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In the course of an investigation into the magnitude of the principal
frequency /1 of a stretched membrane of area 4 and periphery L, it was found
for a convex membrane that / can be appraised by the quantities 4 and L.
To put it in more exact terms, if one seeks a solution of the partial differential
equation

Adu 4+ Au=0

u vanishing on the periphery of a convex plane domain D of area A, periphery
L, the first principal frequency .1 satisfies the double inequality [8]
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Apart from various applications of Courant’s principle, not easily treat-
able in forms of concise inequalities, this double inequality is, as far as I know,
the first simple two-sided — though admittedly not too sharp — existimation
of the principal frequency of a membrane connecting it with geometrical data
of the domain D. Moreover these data are the simplest geometrical quantities
attached to a given plane domain.

If one wants to get rid of the restriction of the convexity of the domain D,
one can see by means of examples that the left-hand side of the above double
inequality fails to hold [9]. Yet one can show that

_1<1f§£.

A

for every membrane [9].
For showing this one has to prove an elementary geometrical property
of plane figures, or more generally, plane point sets. Though this property
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(Theorem I of this paper) can be expressed in quite simple terms and a partial
analogy of it for convex domains was known to J. STeINER (and proved by
guite elementary means) about a century ago, yet the demonstration of our
theorem presented quite unexpected difficulties, mostly of topological nature.

These difficulties were later overcome, or rather, got round in an ingen-
ious way by B.SzOKErFALVI-NAGy, who gave an independent proof of Theorem
I, to be published in the Acta Scientiarum Mathematicarum. His proof is
self-contained, it does not rely on other vesults. Yet it seems worth while to
present the following proof to show how closelv the topics of this paper are
interrelated with other investigations, notably with those of H. HADWIGER.

(8]

The outer parallel point set S, of a closed plane point set S is defined
as the union of all closed circular disks of radius g whose centres are points
of S. The inner parallel point set S_, (0 < r where ris the radius of the greatest
circle which can be inscribed in S) is the closure of the set of the centres of all
those closed circular disks of radius g which lie entirely in the interior of S.

The point sets S we shall deal with are all closed. We suppose throughout
the whole paper for any point set to be met with, that their area 4 and the
length L of their boundaries B exist in Minkowski’s sense [10]. More precisely :
if B’ is a part of B, then the limits?

area of B, S area of (B, — §)
im ———--= and Ilm ———rr"fo 2
g—r 0 & gewr -0 [

exist and have the same finite value L', the length of the part B of B. In
particular

L = lim TJ:(;L = lim ;FI—S: A .
gme 0 & Eem 0 &
We suppose further that
lmL_,=1lim L,= L. (1
g-s+0 e—e 0

1 The notations 4, B L will be used con~1~tent1\ in such a manner that e.g. 4. means
the area of the set Sg, L1, the length of the hound’ir\ of the set SL,, (B1,)s the boundan
of (S1y)s ete. Further we “111 denote by Cs(T) a closed circular disk of radius s, centre T.

Other notations are as follows, If §;, S, are point sets and P a point. then

1 =~ S, is the set of all those points which belong either to S; or to S,

5 — S, is the set of all those points of S,, which do not belong to S, :

S S, is the set of all those points which belong simultaneously to 51 and S, (the common
part of S, and S,):

S, € S, or Sy D 5, means that each point of S; belongs to S,. too ;

PeS,, PE:S, means that the point P is an element of S;, but not of S,.
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If Sis a convex domain, then Steiner’s equalities hold :
A =4+ pL +tap? L =1L+ 2pm. (2)

In search of the extension of the validity of Steiner’s equalities, H.
HapwiGer [4, 5] defined the notions of under-convexity and over-convexity.
A closed point set Sis said to be under-convex of degree a if for any 0 <7 % < «
and for every point T of the plane, SC,(T), the common part of S and C, (T)
is void or simply connected, yet if % > a one can find at least one point T
for which this is not true.If § is convex,its degree of under-convexity is oo.
We may extend the definition of under-convexity to a = 0 and say that the
domain S is under-convex of degree 0 if to every a >0 one canfind a < a
and a point T, so that SC,(T) consists of disconnected parts. (According to this,
the degree of under-convexity of a non-convex polygonal domain is 0.) On
the other hand S is said to be over-convex of degree 3 if S*, the closure of the
complementary set S* of S, is under-convex of degree j.

HapwiceR proved that if the simply connected closed domain S is under-
convex of degree ¢ and over-convex of degree [ then (2) holds for— 3 < 0 < a.

Another result of Hapwicer [4, 5] is, that if S is a simply connected
domain, not containing infinity, then

A, <A+ oL 4+ 7o (3a)
and he calls it an inequality of Steiner’s type. A similar formula follows from

investigations of B. Sz.-Nacy [11] and G. Box. [1]. They found that if S is

a convex domain, then

1y
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(0o (3b)

moreover L_, < L —2xo.

In the following we shall prove

Theorem I : If S is any simply connected domain, not containing infinity
‘and subjected to the conditions given above, then

w=XL—2z0 (g<r) 4a) and L, <L -+2m0 (0>0) (4b)
Jfrom which (3a) and (3b) follow for anv simply connected domain by an integra-

tion with respect to 0.7

* A relation substantially equivalent with formula (4b) — which has however no signi-
{icance in the membrane problem mentioned in the introduction — was quite recently proved

by G. Fast [12].
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Consider the open set §_, of the centres of all closed circular disks of’
radius g which lie in the interior of the simply connected plane domain S.
The set S~o may consist of several disconnected parts S, S_,, . S_"n
The closure of § S_D will be denoted by S and termed a component of the inner
parallel point set S_, of S.2 It is easy to see that any S, is a simply connected
domain. We prove the following

Lemma I : if S is under-convex of degree a, then any component Slc of
S_, is under-convex of degree at least 9o 4 a.

Suppose there exists a circular disk C,.,_, (0) such that S_ig Coia—:(0)

consists of at least two disconnected parts. Then there are at least two arcs

Fig. 1

on the periphery of C,.._, (0) which do not belong to S_fg with the exception
of their end points. It will be shown that if S is finite then each of these arcs
can be connected with infinity by a path not going through C,., . (0) i.e.
S, is disconnected.

For suppose the contrary. Let a be an arc of C, . ,_, (0) not belonging to
St excepted its end points M and N, from where one cannot attam infinity
in the manner described above. M and N divide the periphery B, of S
two parts b and b’ one of which, say b, has the property that the fuute dcmam
bounded by b, OM and ON does not contain interior points of S, The half-
ray from O, going through the middle point K of a should meet b at H.

We define the domain 6 as the domain bounded by b, and the straight
line segments OM and ON, and state that B cannot have points in the interior
of 6—6 C, (0). For if P, were such a point, it could be connected with infinity
by a path p; having no common point with S, excepted P;. We distinguish
two cases :

3 Of course Si, and SJ, (i  j) may have common boundary points. It can be shown,
that the number IV of those points, which belong to at least two Si, ’s is limited and a common
upper limit of IV and n is A/(zx 03).



STEINER TFPE INEQUALITIES IN PLANE GEOMETRT 349

1. If a < e (this includes the case a = 0) then OM and ON are contained
in C, (M) resp. C, (IN). hence no point of them is outside S and p, cannot reach
infinity from P,

2. If a >¢, let M’ and N’ be the points of intersection of OM with
C, (M) resp. of ON with C, (N). Then p, has to intersect either OM’ or ON’
for MM’ and NN’ are in S.So p, C, (0), if it exists, is not void,its points do not
belong to S, and it divides C, (0) in at least two disconnected parts. One of
these parts contains M’ and the other N, as p, enters C, (0) on a point of the
arc whose central angle is MON and leaves it finally through a point not belong-
ing to this arc. The two points M’ and N, both belonging to S, cannot be
connected in the inside of C, (0) by a path lying entirely in C, (0). Hence

C.(0) is a disk of radius a for which SC, (0) is disconnected, contrary to our
assumption.

C7A -5 Cte)

Now we will seek a point Py of B the distance of which from H is p.
We will see that such a point does not exist at all, i.e. H does not exist. We
define the angular domain 0, as limited by the infinite rays from O, going
through M, resp. N and containing K.in its interior. Py cannot be in 4, =
= §, — 6; C, (0). For supposing the contrary, it cannot be in 8—é C, (0)
so at least ome interior point of the straight line segment H Py contains
a point H’ of ng which is impossible since H' Py < o.

Neither can Py be in the interior of C, (M) or C, (N). But é, + C, (M) +
— €, (N) contains the interior of the parallel point set of radius ¢ of the arca.
Hence Py K 2= p.

Finally let 8, be the half plane limited by the straight line going through
M and N and containing K. Py d: 6; — 6, C,.,_. (0) hence the angle HKPy
is greater than /2 and as P;; K > p it follows that P, H >> g in contradiction
with the definition of Py.

If the simply connected domain S contains infinity, a similar analysis
shows that lemma 1 is true in this case too.

Recalling the definition of over-convexity we can now enounce
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Lemma II. If S is over-convex of degree g, then any connected component
S of S is over-convex of degree at least ¢ + f.

4‘

We proceed now to the proof of formula (4a) in the case when S is under-
convex of degree & > 0. One can construct a component of its internal parallel
domain S_, by taking a circular disk of radius ¢ lying entirely in S and mov-
ing it continuously in every possible manner so that it remain always in the
interior of S. (The moving disk must have no common peints with B.) The part
of the plane covered by the centre of the moving disk in its various positions

s an open point set S_n and its closure is the component S-O of S_,. The closure
of the area covered by the whole disk is (S“Q)Q. Clearly (5;3)9 (S_p)e C S
(Cfr. Hadwiger [3] p. 17.)

The boundary (B, ), of (S:D)n consists at least partly of points of B.
If (B_n) has other pomtc.too it can be shown that these consist of circular
arcs a'y, a'y,..., @'y and the length of none of these arcs is greater than = p.*
The parts of B not common with (B_)), will be denoted by by, by,.... b,
so that b, and a’; have common end points. The length of b, is greater than
that of a, For b, connecting two points of the periphery of C, (0,), is outside
of C, (0,), so it is longer than the shorter arc of C, (0,) connecting these same
points.

It may happen that S, does not have other points than those of S?,.
Then using our lemma and Hadwiger’s theorem on under-convex point sets,
we conclude that

Lz(L ),=L_,~20¢

d

and have shown the inequality (4a) in the case when S_, consists of one com-
ponent only.

If, on the other hand, S_, has other points too than those of Sl_,)1 let P,
be one of them. Connect the pomt P, with (B_,), by a curve lying in S and

outside of (S_,,),,. The connecting curve ends in a point of the circular are,

1 For let A4, be a point of (BL,), not belonging to B and let Oy € SL, be the centre of
that circle of radius o whose periphery contains 4g. C,(0g) has to contain at least two boundary
points of B, otherwise one could find in any neighbourhood of O¢ a point 0'g € S_, such that
Co (0%) would contam Agi in it its interior. Let P; € B, Qg € B be two points of CO (0,), such that

the open arcs Pa 4, resp. Q A do not contain points of B. Then these arcs certainly belong
to (SL,), and the combmed length of them cannot be greater than 7 0. For, supposing the

contrary, either the arc Pg A or the arc Qg Agisless than & ¢ and one could find in any neigh-
bourhood of O a point 0"/ I\ ing on the periphery of C, (Pg) or of Co(Qs), such that 4g€ C (0"

C(S_Q)g. Oun the other hand Og is perfectly determined as the nearest point of SL, to the chord

—_—
PyQ; and it follows hence that no point of the arc a’g=PyA4;Q; can be an interior point of sL,.
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say a whose end points are P, and Q. Then place a disk of radius ¢ on P,
and move it again in every possible manner, so that it should never have com-
mon points with B. We again get an open point set, sav SZ_( which has no
common point with S' . Its closure is another Compou(nt S* ,of S_,. Repeat
this procedure until all components 52_9, S?_Q,. o ST, of S_ and their outer
parallel domains (Sz_a) ..y (S7,), are found.

We will use an mductmn for the proof of (4a) which was shown to be
valid for n=1. We draw the chord P,Q; connecting the end points of the arc
a'y. As P; Q) < 2 0 no point of this chord lies in the interior of S_, P; ¢,
divides the interior of Sin two parts L’ and X'’ both of which contain at least
one, and so at most n—1 components of S_,. The parts of the boundary B
belonging to X' resp. X" will be denoted by B’ resp. B”, their lengths by L’

esp. L',

Fig. 3

Note that by virtue of our construction that part of S_, which lies in
2" is entirely determined by B’ and the remaining part of S_, depends solely
on the shape of B'". Hence we have a considerable liberty in deforming the
curve B (B’) into a new position Bg (Bg) so that the domaiu AO(T”)
bordered by B’ and By (by B’ and Bg) is such that (X _, X' = S_
(Z_, 2 =S_, %1
Ml that is wanted of By is that it should not have common points
with the interior of the disk C, (0,). If this condition is fulfilled then there
does not exist such a point P’ ¢ X’ for which C,(P’) B’ = 0 and C, (P') B] == 0.
If we denote by aj that arc of the periphery of C, (0;) which completes
ay to the whole circumference, then we may choose By to be the arc af.
Again there is no point P” of 1” for which C, (P") has no common point with
B’, but has a common point with aj.
So we conclude
S = [ +G (0],
2" Ss

—-a T [2” ; Cg (01)]—9

Let us now denote the total length of the boundaries of X' S_, and
278 _,byL_,and L., As 2’ S_, and X" S_, contain less than n compo-
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nents, we may use our inductive assumption and write

L'+L" - B—2¢pa+B —2px-+2¢m.

e

This is formula (4a) with the proviso that S is under-convex of degree a >0,

If the degree of under-convexity of S is 0, then according to our lemma
S, is under-convex of degree at least S, and as S_, = (S_,)_(,_, (0<C ¢ <C 0)
(cfr. Hadwiger [3] p. 17) we can state that L_,<L__—2(¢o— &)
Using the formula (1) we have again (4a).

-

For proving the inequality (4b) we suppose at first that the simply
connected closed domain S is over-convex of degree § and we construet its
outer parallel domain S, by taking all closed circular disks of radius ¢ whieh

\

uf
NN\ O
\
0‘3{ < jocz
/
~d”
N NN

By /Z 8¢

do not contain points of S. The complementary set of the union U, of the
centres of all these disks is S,. )

First take a disk sufficiently far from S, and move it continuously in
every possible manner so that it should have no common points with S.
Then a simple connected part UZ, of U,is constructed which extends to infinity.
The boundary B,, of the closure of (U,_l,)g partly consists of points of B and
it may happen that B, , contains other points too ; it can be shown that these
lie on circular arcs ajy, aj...., a; of radius ¢ the central angle of which is
at most 7. Let j, be that connected part of B, which does not belong to B,,
and has common end points with a]. The remaining part of B will be denoted
by f,. Obviously, f; is not shorter than a; hence the length L,, of B,, is
not greater than L.

4
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f U:, = U, we argue that the boundary B, of S,is the same as the bound-
ary of U, and L,, is the length of the boundary of the closure of (U¥)
Hence

—p°

L>L,,>L,—20x

00 2 <

%

and formula (4b) is proved if S, is a simply connected domain.

If B,, the boundary of S, consists of several disconnected parts, then one
of these, éay B; is the same as the boundary of UZ, and the others lie in the
domains bounded by £, and a.

Deforming B in such a way that each j, is replaced by a,, and terming
SV that point set, the boundary of which is the deformed boundary B, one
sees that SV is the complementary domain of UZ, and so S is the inner parallel
point set of radius ¢ of the closure of (UY)*, Let now a be the circular arc
which completes af, to an entire circumference. Denoting by S the domains
bounded by j, and a it can be shown that the’ boundary of the inner
parallel domain of radius ¢ of S coincides with that part of B,, which is
surrounded by 5, and a/. Using the letters 3,, a,, aj, for the notation of the
length of these curves we have

LY<p+2a,+20m
and
LY <3, +a, —2pa (»=2,3,... 4

By addition it follows

SL¥ =L, <L+ (A—1) 207 +2pa—2(i—1)pa=L+29m.

If the degree of over-convexity of Sis 0, then we prove (4b) first for S, which
is over-convex of degree at least e. As (S,),_. =S, (0 < e < g) we have

L, <L, +2(g— &) m.

Hence using (1), the inequality (4b) follows again.

6

These results can be generalized to domains of k-tuple connectivity.
We have in this case
Theorem II. If S is a k-tuply connected domain, then

L ,<L+2k—2)zm0 (o

-2

A\

r) (5a)
S L+2a0 (5b)

Hence it follows that e.g. for a ring-shaped domain L_, < L.

3 Periodica Polytechnica EL IIL/4.
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For a Ek-tuply connected domain can be completed by the addition of
k—1 simply connected domains, say S,, S;,..., S, to a simply connected
domain S;. The length of the boundaries B; of S; will be denoted by L.

Now S

_, consists of all those points which are simultaneously part of

(590 TS T TSI <

B/"Q = (Bl) -0 - (Bz)g S (Bk)g'

From this

Lo, < (L) ,~ (L), — ... = (L)y<s(Ly—270) ~(Ly=270) &+ ...~

i

The less informative inequality (5b) is derived essentiallv in the same way.

Both (5a) and (5b) are in a sense best possible inequalities. Let namely
S be a circular disk, out of swhich & — 1 circular disks of radius ¢ are cut out.
If p<Zethen L_, =L —-2(k—2)7g9 and if 0 >>¢ then L, =L +2a0p.

A corvollary of the inequality (4a) is the extension of the isoperimetric
inequality of Bonnesen to non-convex domains, namely that if 4 is the area
of a simply connected domain S, L the length of its periphery, r the radius
of the greatest inscribed circle, then

L —da 4 =2(L—2=ar)?
or

4 Lr—ar (6

This is special case of an inequality found by L. FeEjes Térm [2]. We
use an argument due to HADWIGER[7] according to which L _, <L —2x¢e
integrated in the interval 0 =7 ¢ =< r vields

or as the left hand side of this inequality is 4, we have (6).
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Summary

The following theorem and its generalizations are proved under conditions specified
in the foregoing paper.

Let S be a simply connected plane domain, L the length of its boundary, A its
area. C, and C_, are plane curves, not necessarily connected, lying outside and inside
respectively of S, consisting of the set of points the nearest distance of which from the
boundary points of S is o. If L, and L-, are the lengths of the curves C, and C.,
respectnel\ further A4, an. A-, are the areas included by Cn and C.,, then the mequal-
ities (3a). (ib), (4a), ({b) hold.
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