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It is customary to characterize the electromagnetic field by several 
vcctors. In the course of computations, two vectors are used to describe the 
electric field and t·wo for the magnetic field (vectors E and 0, and Hand 8, 

respectively). There is much discussion about the physical interpretation of 
these vectors, even in our days. The basic questions are: Can the field be 
characterized by a single electric and a single magnetic vector? Which pair of 
vectors can be taken as of fundamental importance in this respect? \Vhat 
physical interpretation can then be given to thc other pair of vectors? 

The electric field used to be unequivocally characterized by the electric 
field strength (E), quantity 0 being regarded as secondary. At present, the 
viewpoint uf using the vector of induction (8) for the characterization of the 
magnetic field is quite wide-spread, as the power effect, further the induced 
field strength depends on the vector 8 and on the variation of this latter with 
time. respectively. Hence yalue H is only of secondary importance, the same 
as value D. Their use is only motivated by the ease of computations attainable 
by their application. In the presence of substance, namely, several equations 
for 0 and Hare Yery simple, ·while these same equations describing the field 
become quite complicated for Yectors E and 8. 

Relying upon these findings the questions may arise whether these 
auxiliary vectors can be interpreted physically, further whether their value is 
determined unequiyocally, or whether values used by us are taken arbitrarily. 
In the following it will shown that vectors 0 and H are vector-potential-like 
values which are not unequivocally determined by the equation of definition. 
Further limitations can only be set up in accordance with practicability and 
only their integral values can be measured. 

1. Basic equations of the electromagnetic field in vacuo 

In yacuo, the electromagnetic field is produced by the charges in the 
last analysis. In a co-ordinate system fixed in relation to the observer, charges 
are either static, or in moving condition. Current produced by moying charges 
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should, however, rather be regarded as an independent quantity. The field 
strength is divided into electric and magnctic components exactly according 
to the kind of force acting on static charges, and moving charges (or current), 
respectively. Accordingly two vector quantities are necessary to describe 
thc field. Vector E indicating el('ctric field strength supplies the force acting 
on a point-like charge Q: 

F= QE, (1.1) 

while vector B indicating magnetic ficld strength supplies the turning moment 
operative on a point-like circuit of m = I A n° dipole moment, or the force 

acting on charge Q moving at rate V 

T mxB F= QvxB (1.2) 

So long as phenomena occur in vacuum, these two vcctors are perfectly 
sufficient for the description of the field. On the basis of Maxwell's equations, 
charge density (Q) and current density (J) being known, these vectors can be 
determined. Maxwell's equations take the following form in vacuum: 

rot B =--: Po J + 8: Po 
(iE 

(la) 
'Cif 

E= 
aB 

(IIa) (1.3) rot 
Ht 

div B = O. (IIIa) 

cli\" E= Q 
(IYa) 

c 

J = QV, (Yr,) 

1 
E_E2 ~ 

1 1 B2. (YIa) IV = . --
2 2 Po 

In the equatiuIls, Eo and [I: are the pernlltlYlty and the permeability of the 
vacuum, respectively. In the rationalised MKSA (or MSVA) system of units 
used here: 

1 8.8.5.5 . 10-12 As 
Ym 

The equation determining the two field vectors needs not to be given here as 
it can he deduced from equation (VIa) describing energy density It". It is 
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interesting that the equation of continuity 

div J + ~X 
at 

o (1.4) 

which is of fundamental importance, needs not to be written separately, as it 
can be derived as the divergence of equation (I) by making use of equation (IV). 

The two universal constants can be eliminated from the equations by 
introducing the following two new vectors: The vector of displacement as 
defined by D = Co E and the vector named (unfortunately) magnetic field 

strength as defined by equation H = B/ P-o' After this formal transformation 
~faxwell's equations take the following shape: 

rot H =: J + ()D 
(Ib) 

(It 

rot E 
(iB 

(lIb) 
ht 

div B 0, (IlIb) 

diy D = fJ (IVb) 

D Cc:; E, H= 
1 

B. J (Vb) ( 1.5) fJ" 
,ll 0 

1 
ED 

1 
H B. (Vlb) u: = 

2 2 

,,\,ith the help of the first two equations in gruup (Vb), two vcctors can 
bf~ eliminated and the system of equations in this way arrived at can bc soh'ed 

unequivoeally, '2 and J being known yalues. 

2. Basic e(Iuations in the presence of substance 

Equations immediately become complicated if a substanee is present 
in the field. The electromagnetic field, namely, is influenced by the substance, 
consequently l\faxwell's equations should also be modified. Generalization can 
be effected in three different directions. 

The first possibility of generalization is to regard the first four equations 
under (1.5) as of general validity. From the -dewpoint of computation technique, 
this method is the most convenient, and, consequently, the most wide-spread. 
The physical meaning of vectors E and B is determined by equations (1.1) 
and (1.2), but equation (Vb) determining vectors D and H should be general-

:2 Periodi .. " PolY"'dmiea El IlL:L 
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ized. In the general case D and H can evidently be written as the sum or differ­
ence of a component proportional to vectors E and B, respecth-ely, and of 
another vector. For the time being we know nothing about the physical mean­
ing of thcse additive vectors, and of vectors D and H. As the last result, l\Iax­
well's equations are expressed in the following form; 

aD 
rot H = J + --, 

At 

AB 
rot E = - --. 

at 
div B = 0, 

div D = fj 

D = coE+P; 
1 

H =- B - M. 
Po 

J = f (E + Ee) + fjV, 

IED+ 1
HB. 1f = 

2 2 

(le) 

(lIe) 

(lIle) 

(lYe) 

(Ye) 

(Yle) 

(2.1) 

How can now the vectors characterizing the field be measured within 
the substance? In fluids and gases E and B can he measured on the basis of 
equations (1.1) and (1.2). Vectors D and H, however, can only be measured 
indirectly. One of the methods of measurement is, namely, to determine the 
force effect in vacuo (or in the air, what is practically the same) in slits of given 
shape cut into the substance at given directions. Now a value Eo offield strength 
and a value Bo of induction can be determined from equations (1.1) and (1.2). 
According to equation (1.5) values of Do and Ho, respectively, can be deter­
mined in the slit. I t follows from the laws on vectors D and H that in a suitably 

prepared slit the measured values of Do and Ho are just equal to values D 
and H produced in the substance. Similar, in principle, is the measurement of 
E and B in a solid substance. As the last result, always vectors E and Bare 
measured, and of these values conclusions are drawn as to the value of vectors 

D and H, respectively. 
Another method of measurement is to use integral equations 

.f H ds = e - f (J 
A 

aD) dA 
at (2.2) 
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which can be deduced from equations (IVb) and (lb). As charge Q and excita­
tion (MMF) e can be measured, the above integrals are known. If a condition 
(with the necessary symmetry or other characteristics) can be produced in 
such a way that the vectors can unequivocally be determined from the inte­
grals, then the measurement has been carried out. A measurement of this type 
is e.g. the determination of charges induced on a metal plate, or the indication 
of the compensation of the magnetic field by a dipole. Obviously, in the last 

result, force effects are observed here too. Under completely homogeneous 
conditiom, in case of a high-grade symmetry, D and H can also be computed. 
The control of computations by measurement, however, means in the last 
effect the measuring of vectors E and B. 

After the determination of vectors D and H by measurement or computa­
tion, the value of vectors P and M can also be determined. According tc' expe­
riences, the following formulae are valid for a wide group of substances: 

P = Co % .. E, M = 1 %;u B = %m H 
,llo 

(2.3 ) 

where % is the electric or magnetic susceptibility. (In theory it would be more 

correct to apply %;,., but in general the value %m = <.J(] -<,J is given.) 
Thus with denominations 

(2.4) 

the following formulae are obtained: 

D=EE, (2.5) 

where C and .u are scalar values depending on the substance (eventually also 
on temperature, density and frequency). In crystalline substances e and ,Ll. can 
also be interpreted as tensors (the same can be said of conductivity y). For 
many materials (electretes, ferromagnetic substances), however, e and ,u. 
cannot at all be analytically determined. For such hard magnetic materials 

the approximation M = Mo is sometimes allowable, where Mo is a vector 
independent of the magnetic field. In general, however, we have to make use 
of approximation methods in such cases (e.g. the application of the magneti­
zation curve, or any analytic approximation of it). 

2* 
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It can be proved by computation that even vectors P and M can be given 
a physical meaning. By imagining the material to be built up, from an electric 
and magnetic point of view, of molecular dipoles, having dipole moments p 
and rn, respectively, then the specific density of these dipole moments in the 
field supplies the values of the electric and magnetic polarization in the given 
point of the field. These arc precisely vectors P and M : 

'5' 
P= hm .... p: 

.J V-o.l V' 
"'rn 

M = lim --- . 
.J v-o .1 V 

(2.6) 

I t should be noted that in case d ferromagnetic materials the origin of 
magnetic dipoles are much more complicated than those of the electric dipoles. 
From the viewpoint of the phenomenological discussion, however, thi~ quan­
tum-physical background needs be of no concern. 

To sum up, the way of generalization is the following: Vectors D and 
H,further P and M are formally introduced, the method of measuring vectors 
D and H is determined, empirical relationships are found bet'ween vectors E, 
D, P and S, H, M, respectively, finally the physical meaning of vectors P and 
M can be given. 

3. Further possihilities of huilding up the hasic equations 

Another method of generalization is based on Lorentz' electron theory, 
according to which the presence of a substance only means that charges and 
currents coupled to the substance (molecular dipoles, and molecular circuits 
'Or magnetic dipoles, respectively) also produce a field, beyond the external 
charges and currents. ConsEquently. lVIaxwelr s equations for vacuum are 
sufficient to describe the field, as the word "substance" only means the appear­
~lllce of additive charges and currents. The average value (in respect to time 
and space) of electric and magnetic field strength values computed in the 
·described way, can be measured. This method is exceptionally clear and well­
arranged, it corresponds strictly to physical realities. For practical computa­
tions, however, just because of the complete generalization, it is. it may be 

said, unusable. 
The third method of building up the basic equations is in essence a middle 

way between the previously mentioned two "ways. The field is described by the 
'well-defined vectors E and S, and the presence of the substance is accounted 
for by the polarization vectors as defined by equation (2.6). The basic equa­
tions can be formally obtained by eliminating vectors D and H from the equa­
tions given under (2.1). In this way we arrive at the following system of equa­

tions : 
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rot 8 = Po (J M I aE ap), (Id) rot ,80 --
at at -

rot E =-
08 

rJt 

div 8 0, 

div E= 
1 

(g div P) , 
80 

~'p P= lim 
Lt V··o .1 V 

v 
M=lim ~~. 

.JV-o c:1V . 

J E,,) + fj V, 

(Hd) 

(HId) 

(IYd) 

(Yd) 

~(j:JltV.' = [~o OE2 + 80 E ap \ ..L [_ ~ 88
2 

_ M oB \. (VId) 
L at' at' 2,uo at i'lt 

(3.1 ) 

Equation systems (2.1) and (3.1) arc evidently equivalent in essence, 
from the mathematical point of vie,\"' In the first case vectors 0, H, P and M 
have only a formal role, the principle of their measuring and their physical 

meaning will be shown only later. In equation system (3.1) every quantity 
has a physical interpretation. The difficulty lies in finding the relationship 
between the polarization vectors and the field intensity vectors. It now stands 
to reason to declare that polarization is simply proportional to field intensity 
in general, and equations (2.3), or in single cases the polarization, are values 
independent of field intensitv. The most general linear formulae for vectors 
P and M arc 

1 
M=--B %:~~.B 

u 
I : 

M. (3.2) 

The Ycry complicated relationships of ferromagnctic materials cannot naturally 
be followed up here either, as the difference between the two methods of 
discussion lies not in the content, but in the way it is comprehended. The 
equations presented here are somewhat more complicated than usual, but every 

quantity has a direct physical meaning. 
It should be noted that the equation of continuity (lA) can be deduced 

from the first four equations here too. 
Equation VI is presented in a somewhat different form, as in place of 

energy density its variation with respect to time has been givel!. We shall 

revert to the discussion of this equation later. 
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4. The analogy of electric and magnetic characteristics 

It is evident from the preceding discussion that, at building up the equa­
tion system, vectors E and 8 were regarded as values determining field strength, 
vectors 0 and H having only the role of auxiliary quantities for computation 
purposes. Experimental results proving equations (1.1) and (1.2) make this 
analogy evident. In spite of this, vectors E and H are regarded by many as 
analogous. The reason is the historical origin, which is also shown by the fact 
that both quantities are named field strength vector. In accordance with the 
preceding discussion, vector 8 should be rightly named magnetic field strength. 
At the same time Maxwell's equations given under (2.1) undeniably hint at this 
analogy, even formally. E.g. in case of no charge or current 

rot H = 00 
(le), rot E = 08 

(lIe) - , 
at (it 

div 8 = 0 (lIle), div 0 = 0 (lYe). 4.1) 

This grouping decidedly hints at an E- H, 0- 8 analogy. This formalism, 
however, is artificial. Let us, namely, colleet the equations containing the 
charge or current exciting the field, and those not containing these quantities: 

00 
rot H - = 1, (If), 

at 
div 0 = Q; (IYf) 

08 
rot E + - = 0, (lIf), div 8 O. (1IIf) 

at 
( 4.2) 

It is evident of this grouping that vectors Hand 0 are those in close relation­
ship with the exciting effect, while equations that can be simply reduced to 
zero relate to E and 8. It is strictly formal, whether thc formation of rotation 
or of divergence is prescribed in thc mathematical formulation, as the same 
vector operation cannot lead to the vectorial current density and to the scalar 

charge density, respectively. 
The question of formalism is finally decided by the relativistic formula­

tion of the matter. The decomposition of the electromagnetic field into an elec­
tric and a magnetic field, namely, is known to be no objective operation, as 
it depends on the relative motion of the observer and of the charges. E.g. an 
observer fixed to the charge notices only the electrostatic field, in the case, 
however, that the eharge and the observer have a relative displacement, then 

the observer may also notice the magnetic field. 
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The relativistic wording, in turn, knows only the electromagnetic field: 
the electrostatic and magnetic ficld strength values can be concentrated in 
a single antisvmmetric field strength four-tensor~. 

0 B: Bc 
j ) 

-E., 
c 

-B: 0 B, . 
j .Ey 
c 

iJ= 
j By B., 0 E: 
c 

J. Ex .L E ,. j 
·E: 0 (4.3) 

c c c 

The rotation four-tensor of this tensor is zero, which exactly corresponds to 
the contracted form of l\Iaxwell's equations II-III given under (4.2). The 
tensor of excitation can similarly be written: 

0 H: -Hy - jcDx 

-H: 0 H., - jcDy 
(i)= 

Hy -Hx 0 - jcD: 
jc D. jcD" jc D: 0 (4.4) \ . 

The divcrgencc four-vector of this vector supplies the current density four­
ycctor S: 

(4.5) 

This in turn, is the contracted form of equations I and IV given under (4.2). 
Thc rclativistic wording clearly expresses the fact that E and B on the 

one hand, and D and H on the other are analogous, as during the motion 
these values are transformed one into the other. It is also evident that l\Iaxwell's 
equations I and IV, and Il and Ill, respectively, are connected equations. 
This is another side of the same question. 

It follows from the precedings that the equation system given under (3.1) 
contains physically well-defined Yectors. Let us now examine how Maxwell's 
cquations given under (2.1) can be deduced from this build-up, as the introduc­
tion of vectors D and H, generally, greatly facilitates the computations. 

5. Introduction of auxiliary {Iuantities 

The system of equations (3.1) describes the regularity of the electrJ­
magnetic field. In a given case, our task is to solve these equations in conformity 
"ith given conditions. For the solution, the introduction of new auxiliary 
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quantities is advisable. The essenee of these i~ that for the sake of unification 
of formulation, scalar quantities (charge density and energy density) should 
bc deduced from yectorial quantities, and even the other quantity exciting 
the field (current density) should bc deduced from a vector. These equations 
do not contain any new physical assertions, they only define new quantities. 
Assertions relating to the regularity of the electromagnetic field are eontaincd 

in equations I - V as 'well as in formula (3.2) for vectors P and M. 
At first charge density is deduced as the divergence of a vector poten­

tial 0: 

q = div O. (5.1) 

This equation exactly corresponds to equation IV of the usual word­
ing (2.1) but the interpretation is just the inverse of that one. There, the 

divergence of 0, where 0 is regarded as a basic quantity, is taken as a new 
quantity defined by this relation, 'which will later be proved to be the charge 
density. Here, quite contrarily, vector 0 has been introduced to describe charge 
density "which is taken as a basic quantity. Equation (5.1) i" substituted into 
the equation of continuity (1.4). Changing the order of partial cleriyation with 
respect to time and place, after reduction, we obtain 

;:0 
eliy \J + r ') = O. 

0t 
(5.2) 

As the expression inside the hracket, IS sourre-frep, it ean hc dcduc('(l as tll{' 
rota tion of a Y('ctor potential: 

r,O 
J -;- -. = 1'0 t H . 

(It 
(.5.3) 

Thereby equation I of the customary system of equations (2.1) is arriycd 
at. The yalue of H, howeyer, appears as a deduced quantity, like 0 in the 
previous ease. In this "wording it is no wonder, therefore, that 0 and H, as Yeetor 
potentials, eannot be generally giyen a direct physical meaning. The derivation 
(dh-ergence or rotation) of hoth quantities heing coupled to physically well­
defined quantities (eharge density and current density), it is obyious that the 
integrals of yector potentials supply integral yalues characteristic as shown 

by equations (2.2). 
_-is can he seen, the auxiliary quantities in this way defined are in rela­

tionship 'with quantities exeiting the field. Consequently they supply, beside 
the yectors characterizing field strength, data as to the exeitation of the 
field, wherefore they can be named Yf'ctors of excitation. 
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Our third auxiliary equation produces a relationship between the yaria­
tion of energy density and power density on one hand, and a vector quantity 
on the other, in the following form: 

Sw 

at 
EJ = - diyS. (5.4) 

This equation 'will be discussed later. 
Vector potentials introduced in this way, however, are not uniyocally 

defined. We may yet freely dispose of the rotation of D and of the divergence 
of H. By placing equation (5.1) into equation IV of system (3.1) we obtain 

diy (co E P - D) o. 

Thc quantity in thc brackets can again be written as the rotation of a vector : 

Co E + P - D rot C (5.5 ) 

wherc C can be any Yeetor. If C is taken as zero,then the well-known equation 

D = Co E + P (5.6) 

will be arrived at. The relationships between the magnetic characteristics 
should now be examincd. Equaticn (5.3) and thc newly founel equation (5.6) 
is substituted into equation I under (3.1) : 

rot I~- - M - H) O. 
Ih 

The quantity in the brackcts is free of turbulence, consequently, it can 

be writtcn as the gradient of any If! scalar value : 

B 
M - H = - grael Ip. 

Po 

Taking grad It' as zero the well-known equation 

H=J:.. B - M 
Po 

(5.7) 

(5.8) 

will be obtained. By this choice the following equations for the rotation of D 
and the divergence of H will be arrived at, by virtue of equations II and HI 
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riB 
rot D = - so-­

at 
rot P, 

div H = - div M . (5.9 

In the case of vector potentials, howcver, it is habitual to have, generally, 
the most simple equation for them. E.g. in the case of a quasistationary field, 
equation div A = 0 is chosen besides the defining equation B = rot A. In 
our case this is impossible, as by choosing rot C = 0 and grad ~' = 0 disposi­
tion has already been made over the rotation of D and the divergence of H. 
There is, however, no obstacle in introducing, by suitably choosing C, a vector 
potential D* the rotation of which is equal to zero: 

div D* = '! , rot D* = O. (5.10) 

It follows from the first condition that the integral of D* for a closed surface 
also supplies the charge enclosed by that surface. 

Forming the rotation of equation (5.5) gives: 

rot P = rot rot C. 

As known from the vector analysis: 

rot rot C graddivC -.J C. 

By choosing the divergence of any vector C as zero, thc following vectorial 
Poisson's equation will be arrived at : 

The solution of this equation: 

C = 1 J' .rot ~ d V __ ~o - 0 .r Br d V. 
4::r. r 4::r e)l I 

r 

Consequently, the relationship between D* and E is : 

D* = So E ...L P - 1 rot j' !'?tr··~- dV 
4::r 

v 

(5.11) 

(5.12) 

(5.13) 
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By substituting 0* into the equation of continuity we obtain: 

( 
&0* 

div _J + = O. at 

The expression, in the brackets, can be deduced as the rotation of a vector 

potential. Similarly to the preceding computation, let us suppose the condition 
equations relating to the Yector potential designated by H>I< to be the most 
simple ones: 

&0* 
rotH*=J+ divH*=O. 

(Jt 
~5.14) 

It follows from the first condition that the integral of H'" for a closed 

curve also detcrmines the excitation enclosed by the curve. 
The diycrgence of equation (5.7) is : 

diy M = diy grad -ljJ = J If'. (5.15) 

The solution of this Poisson's equation is : 

V' = - 1 _I' div M dV 
4;1;. r 

(5.16) 

r 

Consequently, by virtue of equation (5.7) : 

H'" 
1 1 1-' dh- M . - B - M - grad --- dT' . 
~o 4;1; _ r 

(5.17) 

r 

The equations for both D'" and H '" can be further transformed, as the 
differential operator may be carried below the sign of integration. It is, how­
eyer, not worth while to carry out this transformation. It is of no use, namely, 
to introduce vectors D'" and H '" in place of vectors D and H, respectively, as 
this would hardly mean making the computations more easy. Therefore we 
do not examine whether there are any singularities in the solution of equations 
(5.11) and (5.16). It can nevertheless be seen that these two vectors differ 
only in onc or two additive members and they are identical in case of the 

fulfilment of some conditions which are often realized. The only aim of our 
discussion was to show that the main equations I-V express an objective 
regularity and that they cannot be ehosen otherwise. The auxiliary equations, 
however, can only be regarded as definitions which could also be written in 
other ways if the viewpoints of practicability and tradition were not taken 
into account. 
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6. The power density vector 

Let us now examine the auxiliary quantity 5 introduced into equation 
(504) which is in connection with the variation of energy: 

O·lf) 

at 
EJ = diy5. (6.1) 

The first thing to be examined is: With which physical quantity is 
vector 5 in relationship? For the sake of simplicity let us suppose that there is 
no convective current and the substance is isotropic. In this case, by express­
ing E from the 3rd member of Maxwell's V equation and placing this yalue­
into (6.1) : 

at 
Et" J -+- diy 5. (6.2) 

By integrating this equation for a given volume ·we obtain the equilibrium of 

power: 

- -dW-e. HI. = j~ p dr -I'Ec J dV .f. 5 dA. 
dt? r (6.3) 

r· r A 

The left side of the equation gives the decrease of thc electromagnetic energy 
with timc within the given volume. At the right side the first member is tlH~ 
Joule heat, the second is the power produced (or consumed) hy the inserted 
fields, the third is the power flowing through the surface surrounding the­
given volume. 

"Vector potential" 5, therefore, is Poynting's power flow vector the 
integral of which taken for a closed surface supplies the power flo'wing (radiat­

ing) through the surface. 
Thereafter a relationship is to he found bet,reen energy density and the 

field characteristics. With this end in mind let us multiply Maxwell's II 
equation scalarly hy H, whilst equation (5.3) scalarly hy E. Afterwards the 
second cquation is deduccd from the first one: 

aD FlB 
E - + H --- -+- E J = E rot H 

eJt at 
H rot E __ div (E X H) . (6.4) 

By comparing this with equation (6.1) we may -write: 

010 = E aD 
r){ at 

H aB. 
Clt . 

(D.S) 

5=ExH. (6.6; 
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As can be seen, in the expressions both for the variation of energy density 
and for the vector of power flow the vectors of both field strength and induc­
tion are included, and what is surprising they are not symmetrically arranged. 
This fact, however, means no contradiction to our opinion presented up to now. 
Neither the vector of energy density, nor that of radiation power have namely 
a direct physical meaning. Only the volume integral of energy density and the 
surface integral of the radiation vector can be interpreted physically. And it is 

known that 'both vectors D and H after integration supply a quantity having 
a physical content. Consequently, also the following equations are evidently 
possible: 

dWe
. Ill. = I'(E aD + H ~B ·.1 dV, 

dt '. at eJt 
v 

P rad = t (E x H) dA. 
.·i 

(6.7) 

(6.8) 

Equation (6.6) is based on the following deliberation: If diy (E x H) = 

= div S, then E X H = S. In the general case, however, E X Hand yector 
S differ in a diyergcnce-free vector, consequently also equation 

S* = Ex H + rot K (6.9) 

is a possible solution, as eliy S* = div S = eliy (E X H), whicheyer Yector 
K may be. In other words equation (6.1) only determines the diyergence of S, 
but we haye free disposition oyer its rotation. In accordance with (6.6), howeyer, 
we obtain uniyocally : 

rot S = rot (E X H) 

Similarly to the preyious case, a rotation-free Yector S* could he elptermined 
in this case too. 

According to relatiyistic meditations, howeyer, the rotation of Yector 

S is not simply a formal problem. A determined impulse moment pertains 
llamely to the energy flow. If therefore we want vector S actually to deter­
mine power flow in any point, then its rotation should correspond to the 
impulse moment of the electromagnetic field. On this basis the validity of 

equation rot S = rot (E X H) can be proyed. This also means that in equation 
(6.9) rot K = 0, consequently equation (6.6) supplies the value S at a ginn 
place. 

It should be noteel that from a relativistic ·dcwpoint equation ((d) is 
the fourth component of the divergence of the energy-impuhe tensor. 
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7. Energy density 

Finally it should be briefly discussed, why the derivation in respect 
to time of energy density and not energy density itself are included both in 
equation IV under (3.1) and in equation (6.1). Formally, this fact is sufficiently 
evident, as the great majority of physical laws can be written in the form of 
differential equations. 

On examining energy, the variations should be determined as energy 
itself, that is a quantity that cannot be measured. We can only measure the 
labour necessary to arrive from a state into another given state, or inversely 
the labour that is freed when the system is transformed from one state into 
another. If the basic statc can be univocally defined and the introduced labour 
can be divided into parts on e of 'which is changing energy content and the other 
transformed into heat, then the corresponding work values (that may be nega­

tive values too) can be identified with the energy of the system. 
Let us now examine the variation of electromagnetic energy density. 

Equation (6.5) is integrated in respect to time: 

Denominations 

are introduced: 

I , 

f au' dt = ,'( E aD + H aB) dt . 
. at . \ at at , 

It' (0) = !t'o. 

D 

It' - u'o rEdO 
D, 

B (0) = B[I 

B 

rH dB 
B .. 

(7.1) 

In the most simpJe case the polarizations are the homogeneous linear 
functions of field intensity according to equation (2.3), that i", 

0= cE, 

In this case we obtain: 

1 
H=-B. 

f! 

1 (E" E") I 1 (H" H") U' - U' = -c - - - '7 P. - - ii = o 2 0 ' 2 

= ~c(E2 - E~) 
2 

(7.2) 

(7.3) 
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Be Eo = 0, Bo = 0, Ho = 0 and to this state an energy density Wo = 0 is 
logically ordered. In this way the well-known formula for encrgy density is 
arrived at: 

1 E~ 1 w= --- e -...,-
2 ' 

(7.4) 

If there i5 a permanent polarization too, -we may write on the basis of 

equation (3.2) 

B = ,u H + /10 Mo . (7.5) 

In this case the following formula is obtained for the change of energy density: 

(7.6) 

To which state should lC O = 0 now be ordered'? The most simple form is ob· 

tained by choosing Eo = 0, Ho = 0, Wo = 0 and expressing energy density by 
E and H. In this case, namely 

1 E" 1 Ho' le = -- -e - T -;:; /1 -. 
2 .;. 

(7.7) 

As Do = Po and Bo = llo Mo, the other two equations will become much mon­
complicated. Though the above choice is the most simple, it is not the most 
logic one. It would be more obvious to denominate that state as free of energy 
in which there are no charges or currents, that is in case of Do = 0 and Ho = 0 
is lC O = O. Computing now with D and H, we obtain: 

1(,'= - - --- T --,uH-. [
D2 D Po -I' 1 .) 
2 e e 2 

(7,8) 

It should be emphasized, however, that this choice is similarly arbitrary, as 
we have no physical ground to state that the energy content of a polarized 

substance is zero. 
As far as polarization is a (inhomogeneous) linear function of field inten~ 

,5ity, however, the processes are reversible and the zero level may be taken 
at will. In respect to computation technique this fact is of no importance just 
as the choice of the zero level of potential energy is also arbitrary. 
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In case of a homogenous non-linear relationship (e.g. soft magnetic 
materials) the procesE'es are reversible, the zero level of energy density can 

univocally be fixed to the state Eo = 0, Do = ° and Ho = 0, Bo = 0, respec­
tively, while energy density can in principle he computed in the following 
form: 

D B 
·It' rEdO + rH dB 

il il 
(7.9) 

It can also be easily plotted in a graph as the area between the characteristic 
curve and the axes D and B, respectively, this being wcll-known for the case 
of ferromagnetic materials. 

The situation is the most complicated when processes are irreversible, 
that is, the polarization is a non-linear and non-homogeneous function of field 
intensity. This is the situation e.g. in case of hard magnetic materials (per­
manent magnetic materials). In such a case we should account for the thermo­
dynamic effects due to variations in the electromagnetic field, as e.g. hysteresis 
loss. In this case no rational and usable supposition can be taken for the zero 
level of energy density and only the variation of energy density can he described. 
This latter can simply be graphically interpreted by making use of the well­
known method of the energetic analysis of the hysteresis loop. 

Energy is influenced by thermodynamic effects even in the most simple 
cases. The total energy of any system, namely, can be divided into thermal and 
electromagnetic energies. If polarization and consequently permittivity and 
permeability are functions of time, then the variations of electromagnetic 
and thermal energy arc reeiprocally influencing onc another. Beeker [3] has 
proved that in case of P = EO %,. E and of an isothermal transformation, the 
electromagnetic energy exactly equals the free energy (as named in the tlH'rmo­
dynamic sense). In case of an electric field the total energy dem'ity is : 

where 'It" 

T d%c ') , -- le. 
Er dT 

(7.10 ) 

1 
E E~, the density of the free energy. The expression E E~j2 can 

2 
therefore only he regarded as electric energy density if susceptibility (and 

eonsequently permittivity) do not depend on temperature. For many materials 
%,. = h,T, therefore the total energy density IS 

'IV (7.11) 
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\Vhile the strength of the electric field increases from 0 to E, the yulue of 
heat produced or dissipated, in respect to the unit of yolume is 

1 T dr.:,. E') 
q = 2'di co - (7.12) 

If susceptibility decreases 'with temperature the material sends out heat 

during the building up of the field. The corresponding magnetic effect can be 
expressed by the exchange of signs. 

Summary 

}faxwell's equation can be built up in two ways (beyond the Lorentz' conception). 
The one is to introduce quantities not defined in detail beside the quantities describing the 
field, which are related in an empirical way to the quantities describing the field. This method 
is practical from the viewpoint of computation technique. Its disadvantage is that it somewhat 
confuses the fact of the field being produced by charges and currents actually present or 
fixed to the substance. 

The other way is to express directly the relationship between the quantities describing 
the field, and actual and fixed charges or currents. This method better emphasizes the physical 
essence of the matter, nevertheless it is too general, especially for the calculation of simple 
problems. Therefore the introduction of some new quantities was practicable, thl)se have, 
however, only the role of auxiliary quantities for computation purposes (0, Hand 5). 
}Iaxwell's equations written in this form therefore express an objective regularity, the equa­
tions relating to these quantities, however, are only definitions, determined from the point 
of view of practicability only. 

In the course of the discussion of the energy equation we have stated that in a general 
case onlv the variation of energy densit" can be described bv a rule. if the thermodynamical 
effects o"r those of the materiar~tructur~ are not takf'n into a"ccount. 'In practice, ho,,:ever, the 
possibility of the application of both methods has its limitations. Therefore on computing 
energy, the course of the variation of the electromagnetic field should be taken into aCCOIlIlt. 
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