7:/* cAx(i:J 
'--__ ---' if;xy(s! - t-.l(slr/Jxxfs/ 

I/Jyx fs} - ~/f-s} if;xxfs} - if;xyf-51 

Fig. 3 

If,'11./2 17:} . 

rPJ:JfjJ2(S.J 

(23a) 

(23b ). 

(23c ): 

As a general rule it may be stated, that the sccond index of a certain­
power-density spectrum may be changed by the multiplication of the transfer 
function, while its first index by the multiplication of the conjugate of the· 
transfer function. So for example: 

(24) 

The same refers to the correlation function, where the second index may he· 
changed hy a common convolution, "while the first by a reflected convolution. 

7. Some practical remarks on the analysis of the systems 

From a theoretical point of view the so-caned ""white" noise is of great 
importance. The stochastic signal is called a "white noise", if the components 
of arbitrary frequency are figuring with the same, e. g. unit amplitude. In other 



.196 F. CS . .[KI 

words, the power-density spectrum of the "white noise" is constant. The auto­
correlation function of the "white noise" is the (unit) impulse function: 

rt>xx(s) = rt>(jw) = 1 (25) 

The "white noise·· cannot be physically realized, a5 an infinite power (or 
mean-square yalue) would belong to it (see Formula 18). In the practical 
realization of the noise generators an approximately constant power spectrum 
is to be aimed at, at least up to a certain critical frequency. 

It mU5t be noted, that from the "white noise" any desired power-density 
5pectrum may be established with the aid of a filter of suitable transfer func­
tion \V(s) (see Eq. 23), consequently any required correlation func­
tion may a150 be obtained. 

Ut?:) 

Fig. -1.-

On the other hand, the correlation function5 and the power-density 
spectra permit the determination of the transfer function of complete control 
systems, or the transfer functions of some elements. For this purpose merely 
the auto-correlation function of the input (or output) signaL and one of the 
cross-correlation functions, (i. e. the respectiYe po'wer-density spectra) must 
he determined by measurement or calculation, starting from formulae (20), 
-or (21), whereafter the desired weighting function (or transfer function) may 
easily be obtained. The great advantage of the above method is, that it may 
also be realized in working systems. [5] The task becomes especially simple, if 

the input signal is a "white noise", as in this case, according to Formula (20) 
the weighting function itself is proyided by the cross-correlation function, 
while the transfer function is obtained by the power-density spectrum. 

DO 

9'xy(T) = )'" lC(ft) beT ft) dB = WeT) (26a) 

<l>Xy(s) = Tri(s)·1 = W(s) (26b) 

By measuring with an actual noise generator, efforts must be made in order 
that the noise generator critical frequency should be higher than that of the 
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system to be inyestigated. The measurement may be carried out also in a 
liying system (see Fig. 4). 

The adyantage of the aboye method is, that it is insensitiye to disturb­
ances appearing at different points of the system, further it may also be applied 
for multipole systems, that is, for many input and output signals and for 
clearing up the relations between the indi"ddual input and output signals. 

8. Synthesis of control systems 

The fundamental principles of the control system synthesis based on 
stochastic signals, in other words, the fundamental principles of statistical 
design are laid down in the KOBroGOROF-WIENER theorem. In this theorem 
the question is raised, ho"w to choose the dynamic characteristics (weighting 
function, transfer function) of the control system in such a way that the 
deyiation, or error, respectiyeiy, between the actual output signal and the 
desired output signal should be a minimum. As a consequence of this the 
statistical design is not a unique task, its result depends on three factors: 
a) on the statistical characteristics of the input signal; b) on the statistical 
characteristics of the desired output signal: c) on the criterion of the mini­
mum error. If whichever of the three factors changes, another result is ob-

ch! 

~~_g,_C_0 __ ~----~"~1 _g,_r_0_~ eft! 

rft} 
"W"(t} 

eft) 

nft} 

sft} eft} 

Fig. 5 
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tained for the optimum weighting function. The optimization is generally 
realized on the ba,;:is of the minimum mean-square error criterion, not that 
this "would give the best result, but because this task may be soh-ed the most 

easily mathematically. 
The task of the statistical design for continuously operating linear control 

systems affected by stationary stochastic signals may be formulated as follows. 
(Fig. 5). How to determine the resultant weighting function wet) and the 
resultant transfer function W(s), respectively, of the closed-loop control 
system, in order that the e(t) mean-square value of the error signal, that is~" 
the difference between the ideal output signal i(t) and the actual output 
signal e(t) should be a minimum: 

zdt) = ? W(s) III order that e~(t) = :Min. 

It is "worth mentioning, that the stochastic input signal r(t) may include, 111' 
addition to the signal component set) also the undesirablc noise component 
net). Finally relation may often be established between the ideal output signal 
i(t) and the input signal component set) through the ideal weighting function 

gi (t) . 
The task of optimization may obviously refer to the determination of 

the physically realizable weighting function wet) only. The condition of the 
physical realization is, that the weighting function must be zero for negative 
time (consequently, the weighting function may include a positive-time 
function component only), as the effect can never precede the cause. As the 
ideal output signal i(t) does not exist in reality, it being merely a creature of 
our imagination, the ideal weighting function gi(t) must not be a physically 
realizable one. 

In the knowledge of the weighting function wet) and the transfer fimction 
W(s), respectiYely, design of the control system individual parts [Fig.S Ge(s} 
or R(s)] means no special problem. 

9. The main relations of the statistical design 

According to Fig. ;). the error signal is 

e(t) = i(t) - e(t) (27}: 

consequently the mean-square error to be minimized IS 

e2(t) = [i(t) - e(t)F (28); 
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Adopting the definitions of the correlation functions, latter may be formulated 

,aE' follows: 

By the calculus of variations, substituting w(t) = WO' (t) + I. Wi. (t) and 
-differentiating according to I. and by the substitution de2/d I. = 0, for the 
minimalizing optimum weighting function WO' (t) the following integral equation 

mav be obtained: 

J'~ w,,(;) Trr(t9 - n a; rPri(t9) = 0; o {} (30) 
-:;-:; 

This is the WIE::'iER-HoPF integral equation. If it were valid not onlv for 

o fJ, but for all values, then it could be solved by 7-transforIll8. 
For negative times the left-8ide term is not zero, but equals a certain 

unknown negative-time function f- (fJ) (f- (<9) = 0, 0 < <9). 

(31 ) 

Summing equations (30) and (31) 

-=<fJ<= (32) 

This integral equation can already be soh-ed 'with the 7-transform (pro­
vided the correlation functions have power-density spectra): 

(33) 

Here function F _ (s) has only right-half-plane pole8, 'while the other flmctiol1s 
have poles in the entire complex plane. 

Let us resoh-e the power-density spectrum <[Jrr(s) into two factors: 

(34) 

'where <[Jtr (s) contains all left-half-plane zeros and poles of <[Jrr (s), 'while 
<P-;' (s) all of those of the right-half-plane. 

To avoid misunderstandings it must be noted, that 
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its Y -transform would be 

and generally 

Substituting relation (34) into equation (33), after division and re­
arrangement 

(35) 

At the right side the second term has exclusively right-half-plane poles, as 
F _ (s) is a transform belonging to a negatiw-time function, while the com­
ponent C/J;; (s) has only right-half-plane zeros. Consequently 

(36) 

Also the first term may be resoh'ed into components: 

(37) 

Thus, taking Eqs. (36) and (37) into consideration, starting from Eq. (35) 

(38) 

It is evident from Eq. (38), that the optimalizing transfer function may not 
be a physically realizable one, as a rule, as at the right side of (38) there are 
generally figuring left-half-plane, as well as right-half-plane poles. If we 
restrict ourselves to the transfer function W-m(s) that may physically be 
realized, then at the right side of Eq. (38) only the part furnishing the left­
half-plane poles must be considered, so 

(39) 

According to this, the physically realizable optimum transfer function is 

Wm(S) = __ 1 [C/Jr;(S) ] 
C/J;:,(s) C/J;:;.(s) + 

(40) 
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Calculation of the right-side terms of equation (39) may be effected generally 
on the basis of the instructions given below: 

( 41) 

Often, when the part of Eq. (39) in square brackets contains a rationaL 
fractional function only, our aim may be achieved more quickly by resolving 
into simple partial fractions and omitting the terms containing the right-half­

plane poles. 
The course of determining the physically realizable optimum transfer 

function Wm (s) is illustrated in Fig. 6. for a general case . 

. ~.-------~--~ 

, 

~~ __ ~.Jr---~~~~_~-J--------------------~ 

Fig. 6 

In Table 1 the formulae, that may be derived fi-om the above general 
formula and those serving for the determination of the optimum transfer 
function W m (s) are summarized for some. special cases. It is to be remarked 

that in the formulae the power-density spectra of the input signal and of the 
noise, as well as the ideal transfer function Gi(s) are figuring only. 

10. The value of the mean-square error 

Knov,-ing the optimum weighting function and the transfer function, 
:respectively, the mean-square value of the error may also be determined. 
Again restricting ourselves to the system shown in Fig. 5, the mean-square· 

error is 

- 1 S 1 sjm 
s2(t) = <]7 .. (0) = - fP .. Uw) dw = -. WEJS) ds 

27i 27iJ 
(42) 

-joo 

where 
(43) 
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and 
(4.4) 

respectively. 
Latter may be written, considering the index changing rules, as follows 

rp,,(s) G,(- s) G,(s) rpss{s)G,{- s) Wm(s) <Psr(s) -

TF",{ -s) G,{s) <Prs{s) + W",{-s) Wm{s) <Prr(s) (45) 

which may be formulated, taking into account 

also in this 'way: 

rpee(s) = [G,( -s) G(s) - G,( - s) Wm(s) - Wm( - s) G,(s) + 
W",( - s) Wm{s)] 4\,(s) + [WT1J -- s) Wm(s) (4.6) 

- Wm( - s) G,(s)] <PJ.,(s) [Wm( - s) Wm(s) -

- G,( - s) Wm(s)] rp sr,(s) + [WI11 ( - s)] Wm{s) <PIlIl (s) 

lntroducing the notation 

W,(s) = G,{s) W T1,(s) 

<P,,(s) = W,{ - s) We(s) <Pss(s) -

W J;,( - s) We(s) qJIlS(S) -

W€( - s) Wm(s) <Psn(s) 

TVm ( - s) Wm(s) <Pm,{s) 

In case of uncorrelated signal and noise component 

<Pee(s) = W"e(s) 2 <PSS(S) + W",(s) 2 <PJZl1 (S) = 

=G,(S) - Wm(s) 2 <PSS(S) + -W m(S) 2 <PIlIl(S) 

F or a noise-free system, however, 

(47) 

(48) 

(49) 

(50) 

Knowing the power-density spectrum of the error, the mean-square error 
may relatively easily be determined, as <PES (s) being an eyen function, can 
be formulated in the following way 

j~ joo I SI' C(s)C(-s) 
c

2
(t) = 2~j rpce(s) ds = bj J D(s) D( _ s) ds (51) 

-j~ -joo 

and for eyaluating the latter integral~ ready formulae are at our djsposal e. g. 
i[7,9]. 
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lloi!'!' 

(/)s,,(,,) (/) nl<) .;.. 0 

«l'ss -I' (b lls ) G; 

«/'ss 1-' (/'s,,'1 (/>".1 I· (/)1111)­

«/'ss I· ("s" + (/i"s+ ([,,,,,t 

r «/>ss 

«/iss 

«I)ss 

«I>"s 

«/>,1',1' . 1 (/> "s) "sT ] 
(/)s" 1- (/>"s I (/)1111)-

1- (/>Sll -I- (I)"s I· (I)",,)! 

(1),1',1' .+ (/)".1 

(/),>11 ·1 (/)"s ·1· (/)lIl1t' 

(I's" 1 (/)IIS ·1· (I)",,) 

1
- «/iss -I· (/)IIS) e sT I 
('/iss ·1· (/>'" I· (/)IIS 1- (I)",,) . ' 

(<l),,,' + (1)," ·1- ({jIlS ··1 <1'1111) 

lJlI-t'OITI'!nl1·tI Higlllll Hud 
HClisl' 

(/)",(-') = f/'s,,(--s) == () 

'/'ss G; 
«/)ss 1- (/'1111)­

«{js~1 (/'",,) 

</)ss 1',1''1' 

«/)ss 1- (/)",,)­
«/'ss'l (/),,") 

(/)ss 

«/'ss 1- (1)1111)­

«/'ss ·1, (/>1111)' 

/

. (I'ss e - sT 

(/)ss I· <[)III1)­

«/>ss + (/'11") 

NojHe~fl'l'f' M)"!<11'1l1 

11(1) = (); (/)1111(-') () 

·~~.'s.(~_1 
(I)ss i 

(Iji; 

1'(/";,1' "sTI" 
(/),;, 

,T 

[(/)is G;]! 
(/)f 

For the sake of "illlplieity ill the power-densil.Y "peetra and in I.he I.rall"rer fllllelions the independent variahJ.., s i:; omitl.ed. 
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H. Trends for the fnrther development of the theory 

In the foregoing the fundamental relations of the control system analysis 

and synthesis exposed to the effect of stochastic signals were summarized. 
We restricted ourselves to single-pole linear systems of continuous operation, 
with stationary signals, the base of design was the minimization of the mean­

square error. The theory introduced herc will bc extcnded to sampled data 
5ystems and (or) to nonlinear and (or) to multipole systems, moreover, to take 

non-stationary signals into consideration, as well as to adopt other optimization 

criteria, and so on. 

Summary 

This paper of reyiewing character sUlllmarizes the main concepts of the stochastic 
signal theory. characterize, the correlation functions and the !)()\\'cr-dellsit y spectra. and in 
it is briefly ,ho\\·n. how to apply thcse fUllctiol15 to the analysis and synthesis of ,;illf!le-pole 
control :,y:,tems. Finally ,ome possibilities of further deyelopmell! are giyen too. 
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