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In the first part [1] of this study a general theoretical method was
suggested for the examination of the turbogenerators in asynchronous opera-
tion. The present second part has the aim to show, how the general method
can be applied in the most simple cases: when the real admittance diagrams
are approximated with straight lines. (To emphasize the close connection
with the first part of the study and for the sake of simplicity, the numbers
of formulas and chapters are continued).

4. Primitive linear approximation

If each of the admittance diagrams 7; and §, are approximated by a
straight line parallel with the (negative) real axis and starting from the
(negative) imaginary axis, (i. e. the point belonging to s = 0 coincides with
the imaginary axis), introduction of the following notations seems to be
practicable (Fig. 4—1):

gq:gq(s)—jbq(s):Ska_jbqv (4—1)
Js= 8us) — jby(s) = sk, — jb,.

where each value kg, kg, by, by figuring at the right side now means a constant,
independent of the slip.
The real and imaginary component of the resultant admittance. on the

basis of Egs. (3—1)* and (3—10), considering Eq. (4—1) is:

g=-skg+skpcos20 —bpsin 20, 4—2)
b= bg — by cos 20 — skpsin 25, (+—3)
where
ks= (k). b= (bt ).
. . (4—4)
1 1
kp = 5 (k, — ko). bp = 5 (by—b).

* The formulas (and clauses) whose number begins with 1-, 2-, or 3- may be found in
the first part [1].
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By the way, with the approximations applied in clause 2.3 for the admittances
— comparing the form relative to small slips of relations (2—33) and the
expressions (4 —1) — the relations between the constants b,. by, kg ks and the
well-known machine constants are as follows:

1 1
by= —. by=—-
.Xﬂq A’(i
1 ” 1 s 11 ,
I.‘-q:‘—”————— C’)()Tqr k= — = g Ty 4+ |— — »—l(z)UTJ,
x) X, Xy Yy d Y

If the approximation of the solid iron by one direct-axis and one cquadrature-
axis damping coil is not accepted, then the real admittance diagrams, deter-
mined by measurements or other analytical methods, has to be approximated
by the respective primitive straight lines, with suitable choice of the constants
kgs kg, bgy by at the same time.

Before getting to the most simple application of the general method
outlined in chapter 3, it must again be emphasized, that Eq. (4—2) is nothing
else, but the differential equation presented in the Introduction [1], neglect-
ing, however, the term of second order in the latter (not speaking from the
fourth member, of course). The solutions obtained with the method
suggested, permit us to get a better physical picture of the asynchronous
operation. Just in order to demonstrate the effectiveness of this method, the
study deals with the differential equation (4—2) in some more details, examin-
ing the effect of the different parameters on the solution, i. e. on the course
of the slip-time, angle-time functions. (A similar general and detailed investi-
gation with a numerical. or a series expansion method would be laborious
and tedious.)
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Before discussing the most general case of the primitive approximation
adopted in the present chapter, threemore simple. special caseswillbe dealt with.
L.1. Congruent, primitive straight lines of approximation

If the direct- and quadrature-axis admittance diagrams are identical,
then the straight lines of their approximation are also congruent, consequently

by=1>4; and k,=k
bp=20 and kp=0.

i. e. the resultant admittance diagram is reduced to a point.
Eq. (4—2) now becomes very simple

g = Sks .
fte solution is:
a
§ = -5— = g5 == const, (4—5)
ks

consequently the slip does not change. It must be noted, that in asynchronous
generaior operation both g < 0 and s; << 0. On the other hand. taking Eq.
{3—35) as a basis
)
~do Oy 9
Wyt =s — | e =
So So

0y
in other terms
— §,0,E =0 — 0, (4—6)

or with the initial condition o, = 0:
— Sy Wt = 0. (4—7)

Therefore, the angle increases linearly in function of time. The whole period
T of a complete relative rotor rotation may be calculated from Eq. (4—7)
with the substitution 6 == 2a:

27

a)UT:———
s

(4—8)

0

This clause, (besides introducing some notations and notions) again
shows that in case of a symmetrical rotor, the slip is comstant. Naturally,
according to (4—3) also the reactive current (and the apparent power, too)
are constant.

1%
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4.2. Primitive straight lines of approximation starting from a common point

If the primitive straight lines of approximation start from a common
point. but their points belonging to the same slip do not coincide. then

b,="5b;,. bp=0,

i. e. there is no reluctance effect.
Now from Eq. (4—2)

(@)= (1-9)

N 0,25
] : |
4-:— N : _i ! . "
4,4 20 133 275 05
4 0.5 0,75 0 33 20K
1 ' e

-
w

k iy — k
b _ ki—k (4—10)
ks kit k,

The relations hetween the factor

the notion of the so-called damping factor.
respectively are shown in Fig.

» and the ratio =" = ko/kys and »" = ky/k,,
4—2. When 0 << %' < 1, then 0 << % << 1 and when 0 < %" < 1, then

— 1< x<0.
Considering Eqs. (4—10) and (4—35), now Eq. (4—9) assumes the follow-

ing form

S (4—11)
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In the present case the fundamental integral (3—35) is

»
1 — #cos20
oyt =— | ———

- dd,

. 20

From this relation the time as a function of the angle may be expressed in a
closed form:

— 8, W b == O — 4, — %(sin 2§ — sin 260) (4_12)

or with the initial condition 0, = 0:

— 8,0 1= ——zsin 29, (4—-13)

&

Substituting the value 6 = 2z into the right side of formula (4—13),
it may be stated, that the period is given by formula (4—8) also in this case.

By formulae (4—11) and (4—13), the slip-time function s(f) searched
for is given in a parametric form through angle §. The angle-time function
o(f) wanted is given, on the other hand, by the inverse of relation (4—13).
(These two functions were previously calculated for a case [2, 3, 4].)

The case discussed in the present clause is the most simple one among
the cases leading to the variable slip and really forms the cardinal point of
the problem dealt with in this study.

4.3. Parallel primitive straight lines of approximaiion starting from
different points

This is the other most simple case already resulting in a variable slip.
There is a reluctance effect., nevertheless,

i. e. the points belonging to identical slips are at the same distance from the
imaginary axis.

Now from Eq. (4—2):

g+ bysin 28
s(0) = »*’~~]TDS— : (4—14)
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Let us introduce by the symbol

g b0 (4—15)

o
=

the notion of the so-called reluctance factor. It must be noted, that for the
usual synchronous generator and for asvnchronous generator operation

always 8 2> 0. On the basis of Eqs. (4—15) and (4—53). from Eq. (4—14):
s(0) = so(1 — j =in 29)., (1—16)

The fundamental integral (3—3) is now:

]

1

1l — jFsin20

- dd,

(!)“1 o 1
>,

The time in function of angle may also be expressed from this in a
closed form. The integral tables [e. g. 5. 6. 7] give the solution in the form
of two indefinite integrals. The first form [5] after substituting the limits:

1 ST NN
— 8 (.')“t == ‘—:.:‘_?:) arc tg }; - ~—tg 6 —_ ] —
11— p | 1 g n
) N (4—17)
arc tg H Tl
While the second form [6, 71
— S,y L =2 (4—18)

After all, both expressions (1—17) and (4—18) may be transformed with
some algebraic arrangements to the form

V1 — 3210 — 1g0,)

— Syt = —e - aretg ol - 220 . (4—19)
F1—p 1+ tgdted, — f(tgd = tgd,)
With the initial condition 6, = 0 all three expressions may become more
simple
e :_ 1 ‘7' 5
— 1 —p2s 0t = arcig H ‘*;”?‘ (4—20)
'}

* In the mathematical and technical literature sometimes tan-! is used instead of arc tg.
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and
— l’i‘:_ﬂ? Sy Wyt = (1—21)
finally
— V1 — p? 5,0t =arc g (+—22)

By the way, the inverse function may now be as an exception expressed
also in an explicite form. e. g. from (4-—22):

000

O = are tg = e P .
+ prg(— 1 — 32syomyt)

Ty | e

Substituting the value o = 2z 1nto the right side of expressions (4—20),
{(4—21), or (4—22). the following formula may be obtained for the period:

27
o T oo e e 423
0 (1—23)
The value of the medium slip is consequently
= 5,11 — 3. (4—24)

Should the value of 3 not be too large. there is but a slight difference

between s, and s,.

4.4. The general case of the primitive approximation

In the general case (Fig. 4—1) bq‘,—'= by and k, == kg, consequently bp =0
and kp ¥ 0. From relation (£—2) the slip may be expressed as follows:

g -+ bp sin 20

$(0) = —= 4—-25
©) kg -+ kpecos 2 ( )
Considering Eqs. (4—5), (4—10) and (4—15):
. — {3 sin 20
() = 5, - —EERE (1—26)

1 —%cos2d
The fundamental integral (3—35) is now:

]
1 ¢ 1—wxcos20
Wgt =— — | —— - d
So J 1—psin20

B

v
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The right-side integral may be calculated in a closed form in this case, too:

1 /T — 32 (tgd —tgd
*Socl)ot:f:_.—‘—TarCtg - l\ ,?“(§: \g_O) N I
Il — B2 1—tgotgd, — 7 (tgd + tgd,) (4—27)
Giwmm 2
. % n 1—/5’51'112(?_.
23 1 — [fsin 24,

If the initial condition is 0, = 0, then

TR o T o
T Fge T Py T In (1 — 5 sin 20). (4—28)

— 1 — 3% syt = arctg

So by Egs. (4—20) and (4—28). the desired slip-time function is given
in a parametric form through angle §. On the other hand, the inversion of
(4-—28) supplies the wanted angle-time funetion 0(t).

Comparing formulae (4—13) and (4—28), the influence of the reluctance
effect (8) is clearly demonstrated.

Substituting the value ¢ = 27 into the right side of expression (4—28),
we obtain for the value of the period and the medium slip, again the expressions
given by (4—23) and (4—24), respectively.

4.5. The effect of the parameters = and 3 on the angle-time function
and slip-time function

The relatively simple solution obtained in the former clause permits
to examine in details the influence of the two parameters 5 and = competent
at primitive approximation.

Let us introduce the notion of the relative slip

T =5 e (4—29)
SU
as well as that of the reduced time
T= — V1 — s ot = —s,0,t (4—30)
which is measured -- as may be seen — always in radians (it is, properly

speaking, of angular dimension and will be called “*time¢” merely for the sake
of brevity, to distinguish it from angle 9).
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By the aid of Eqgs. (4—29) and (4—30), Eqs. (4—26) and (4—28)
mayv be written as follows

— Fsin 26
5(9) = l_ﬁin_“o“ (4—31)

and

. V1i—=42ted | y 11— p2 y s
() = are tg Gt T A — p sin 20). 4—32
7(0) = are tg 1= Fig0 57 In (1 — ' sin 20) (4—32)

In the series of figures 4—3 to 4—6 the course of the slip-angle functions
g{0) calculated on the hasis of formula (4—31) will be illustrated for values
A = 0; 0.2; 0.4; 0.6, while x == — 0.6; —0.4; —0.2; 0.0; 0.2; 0.4; 0.6. If 5 = 0.
there is no reluctance effect and the course of the relative slip, in function
of the angular displacement ¢ is symmetrical. If » > 0 the maximum slip
oceurs at 0 = 180°, in case of ¥ < 0, however, at § = 90°. Parameter § in-
creasing, the slip curve alwavs becomes more asvmmetric.

For the values 6 == 457, 135°, 2257, etec., the curves relative to x > 0
are in a mirror symmetry with the curves referring to » < 0. As the displace-
<7 9 =, 180°, in the same way

as in the range 180° =T 6 £ 3607, for the de-excited machine, here and also

ment of the rotor takes place in the range 0°

further on. it is sufficient to restrict ourselves to the first range. this in itself
determining the whole course of the periodic functions.

30
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Fig. 4—10

The series of figures 4—7 to +—10 gives information about the course
of the time-angle functions 7(0) calculated by formula (4—32) for the values
p and x enumerated in the foregoing. The greater the reluctance effect, the
greater the difference between the time necessary for making the first and
the second quarter turn and the more asvmmetric the course of the curves
with any given value  is.

Naturally, the curves provide at the same time the demanded inverse
angle-time functions §(7). too. The series of figures 4—11 to 4—14 illustrates
the course of the required slip-time functions o¢(r) and clearly shows the
influence of the different parameters g and ». When calculating the curves,
the values 6 = 0°, 15°, 30° ... 180° are substituted one by one inte formulae
(4—31) and (4—32). then on the basis of the determined values ¢ and 7,
belonging to each angle the function o(7) could be plotted point by point.
Here also, similarly to the former figures, the points corresponding to the
above-mentioned values of the angle are marked by small circles. Consequently,
on Figs. 4—11 ... 4—14 the series of points of the different curves o(7)
belonging to the same angle and marked by cireles, illustrate at the same
time the course of the functions §(7). too.

The construction of the series of figures 4--11 ... 4—14 was based
ou the same values § and » as before.
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Fig. 4—14a
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4.6. The extreme and medium values of the slip

Fig. 4—15 summarizes the maximum Gpax. the minimum o, and the
medium oy, values of the slip for the range 0 25 < 0.6; —0.6 < %< 0.6 of the
parameters. Among the three set of curves, for calculating the sets illustrating
the two extreme values, firts of all the relation (4—31) has to be differentiated

with respect to the angle:

do .
do

— 2P cos20 (1 — xcos28) — 2

sin 20 (1 — # sin 29)

- L (4-=33)
Equalizing the derivative with zero, the following equation may be obtained
for the critical angle 4, belonging to the extreme values:

feos 20, — s sin 20, = pix, (+—34)

14
Introducmg the notation u = are tg—. the above transcendent equation may
/’)
easily be solved:
(4—35)
and

(4—36)

Substituting the critical angle 9, into Eq. (4-—31), the values of oy and
G ins Tespectively, may be determined (and from Eq. (4—32) also the critical
time 7 for which the extreme values arise, may be calculated).

Finally the medium slip on the basis of Eq. (4—24) may be obtained
from the following relation

,f‘_ﬁ-kiz;a / -~

Gm:}'l—p', (4-'—-3:)

Neither the value of oy, nor that of o4, and g, depends on the sign
of = consequently Fig. 4—15 is valid equally for » = 0.
4.7. Change in the reuciive poer

The reactive power (as well as the reactive current) mav be judged by
the aid of susceptance b (see clause 2.2 ). Consequently, for determining their
course in time, the functions 6(7) and s(z) must be substituted into expression

(4—3).
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To derive more general relations, let us divide throughout, this expression

by —g and so from (4-—3):

H(9) = £g — AE(0). (4 —38)
where
. b . . bs . )
R (1-39)

further, considering Eqs. (4-5), (4—10), (4—15) and (4—29)
A&(0) = — peos20 — x 5(9) sin 29. (4 —40)

The last expression may be written, considering Eq. (4—31), also as follows:

Fcos 20 4 sin 20—p ;
Jeoy — - PeosBorxsinD—pn (4-—11)

1 —xcos20

As shown in expression (4—38), the reactive power, the reactive current
and the susceptance may be traced back to funetion £ consisting of a constant
term &5 and a variable one /%, The variable term /& is worthy of a detailed
examination.

On the basis of relations _15(4) and 0(7) already obtained. we have
after all the function' J5(7) characteristic of the time course of the change
in the reactive current, or power.

The series of figures 4—16 to 4—19 illustrates the course of functions
JE(z) for values g = 0.0; 0.2;: 0.4: 0.6; and = = 0; 0.1; 0.2: 0.3; 0.4: 0.5; 0.6.

Comparison of expressions (4—41) and (4—34) proves, that where
J5(0) = 0, that is A&(7) = 0, there ¢(8) and o&(7) assume extreme values
(at 0 = 0, and 7 = 7). In other words: in case of primitive approximation,
when the change in the reactive power (or current) is zero, the slip has then an
extreme value.

4.8, Mean ralue of the reuctive power

The question arises, if the mean value &y of function ¢ deviates at all. and if so., to what
an extent from the constant value &s. Answer to this may be given by calculating the mean
value &m:

e T 2
) 1 " 1 d wy 1)
P S S I _dent0) L - 42
m o T Hwyt) d oy, on T l ,((,JO 1(13)) 75 dé ( )
i} 0
Considering Eqs. (3—4) and (4—23), moreover (4—29), after all
I 2 . 2
o TR [0y, I ) s
sm 55 503) dd = . >Ov’(‘!§)_ do . (4—13)
[

]
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= £g it is sufficient to calculate the
art from expression (4—41): considering

As the mean value of a constant equals itself
mean value of A& by the aid of Eq. (4—13). Let us st

Eq. (4—31). the integrand is
A5(6) peos 20 -2 5in 26 — Fx )
a8y T T = Fam : (i—18)

Instead of calculating the integral, it i more practicable to expand in series, {irst the denom-
inator (see e. g. [7, 8]).

1 ’ .
= sin 28 —
1— fsin 20 — | Hn 0
(1—435)
T
i ) cos 3 - e L 1
and then to consider the basic relations
2
~cos ut cos ot ‘ w0 wEY
‘ dt i
s1n Jit <in vt \ B 4 o= (4__4())
0
[ cos gt sin vidi = 0,
1]
So finally
. _1 r)) il—p‘—(l“p)
i == (O) P e ( 1)
(Naturally, starting from expression (4—40) gives the same resalt.)
After all
s = (4—48)

H=p—0—p (4—19)

bm = bg -+ bp s

Henece, for small values, (e.g. § < 0.5):

n=—p—aq—s 1, N—p—0—p 1
I3 RN I T2
consequently
e 55 é 3= (4—48")
and

b == bs -~ b ‘%" - (’1'-'49/)
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055
a07510,8)
b
2066109
-g 1 7
» 00611,0]

20 a7 02 0.3 04 1
Fig. 4—20

06 07

n

Finally, Fig. 4—20 shows as an example, assuming the values bs = 0.54, bp = 0.06
the mean value by in function of » with different values g (i. e. different loads, torques). Fig.
4—20 proves, that there is practically ne difference between by and bs.

4.9. The time course of the stator current (or the apparent poiwer)

The stator current and the apparent power may be judged on the basis
of the resultant admittance ¥ or its absolute value y (see clause 2.2). For
determining their time course. the function d(z) must be substituted into
expression

v (0) = V& + . (1—50)

j=—2L 0 (4—51)
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and taking into account formula (4—38). from relation (4—50) -

W) = 11— =

From the above expression (4-52), substituting function (7). the

— 2 ECAED) — 1£2(0) (1—52)

Aty

desired function s(7), characteristic of the stator current and of the apparent

power may be obtained. As in addition to g and ». 5 means a new, third
parameter, the general course of function (1) could be illustrated unfortu-
nately onlyv by a high number of figures. Therefore. instead of doing this,
merely two special cases will be presented.

As an example, by adopting the values by = 0.54, x = 0.5 and —g = 0.1:
0.2; 0.3: 0.6, corresponding to different loads, assuming first b, = 0.06 and



174 F.CSAK]

then b, = 0.0, in Fig. 4—21 instead of 7(7) the course of y(7) mayv be seen
at once. The curves obtained are a proof of the reluctance effect being hardly ef-
feetive, especially in case of greater loads (when —g is higher).

On the other hand. comparing the curves of Fig. 4—21 with the oscillo-
grams obtained by measurementse.g.[2,3.4].it may bestated that the calculated
curves are qualitatively of similar course as the measured ones. Consequently,
the primitive linear approximation, though in a simplified form. gives a
correct picture of the physical processes occurring in asynchronous operation.

Extending the conclusions, given at the end of ¢’ause 4.6. it may be proved
that with primitive approximation. when the slip (s or ¢) attains anextreme

value at v = 7, (and I = 0). then according to (4—52) just

'7(71) = 111 -+ Eé

-U(Tl:) =

4.10. Root-mean-square value of the stator current {or the apparent power)

For heating the root-mean-square value of the current is competent. In the present
case the root-mean-square value

1
Y .0 = —
JL"H (’JOT .

¢

Yy (g t) dt (1—34)

has to be calculated. Therefore first of all the function 7? will be integrated, according to
(4—52) and (4—40)

25— 255 (Beos 25 - x () sin 24) -=

. ) (4—55)
— P37 cos? 20 - B o(8) sin 44 - 22 g() sin? 20.
Applying the method described in clause 4.7 to function 72, the integration mav be realized
in the six steps shown in Table 4—1.

Table 4—1

w, T
1 L
0
2
. Ji—g (—2&speos20 . J1—F—(1—5)
l)} '——"‘2'7—‘0 “—U((T-— (1(5—~.4,SA""—~ ‘5

2z
c) - —/T—/255'/.sin2é-dé:0
1]
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B
—~
<Q

e

11— [ , 1,
. j ( 57Ty s 1o e do =
0
1 (B 3 N N L
= J (—~2~-———— cos 20 - Sy cos 45 — [ cos 6(5)

Sxsin 4o - do = 0

—
o
19
~I||
a8l
il
O%'_f

=g
1= / = 0(d) sin? 26 + dO =

It



._.
~l
-
o
v el
S
—

b
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21T B ‘ 1 1 3p

cos 46 - ...1(1:5 =

(4—36)

As a consequence of the three 7. », &g parameters, again only a special case will be dealt
with, In Fig. 4—22, referring to values bs = 0.54. as well as to bp = 0.06 (full line) and to
bp = 0.0 (dotted line), further on to — g == 0.1: 0.2: 0.3: 0,6. first of all. to illustrate the effect
of x in function of the latter. the relative admittance

(7

may be seen. In analogy to Fig. 4-—22. assuming

pi )1 %

1o too great error occurs.

5. Generalized linear approximations

The primitive linear approximation discussed in the previous chapter 4
may seem quite special. Undoubtedly, it has the great advantage, however,
that the phenomena taking place do not depend but only on two parameters
(5 and ), permitting a deep inspection into the physics of the variable slip
and the influence of the individual parameters, as it was shown. may easily
be illustrated with sets of curves.

Present chapter discusses the more general cases of the linear approxi-
mation. On the one hand, each of the direci- and quadrature-axis admittance
diagrams will be approximated by an oblique straight line. starting from an
arbitrary point and, on the other hand. also method of the piecewise-linear
approximation will be introduced.

While the previous chapter 4 starting {rom the most simple cases turned
to the more complicated ones, now chapter 5 starts from the most general
case, later turning to some special ones.
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5.1. The general case of the oblique straight line approximation

For the case the direct-axis and quadrature-axis admittance diagrams,

respectivelv. are approximated by an oblique straight line of general position,

conditions are shown in Fig. 5—1.
The two vectors of the starting points are

Yoo = — Suo _'dem (:‘*1)
Yoo = — &0 — ]bgo-
while the two directional vectors
Yo = &1 7 Jbir- (5—2)

Yon = & ‘f‘.lbql

{where. according to Fig. 5—1. all constants at the right side

Zao- 8 &o1- bgg- br;(w by l’ql = 0).

&ao Eov: 81~ &
So on the basis of Eqs. (5—1) and (5—2). the vectors approximating the direct-
axis and the quadrature-axis admittance diagrams, respectively, (Fig. 5—1):

Je= Jao — STs1 = (— 8ap =+ 58a) — J(bao — s byy). (5—3)
7 o

a0 - qul) _j(bq() - Sb:}l)?

3 Periodica Polytechnica EL IV/3.
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Fi = &a(s) — jby(s),
7y = &u{s) — Jby(s).

in the present case

24(8) = — gap — S &u-
ga(‘) = = &0 - Zo1e
and (5—4)
by(s) = byy — sby.
by(s) = bgy — sby.

As may be seen. at the right side merely general linear expressions figure.
provided none of the coefficients equal zero. It must be noted, that to aveid
the indexes, chapter 4 adopted the more simple bsq == by byo = b, and
gy = k.. g4 =k, symbols.

Considering Eqs. (5—3). the centre vector

- | .
Is=— (¥s—+ )
and the difference vector

_ 1 _
Jp=— (Jg— T

as well as its reflection about to the real axis. 7. . the initial radius
vector

. 1. .
Yp=- (Yo — ¥2)

“

necessary for constructing the resultant admittance diagram

s
y=1Js+ ype
mav be seen in Fig. 5—1.

The components of these vectors in the present case, taking into account
(5—4), are

1 _ ) v :

gs(s) = — —*(é’,qo +ga) + = (gm — &n) S = —Egso T S &s1
2 2
1 ! 1

bs(s) = I’y (bgy + beo) — Py (bgy +by)s = bgy—sbg .

and (5—35}

1 1 )

gp(s) = — ’y (850 — &ao) T o (81 + 8a1) S = — &po — S &p1»
1 1

bp(s) = Yy (br;o — byy) — > (b — byy) s = bpo — s bp;
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Substitution of the above expressions (5—3) into relations (3—-9). 3-1
and (3—10) now yields

Y= (—go — s8s1) — jlbg, — s bgy) —

) _ (5—6)
= [(—&py —58p1) — jlbpy — s bm)]@’w
and
g=(—gsy = S&s1) —(—gp, 8 &p;) cos 20 — (bDn —sbpy)sn 29, (5—=7)
b= (bsy —sbs)— (bp, —sbp)ecos2d — (gp, — sgp,)sin 20, 5—8)

Fig. 5—:

[N

It must be noted. that (5—06) may also have the following form

‘/ = (gSu - .1731) -+ (.&Do —s .&D])eﬂ‘ (5'*9)
where ~ )
Tso= — &so — Jbsy -
Jpo = — &y — Jbpy- -~
and {5—10)

$hs; = 585 —Jsbgy.
S¥py = S8p1 — JSbp,;.

In Fig. 5—2 (giving the same result as Fig. 5—1) the vectors

Js = Ysy = S Us1
and »
Yp=Yps — S¥Ym

has been constructed on the basis of relations (5—10).
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For applyving the method suggested in chapter 3. first of all the slip must

be expressed from Eq. (5—7):

L g — g, — &po o520 — bposin 29 -
S(O)“_" R0 LR =7 511 i e Dy 72 . (3_11)
- a8 98 — sin ¢ ’
gs1 = &py €08 20 — by sin 20

As follows from formula (5—11). the slip now depends instead of four constants
upon seven ones. To reduce the number of parameters, introduction of some
svmbols seems to be practical. Let it be:

aq

+ gso= £ (3—12)

where ¢ < 0,if g 0 and g/ > g .

Further
=Dy . (3 _ 13)
» ]
o
- . ey o e [ &
where a, =0, 1 g,, =g, and g 0.
Further
b
Do 5 -
— B =, (5-14)
[*3

where gy > 0. if b, > by, and g 0.

And besides

I8
oDl . - =
— TR == (D—‘ID)
&s1
‘he P ]
where 2, = 0. if g, = g,,.
And
bpy ; 5 5
e = Ly (5—16)
251
> . i ™~ o s
where 2, >0, of by > b,
Finally
g , - -
e = S 5—17)
51

where s 0, if g7« 0.
By notations (5—9) ... (5—14), Eq. (5—8) may be written as follows

, 1 = g cos 20 — f,sin 20
s(0) = s D0 EORSO T SIS0 (5--18)

1 — 3 cos20 —/2,5in29

Let it be
fl“ -
&, = arc tg— (5—19)

)

Py
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and

(5—19)
further
and 5—20)

Hence, considering notations (5—13) ... (5—16), the first equation
af (5—19) and (5—20) mav also be written in the following form

80 = Are tg J— .TC;Q.OA_
bDO 3
and (5—-21)
b
£ = arc iy D1
&p1

On this principle the interpretation of angles g, and &, mayv be seen in Fig.
5—2. g is the angular displacement of vector s Jp; as compared with the
positive real axis, while g; is the angular displacement of vector jFpo with
respect to the negative imaginary axis. It must be noted. that in case of
g1 > g it by = b, then g = 0. while in case of by > b, if gg9 = g, then
gg = 0.

Taking into account relations (5-—19) and (5—20), (5-—18) mayv have

the following form

A
Wt
()
o

i

Let us introduce a new variable for the angular displacement of the rotor,
let it be

§ =0y — (5—23)
2
then evidently
20 — gy =20 (5—24)

and
20 — & == 20" — (g, — ¢,) == 20" — &,

where & = ¢ — z4 So lastlyv from (5—22):
1 — p sin 20

SO == ! i 5—25
@ "1 — % cos (20" — ¢) (6=29)

Expression (5—25) seems to be quite similar to (4—26). Essential
difference is not introduced. but by angle £ figuring in the denominator.
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The fundamental integral now with the initial condition &y == 0, 1. e.

g
in case of 0, = 2.,
9
o
1 ¢ 11— cos(20 —e .
Wyt = — . ““‘”"““7“(’“‘ .“"““)’- dé’,
Sp . 1 — fsin 207
0

i. e. after a trigonometrical transformation and rearrangement

o
-
o
— 50’ Wyl == — sine-dd’ -
J5
e
0

5 5

> ’ 2
“ . 208 5 .

I ———sine e e 237 cos 207
B 25
el T e  F M . : e - do’
J  1-- 3 sin 207 J 1 — 3 sin 20 ’
0 0
consequently
. 1T — 372 1gd
— Sjyl = |——sine arc tg I R - DA
’ L P o
B 1 — ftgs

(5—26)

X cose 5r s ”
-~ __ln (1 — /‘)’ gin 20 )
2/)" ‘

The above formula (5—26) is a generalization of formula (4-—28); the
similarity and disagreement between the two formulae is obvious.

Naturally, by substituting the relation (5—23) into function #($’) deter-
mined by formula (5—26), also the function 1() may be determined, if required.

By formulae (5—25) and (5—26) the wanted slip-time function s(z) is
given in a parametric form through angle ¢’ for the case of the obligque straight
line approximation: further the inversion of (5-—26) supplies the wanted
angle-time relation §'(¢t). Substituting the latter functions into expressions
(5—6) and (5—8), respectively, considering Eq. (5—23). the functions y(t)
and b(z). respectively, may be obtained.

Finally. substitution of the value 0" = 27 into the right side of (5—26)
vields the relation

1= (1= )T =p3 Zsine
27 (I=F1—= 3 (5—27)

0 R

)
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for the period and

H el
FIRE Y o (5—28)

for the medium slip.

5.2. Seme special cases

In the following only some special cases will be discussed, when in for-
mulae (5-—25) and (5—26), respectively. an essential structural simplification
may be achieved. ’

a) In the most imporiant special case ¢ = 0, 1. e. g = g, This means
{Fig. 5—2) the vectors §,, and sjp,, being perpendicular to one another,
${p, leading. namely, with respect to vector Fpo Then from Eq. (5—25)

Y , L —p7sin 20 L
VO =s (529
1 — 2 cos29

1 —Ii—?"_"i to o 0’ . _
— Syt = rl,—,—lf:r—?; arctg _\1__“[“)‘»_9;' - —;3 In (1 — @ sin 20"). (5—30)
1 —pt — tg o’ 203

Consequently. with formulae (4—26) and (4 —28) structurally identical expres-
sions arise. In this case all the results and diagrams of the primitive approxi-
mation described in chapier 4 may directly be applied.

b) It ¢ = & 7 that is ¢, — gy = = 7. so vector s §p, is lagging by
907 with respect to vector #po. then

1 — j’ sing 20 -
SOy =5 - 22 (5—31)
1 + %" cos 20
and
1 1—p2tgd . _ 3
— SeMy T = - -arc tg JA~ — €9 Z (1 —p'sin20). (5—32)
) |1 — g7 1— 5 tgd 2p5

From this it becomes clear, that allvesults and diagrams of the primitive
approximation described in chapter 4 mayv further be adopted, merely case
# > 0 must correspond to case » << 0.

¢) The case

, T
=& — &y = — —. A= D
1 0 ! : f

2
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is remarkable, too. Then Eqs. (5—25) and (5—206) become very simple

$S(0) = s, (5—33)

and
— S{og b =20, (5—34)

that is, the slip is constant and the angle increases uniformly.
This occurs evidently if f, = 0, . e. the circular diagram of the resultant

;T

admittance vector is reduced to a point. As condition g == g; T —means

the two components 7po and sp1 of 7p being of opposite direction, condition
#' = f’ signifies the absolute value of the two components being equal.

The condition §p = 0 takes place either at any arbitrary slip s, or at
a certain critical slip s;. In the first case the straight lines of admittances
74 and §; coincide, and for any arbitrary value g = const. the slip is always
constant. {This occurs, if the rotor is symmetrical.) In the second case the
straight lines of admittances §; and 7, intersect each other at a certain point
and just at the critical slip s;. The straight line g = const. pass just through
the point of intersection.

4y If

50 Fpo and s Jp; are of opposite direction. but for all slips 7p == 0.
Then from Eq. (5--25):

. 1 — P sin 20
§(07) = sg - St
1 — 2 sin 20

and from Eq. (5—26)

%
%/ . 1‘._ ’)/thr()
0 — ——=—e- are tﬂjv—* P_rer”
V1 — p 1—ptg i

0
\

— Sqmyt = (5—36)

D

P

\o

e) If 7pa = 0.1. e. the two, not congruent, straight lines start from the
same point, then ¢4 = 0, 3, = 0 and 7" = 0, consequently from (3—25)
14
1— " cos (20 — &)

$(5) = (5—37)

Accordingly. substituting
20" — & = 24"
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vields

(") == o (5—38)

1 — # cos20”

The structure of formula (53—38) is in full agreement with that of formula
(4=-11). In the following we have to proceed further according to clause 4.2,

f)If 7p1 = 0 (i. e. the vectors Jp and 7, are always of identical direction
and magnitude, #p = Fpo for any slip), thatis gp; = 0 and bpy == 050 %, = 0,
sy =0 and " = 0, then from (5-—25):

/(0 = s (1 — B’ sin 207). (5—39)

As the structure of formulae (5—39) and (4—16) is identical, we have
to proceed further on as in clause 4.3.

5.3. Piecewise-linear upproximation -

If the direct-axis, or quadrature-axis admittance diagram (or both) are
considerably curved. or the distance between the adjacent points of each
curve essentially changes with the slip, the admittance diagram cannot be
approximated by a single straight line, but it must be approximated with
two, or more straight sections. Each straight section s starting from an
arbitrary point, where already the slip s =5 0. but s = s; and is ending at a
point belonging to a certain value s = s,.

Accordingly, introduecing the symbol s = s — s a relation similar
s, 1. e. for the range

-

to Eq. (5—06) may be established for the range s,

0 uds < s — 88

y=(— & — gsy As) — jlbsy — by As) =

(5—+40)
. . ; - A 19
- [(‘“ Ery — & As) + jlbpy -- bDl—’J“)] el
Introducing the notations
Eso 7 8 8s1 g,Snr
&po —+ S: &y = &bo- (5—41)
bgg =+ 5, 0gy = by
bpo—s:bpy = bpy-
(5—40) may also have the following form:
Y= (—gsog +5gs1) — jlbsy — s bgy) —
(5—42)

- [(—

)

Do~ $&p1) — J(bpy — $ bDl)] e,
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or reso]\'ing into components:

g=(— &% +58s1) — (— &y — $&p1) 0520 — (bp, — sbp,) sin 25, (5—13)
b= (bsy — sbs;) — (bpy— sbp;) cos 20 — (—gp, + sgp1)sin 20, (5—44)

As it follows from the aforesaid, the expressions (5—42), (5—43), (5—44)
have exactly the same form as (3—6). (5—7}, (5—8). Consequently we suc-
ceeded in tracing back the formulae of the piecewise-linear approximation to
those of the approximation by oblique stra‘ight lines, so the procedure described
in clause 5.1 mayv be repeated step-byv-step in the following (merely at starting
Eq. (5—41) must be taken into account).

Approximating by several sections, the final slip s, of the previous
section naturallv means the initial slip s; of the consecutive section. As for
each section the numerical value of the constants figuring in the formulae
have to be determined repeatedly, the calculating work increases with the
number of the sections.

A comparison of the results obtained with the piecewise-linear approxi-
mation and the data of measurements will be tound for a certain case later
on (in clause 8.5 of chapter 8).

Summary

This paper presents the result of applying the general theoretical method suggested in
the foregoing [1] in connection with the asynchronous operation of turbo-generators for the
most simple case, when the direct-axis and quadrature-axis admittance diagram is approximat-
ed by one or more straight lines.

In case of the generalized linear approximation the slip-angle function may be calculated
by Eq. (5——22), or (5—25), the time-angle function. however, by Eq. (5—26). The same for-
mulas may be adopted for the piecewise-linear approximation, too.

In case of the primitive linear approximation, the slip-angle function may be determined
by Eq. (4—26), while the time-angle function by Eq. (1—28). For the latter case sets of curves
are constructed to demonstrate the effect of the competent parameters.
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