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In the recent years a book by Zypkin [2] was published about the dif-
ference equations of impulse and regulation technique. In this book, by using
the so-called discrete Laplace transformation, an operational calculus for
solving linear difference equations (and systems of difference equations) with
constant coefficients was elaborated.

In this article we show a method for this difference equations which
can be more easily treated and more generally applied than that of discrete
Laplace transformation method. We are using Mixusinskr’s method [4]. But
in our treatment on operational calculus in connection with difference equa-
tions, the need of introducing abstract elements does not occur.

§ 1. Step functions and number sequences. Let n be a positive integer
and a (n) the value of a () in t = n. (¢ (n) may be also a complex number).
a (t) is called a step function, if

-

a(t) =a(m),if n <t <n =1 (1)
a (t) is called an entrance function if
a()=0,if t <0 2)

If a (t) is a step function and if it is also an entrance function, it may be char-

acterized bv a number sequence {a0 I SRR . }, where the relation

ne "t

a,=a(t) ,_, (2

holds.

In the future we shall not make any difference between the step function
a (t) and the number sequence { a (n) } characterizing it. We are able to do this,
because the one to one correspondence also holds on operations (sum, product)
and limes, which will be introduced in § 3.
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We define the translation of the function a (n) by k by the equation

[0, if n<k

(3)
lan_k, if n > k.

a(n—k) =

On the other hand the function a (n -+ k) is defined by the equation

[0, if n

a(n Lk = 4)

<0
la"Ak, if n >0.

Thus, the translation of a (n — k) in positive direction by k does not lead to
function a (n).

§ 2. The difference equation and its solutiom. A k-th order linear
difference equation with constant coefficients for the function y (n) is

ayy(n) +ay(n +1) +... +ay(n +k =f(n) ©)

if f (n) is a given function and g, ..., q, are given constants. The equation (5)
has an unique solution, if the values of y (n) are given at different k points,
if — for example — the values

YO =g ooy (k=1) =y, (6)

are given. A very simple method for obtaining the solution of equation (5)
which satisfies the conditions (6) is the following :

Taking n = 0, we put the values from conditions (6) in the equation (5).
In the second step, taking n = 1 and making use of the conditions (6) and the
value v, (already determined), we determine y,.,, etc. However, in that way
we do not get a formula for the function y (n), but only values of y (n) in k.
E+1,...

In the following we modify the idea of the foregoing method, the sub-
stance of which was a successive translation in negative directionbyn,n+1, ...
In our method by one translation we immediately obtain a formula for y (n).

§ 3. The structure k. In the class of step functions [characterized by
equations (1) and (2)], we define the addition, the subtraction of functions.
the product of a function and a complex number in the usual sense.

The product of tico funciions is determined by the equations

a(n)=b(n) =c(n)

n
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where

It can be shown, that
[a ()% b (W)]+ ¢ (n) = @ (m)* [b ()= c ()]
a (n)# b (n) = b (n)* a (n)
[a (n) + b (m)]# ¢ (r) = a (m)x ¢ (n) +b ()= ¢ (n)

Still, we define the limes:
lim { a, (n) } = a (n)
ks 0

if, and only if, the convergence holds for each n.
Examples about the limes.

1. If a (n) is an arbitrary function
and
a, = t*a (n)

where t* a (n) is determined by equation (9), then

lime, =0
S

Since for arbitrary fixed n

t"'a(n):() if k>n
holds.
II. If
‘0 if n=k
() = lck ifn==~5L
we obtain, that

lim q;, == 0
i
for, if n is arbitrary fixed a, (n) = 0, if £ > n (Though cf > ool).

The class of step functions characterized by equations (1) and (2) in
which the operation and limes are defined in the foregoing manner is called
structure k.

§ 4. Unit funetion. If we define the function e by equation
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ex a (n) = a (n) e tcoe=(¢c; +¢)e

lim (¢, e) = (lim¢,) e

Fa ke

hold for arbitrary funetion a (n) and complex numbers ¢;, ¢,. Therefore we may
identify the function e with the number 1 and we write for a complex number ¢
the identity

c=ce(n) (8)
§ 5. Translation function. If we define ¢ by equation

IOifn—‘#l

t=t{n)

T 1t e =1
the equations
‘0 if n =2
tz =t {n)st =
) =11 e n =2
0if n=~Fk
= t(n)= ot = [
|1iftn=k
and
&+ (n)# a(n) = a(n—k) (9)

hold, where a (n—Fk) is defined by equation (3). From equations (9) and (4)
we obtain

a(n)=1t{n)za(n +1) +a, (10)
and

a(n) = tfamn -k -t a_, ... —ta, +a, (11)

where a,_,. ..., a;, a; are defined by equations (8) and (2').
From § 3. we derive that for every function a (n) the following series
development hold in terms of ¢ (n) :

a(n) =a, —a,t(n) +... —a,t*(n) + ... (12)

where a, is the value of a (n) if n = k.
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Hence

a(n)=b(n) =ayby +-(a; by +agh)t(n) -~ ... +(azby +... +

+agb)tt(n) + ... {13)
§ 6. Inverse function. If a (n) is given, and we can find b (n) €K that
a(r)x b(n) = e (n) (14)

then the sequence b (n) is called the inverse function of a (n).
Since from equation (14) we obtain for the first k elements of b (n), that

ag b, =1
a, by +agb, =10
a by +a_, b + ... +agh, =0

the necessary and sufficient condition of the existence in K of the inverse
function of a (n) is '

a, + 0.

i . . 1
We denote the inverse function of e (n) by a=(n) or )"
a(n
§ 7. Rational functions of t. It is known that every rational function
can be written in the form of a sum of a polynom and partial fractions 6.

Therefore we can define every rational function of z by the following formulas,

ag +ajt + ... +a, " ={apa,....a,00, ...} (16)
— 1 =1 4 : ik Gk . L £ 17
(l_ct)—— ~7—th... ":'Ct—g—...—{C} (t)

L 1 1 _ i("‘—1+k} ol (18)
L—et)" L1—ect 1—ct)t | k |

§ 8.. The solution of a difference equation. From equations (10) and (11)
follows that equation (5) is equivalent with the linear algebraic equation

(@t + a7 . tayt Fa)ey(n k) =f(n) + Py (1)

* Since from equations (12) and (13) follows that (1—ct) (I +ct--.. . --c b, ) =1,
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where a, = 0 and P,__, (¢) is a polynom of degree k—1 the coefficients of which
can be computed from (6). Hence

'v—i,ifnzo (19)

On the basis of formulas (16), (17). and (18) it can be shown that (19) is a func-
tion which belongs to K.

Fig. 1. The picture and the switch-on-picture of the high tension insulater

Observe that formula (19) can be applied for values y (n), in the case
*n > k. Values of y (n) in case of n << & are given by the initial values (6).
§ 9. Examples.

I. Is given the difference equation
u(n +-2) — un) = n!
with beundary conditions
u(0) =0, u(5) =1
Solution: The corresponding algebraic equation is
(A—Hu(n +2) —tu(l) — u(0) =n!
hence

n! 4 tu(l) 4+ u(0)
J

u{n +2) =
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Considering the identity -‘
1
1—¢

_1
)

1 1 1
— : }:E‘{l‘?"(‘“ 1)n}
and

tu(l) +u(0) ={—u(0),u(1).0,0,...}
and the first boundary condition, we obtain

v

VE

un +2) =

k

(r—R)I 1 + (=D + 1= (=D u(l)

I
>

From the second boundary condition follows that

u(5) = %(3—’5)3 D+ (=14 -’;—";“[1—(—'1)3] uy
hence

Thus we obtain the result

~

un +2)=

iVE

<

(B! 1+ (=1)*] =6 [1 + (—1)"), if n >0

)

u(l) = — 6, u(0) =0

This example cannot be solved by ZypxiN's method, since the function n!
has no Laplace transform.

II. A high-tension insulator consists of a sequence of umnit insulators
which are connected by conductors. The first of these unit insulators are
connected to a grounded console. The last unit insulator is connected to a high
tension conductor in which alternating current of frequency o flows. (See [2]
p. 40. and the figure.)

The problem is to give the potential drop between the n-th and n + 1-st
unit insulator. ’

The potential in one unit insulator is constant. Thus — if we denote
the capacity between two neighbouring members with C; and between the
ground and the first unit insulator with C, — then the problem leads to the
following difference equation : ’

u (n —{—2)—2[1+2Cé\u(n +1) +u(n) =0

1/

u(0) =0 u(N)=u,

where u; is the potential drop between the last unit insulator and the ground.
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Solution: Making use of the substitution

1 - Gy h 2
‘;—2Cl:C»I' (.-O)

we obtain the linear algebraic equation [see (11)]
(I1—2chtt +)u@n +2) —2chru(l) +tu(l) =20

From the identity

1 1

1—2chr-t+88 e —e 7|

// A
A l
G

N,

R
y T
~—
L

N

NN
£
[?

S

and the equation (17), we get the formula

1 o7+ __ g—t(at)
1—2chr-t~§—12_ e —e "
Henee follows that
i — 2 Ch T e‘rn, o e—?n.
u(n42)= ()= —— T u(l)—
) ?—2chtt-+1 @) ef—e " @)
T 1 T (ptin+l) _ ,—1t(n+1) (n+2) __ ,—t(n+2)
(7 +e)e ) way = e u(1).
e — g 7T T gt
er.\' — e-r;'\'
u(N)= ———u(l) if N>2
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Thus the solution is (after replacing n -~ 2 by n)

efn —— e*"[fl
u(n) =
er\ e—\'_\
Because
erll e—‘T" n
lim — . = —
roall er\ e-—r\ ,’\r
thus from (20)
n
u(n) =—
AT

on small values of C,/2 C,.
II1. The grade of amplification in an amplifier with /N members (see [2]
p. 42). The problem leads to the following systems of difference equations:

ni(n) ~u(n +1) —u(n) =190

Zoi(n +1) —zi(n) +u(n +1) - Szu(n) =20
S, z;» 3, constants and
u (0) = u¢ i(N)=20 (22)
We show the method of solving only, without physical interpretation. The
corresponding algebraic equation is (from (10))
nti(n =1 +(1-u(n +1) =ug— 3,1(0)
Z(I-i(n +1) L (1 +8Sst)u(m +1)=2,1(0) — Sxug  (23)

hence

[(L — Sz)i(0)t + Sug — 1 (0)] + ue
— 251 —=8%)8+ (5 +25)t —x

Making use of the substitutions

V1—Sz, =4 {24)

and
S ’1 + A ‘ =cht (25)
A1 2z, '
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we get the formula

L[4 (0) e+ Sug — i (0)] - ug
(4 —2AchTi 1)

where

A2 — 2 dchtt +1=(1—de ") (1—de™ " 1)
Thus with the method of partial fractions and using (17) we obtain

[AL(0)e™™ + Sucg—i(0)] +ug .

inrl)=4".2 _ et 4
e " —1
Logn R [AT(0)e" + Sug —i(0)] -+ ug -
e — 1
Considering the identities
1 e’
-1 e —e’
1 _ e T
e % — 1 e —e "

we get the more simple form

(A +35S8)uc—1(0)

0N gn L A iF a1
i(n) = A [ Ashe shnt +1(0)¢ n“r] if n>1 (26)

Substituting n = N in (26), from (22) we get 1 (0).

Using (24) and (25), we express i (n) by the z;, 5,, S constants. We get
u (n) from the algebraic equation (23) also in the described manner.

§ 10. A restriction of the method. If P, (¢) is the polynom of the trans-
lation function and

P, (0) =0

we know from § 6, that P, (¢) has no inverse in K. Thus if in case of a difference
equation (or for a system of difference equations) the equivalent algebraic
equation Jeads to a polynoem with the foregoing behaviour, the above method
cannot be applied. However this restriction is not essential, because in practice
such difference equation does not occur. On the other hand, precisely this
condition makes possible the foundation of operational calculus without the
introduction of abstract elements.
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Summary

The paper contains a new operator calculus for solving linear difference equation (and
systems of difference equations) with constant coefficients. It is more general and more simple,
than those described in [2] or [3]. To illustrate the method, we give three examples. Two of
them are difference equations from the impulse and regulation techniques, and the third
can not be solved by the application of finite Laplace or Dirichlet transforms.
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