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1 

In the course of an investigation into the magnitude of the principal 
frequency i1 of a stretched membrane of area A and peIiphery L, it was found 
for a convex membrane that i1 can be appraised by the quantities A and L. 
To put it in more exact terms, if one seeks a solution of the partial differential 

equation 

Llu+i1 2 u=O 

u vanishing on the periphery of a convex plane domain D of area A, periphery 
L, the first principal frequency i1 satisfies the double inequality [8] 

1 L 

2 A 
1

_- L 
.1 <: \3-. 

A 

Apart from various applications of Courant's principle, not easily treat­
able in forms of concise inequalities, this double inequality is, as far as I know, 
the first simple two-sided - though admittedly not too sharp - existimation 
of the principal frequency of a membrane connecting it '\\ith geometrical data 
of the domain D. Moreover these data are the simplest geometrical quantities 
attached to a given plane domain. 

If one wants to get rid of the restriction of the convexity of the domain D, 
one can see by means of examples that the left-hand side of the above double 
inequality fails to hold [9]. Yet one -can show that 

for every membrane [9]. 
For showing this one has to prove an elementary geometrical property 

of plane figures, or more generally, plane point sets. Though this property 
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(Theorem I of this paper) can be expressed in quite simple terms and a partial 
analogy of it for convex domains was known to J. STEI:NER (and proved by 
quite elementary means) about a century ago, yet the demonstration of our 
theorem presented quite unexpected difficulties, mostly of topologiealnature. 

These difficulties were later overcome, or rather, got round in an ingen­
ious ,..-ay by B. SZOKEFALYI-N"AGY, who gave an independent proof of Theorem 

I, to be published in the Acta Seientiarum Mathematicarulll. His proof is 
self-contained, it doe::: 110t rely on other results. Yet it seems "worth 'while to 
present the following proof to sho'w how closely the topic;; of this paper are 
interrelated with other inYestigations, notably "with those of H. HADWIGER. 

2 

The outer parallel point set Sa of a closed plane point set S is defined 
as the union of all closed circular disks of radius Q whose centres are points 
of S. The inner parallel point set S _a (Q < r where r is the radius of the greatest 
circle which can be inscribed in S) is the closure of the set of the centres of all 
those closed circular disks of radius Q which lie entirely in the interior of S. 

The point sets S we shall deal with are all closed. 'Ve suppose throughout 
the whole paper for any point set to be met ,yith, that their area A and the 

length L of their boundarie::: B exist in l\Iinkowski'" sense [10 J. More precisely: 
if B' is a part of B, then the limits 1 

. area of B~ S . area of S) 
111n-- and hm 

,-. -- 0 

exist and have the 5amc finite yalue L', the length of the part B' of B. In 

particular 

L = lim 
A--_. __ .,- = lim -A 

E-· .. 0 E -. ~- 0 

\\ e ,"upp08e further that 

lim L-e = lim Le = L. (I) 
£-·-;-0 e-·-;-O 

1 The notations A. B. L will be used consistently in such a manner that e.g. AE means 
the area of the set Se. L'::Q the length of the boundary of the set S:"Q. (B~Q)G the boundary 
of (S.2 g)G etc. Further we will denote by Cs (T) a closed circular disk of radius s. centre T. 

Other notations are as follows. If 51. 52 are point sets and P a point, then 
51 . 52 is the set of all those points which belong either to SI or to 52 ; 
51 - S2 is the set of all those points of SI. which do not belong to S2: 
5 1 5 2 is the set of all those points which belong simultaneously to 51 and S2 (the common 

_part of 51 and 52): 
51 C S2 or S2:;:) 51 means that each point of 51 belongs to 52' too: 
PES l • P(:S2 means that the point P is an element of 51. but not of 52' 
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If S is a convex domain, then Steiner's eClualities hold: 

(2) 

In search of the extension of the validity of Steiner's equalities, H. 
HADVi'IGER [4, 5] defined the notions of under-convexity and over-convexity. 

A closed point set S is said to be under-convex of degree a if for any 0 < % < a 
and for every point T of the plane, SC" (T), the common part of Sand C" (T) 
is void or simply connected, yet if % > a one can find at least one point T 
for which this is not true. If S is conVEX, its degree of under-convexity is =. 
\\' e may extend the definition of under-convexity to a = 0 and say that the 
·domain S is under-convex of degree 0 if to every a > 0 one can find a % < a 
and a point T, so that SC" (T) consists of disconnected parts. (According to this, 
the degree of under-convexity of a non-convex polygonal domain is 0.) On 
the other hand S is said to be over-convex of degree ,9 if S*, the closure of the 
·complementary set S* of S, is under-convex of degree ,9. 

HADWIGER proved that if the simply connected closed domain S is under­
convex of degree a and over-convex of degree /3 then (2) holds for - ,9 < e < a. 

Another result of HADWIGER [4, 5] is, that if S is a simply connected 
(iomain, not containing infinity, then 

A + I]L (3a) 

and he calls it an inequality of Steiner's type. A similar formula follows from 
inyestigations of B. SZ.-NAGY [11] and G. BOL. [1]. They found that if S is 
a convex domain, then 

A-CL (3b) 

moreover L_Q L - 27[. Q. 

In the following we shall prove 
Theorem I: If S is any simply connected domain, not containing infinity 

((nd subjected to the conditions given above, then 

L_Q < L - 2 7[. I] (I] < r) (4a) and La < L + 27[. e (e > 0) (4b) 

from which (3a) and (3b) follow for any simply connected domain by an integra­
tion ,~ith respect to Q. ~ 

~ A relation substantially equivalent ,dth formula (-1b) - which has however no signi­
ficance ill the membrane problem mentioned in the introduction - was quite recently proved 
hy G. Fast [12]. 
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3 

Consider the open set S _ g of the centre s of all closed circular disks of 
radius e which lie in the interior of the simply connected plane domain S. 
Th ~ . f 1 d' d ~ 1 ~ 2 ~ " e set S -0 may consIst 0 severa Isconnecte parts S-o' S-o,"" S _n0 

The closure ~fS!.D ,\ill be denoted by S!.o and termed a comp~nent ~fthe inne'r 
parallel point set S'_Q of S.3 It is easy to se'e that any S~o is a simply connected 
domain. We prove the following , 

Lemma I : if S is under-convex of degree u, then any component S ~n of 
S _ 0 is under-convex of degree at least e + a. ' 

, Suppose there exists a circular disk Cg+o- e (0) such that S~g Cho-c (0) 
consists of at least two disconnected parts. Then there are at least two arcs· 

If 

Fig. 1 

on the periphery of Cg-'-o-e (0) which do not belong to S~g with the exception. 
of their end points. It will be shown that if S is finite then each of these arcs 
can be connected with infinity by a path not going through Cg +a _, (0) i.e. 
S ~ g is disconnected. 

For suppose the contrary. Let a be an arc of Co .: a - e (0) not belonging to 
S ~o excepted its end points M and N, from where ~Ile cannot attain infinity 
in the manner described above. 111 and N divide the periphery B ~Q of S ~Q in 
two parts band b' one of which, say b, has the property that the finite domain 
bounded by b, O]y! and ON does not contain interior points of S~Q' The half­
ray from 0, going through the middle point K of a should meet b at H. 

We define the domain /j as the domain bounded by b, and the straight 
line segments OM and ON, and state that B cannot have points in the interior 
of /j-/j Ca (0). For if Po were such a point, it could be connected "\\"ith infinity 
by a path Po having no common point with S, excepted Po. ,Ve distinguish 
two cases: 

3 Of course S~Q and Sig (i oft j) may have common boundary points. It can be shown, 
that the number IV of those points, which belong to at least two S~Q's is limited and a common 
upper limit of IV and n is A/(:r g2). 
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1. If a c (this includes the case a = 0) then 01'-'1 and ON are contained 
in Ce (.lVI) resp. Cg (N), hence no point of them is outside S and Po cannot reach 
infinity from Po' 

2. If a > c, let 1\-1' and N' he the points of intersection of OlvI with 
Cg (2H) resp. of ON with C

Q 
(N). Then Po has to intersect either 01\1' or ON' 

for }vI.il:f' and NN' are in S. So Po Ca (0), if it exists, is not void, its points do not 
belong to S, and it divides Ca (0) in at least two disconnected parts. One of 
these parts contains M' and the other N', as Po enters Ca (0) on a point of the 
arc whose central angle is .lVION and leaves it finally through a point not helong­
ing to this arc. The two points .Iv!' and N', hoth helonging to S, cannot he 
eonnected in the inside of Ca (0) hy a path lying entirely in Ca (0). Hence 
Cu (0) is a disk of radius a for which Sea (0) is disconnected, contrary to our 
a""umption. 

H 

Fig. :? 

Now we will seek a point PH of B the distance (lf which from H is e. 
'Ye will see that such a point does not exist at all, i.e. H does not exist. We 
<lefine the angular domain 01 as limited hy the infinite rays from 0, going 
through M, resp. lV and containing Kin its interior. PH cannot he in 02 = 

= 01 - 01 Ca (0). For supposing the contrary, it cannot he in 0-0 Ca (0) 
::' 0 at least one interior point of the straight line segment HP H contains 
.a point H' of S _i 0 which is impossible since H' PH < e. 

Neitber can PH he in the interior of CQ (lVI) or CQ (N). But 02 + CQ (M) + 
~- C

Q 
(N) contains the interior of the parallel point set of radius Q of the arc a. 

Hence PH K > Q. 

Finally let 03 he the half plane limited hy the straight line going through 
111 and N and containing K. PH Ej: 63 03 CQ-;-a_s (0) hence the angle HKPH 

is greater than n/2 and as PH K Q it follows that PH H > Q in contradiction 
with the definition of PH' 

If the simply connected domain S contains infinity, a similar analysis 
"hows that lemma I is true in this case too. 

Recalling the definition of over-convexity we can now enounce 
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Lemma 11. If S is over-conveCt: of degree p, then any connected componEllt 
S; of S is oyer-convex of degree at least I} + (3. 

'Ve proceed now to the proof of formula (4a) in the casc 'when S is under-· 

convex of degree a > O. One can eonstIuct a component of its internal parallel 
domain S_Q by taking a circular disk of radius Q lying entirely in Sand moy­
ing it continuously in every possible manner so that it remain always in the 
interior of S. (The moving disk must have no common points with B.) The part 
of the plane covered by the centre of the moving disk in its yarious position" 

s an open point set S ~ Q and its closure is the component S ~ Q of S -c' The closure 
of the area covered by the whole disk is (8~Q)Q' Clearly (S~])Q C (S_Q)Q cS. 

(Cfr. Hadwiger [3] p. 17.) 
The boundary (B;;')e of (S~Q)Q con5ists at least partly of points of B. 

If (B ~n)o has other points too, it can be shown that these consist of circular 

arcs a'l' a'z,"" a'tz and the length of none of these arcs is greater than;r Q.'* 

The parts of B not common 'with (B ~ Q) Q will be denoted by bl , b2, • • " b h 

so that bg and a'g have common end points. The length of bg is greater than 

that of ago For bg connecting two points of the peripher) of Cc (Og), is outside 
of Ce (Og), so it is longer than the shorter arc of CQ (Og) connecting these same 

points. 
It may happen that SQ does not have other points than those of S\_ 

Then using our lemma and Hadwiger's theorem on under-convex point set;;, 
we conclude that 

L 2Q:;r; 

and have shown the incquality (4a) in the case when S_Q consists of one com­

ponent only. 
If, on the other hand, S _ Q has other points too than those of S~ e' let Pz 

be one of them. Connect the point Pz with (B~Q)Q by a curve lying in Sand 
outside of (S~Q)Q' The connecting eurye ends in a point of the circular arc, 

4 For let Ag be a point of (B~Q)Q not belonging to B and let Og E S~Q be the centre of 
that circle of radius Q whose periphery contains A g. Co (Og) has to contain at least two boundary 
points of B, otherwise one could find in any neighbourhood of Og a point 0'.£ E S _Q such that 
Cg (O'g) would contain Ag in its interior. Let Pg E B, Qg E B be two points of Cq (O~), such that -- --the open arcs PgAg, resp. QgAg do not contain points of B. Then these arcs certainly belong 
to (S~{)o and the combined length of them cannot be greater than :r Q. For, supposing the - - ...-... ....-.. 
contrary, either the arc PgAg or the arc QgAg is less than :r Q and one could find in any neigh­
bourhood of Og a point 0" g lying on the periphery of Cg (Pg) or of CQ (Qg), snch that Ag E C (O"g) 
C (S~Q)Q' On the other hand Og is perfectly determined as the nearest point of S~Q to the chord --PgQg and it follows hence that 110 point of the arc a' g= PgAgQg can be an interior point of .s~Q' 
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say a'l whose end points are PI and Q1' Then place a disk of radius Q on Pz 
and move it again in every possible manner, so that it should never have com­
mon points ,dth B. 'Ve again get an open point set, :::ay S=-Q which has no 
common point with S~". Its closure is another component S=-n of S-n. Repeat 
this procedure until all "components S=-n, S~ n" .. , S" n of S _; and tl~eir outer 
parallel domains (S=-Q)2"'" (S'~Q)Q are" foun~1. " " 

We will use an induction for the proof of (-la) 'I"hich was 5hown to he 
valid for n=l. 'Ve draw the chord PlQ1 connecting the end points of the arc 

a'l' As PI Q1 2 Q no point of this chord lies in the interior of S-o' PI Q1 
divides the interior of S in two parts I' and IfI both of which contain at lea5t 
one, and so at most n-l components of S _g' The parts of the boundary B 
belonging to I' resp. };" will be denoted by B' re5p. B fI , their lengths by L' 
resp. LfI. 

Fig. 3 

Note that by virtue of our construction that part of S _ Q which lies in 
It is entirely determined by B' and the remaining part of S _Q depends solely 
on the shape of BfI. Hence we have a considerable liberty in deforming the 

curve BfI (B') into a new position B~ (Bb) so that the domain I~ (I~) 

bordered by B' and B~ (by BfI and Bb) is such that (Ib) _g It S _g Ir 
[( )"') )''' - S )'If ] -0 -0 -..I - _0 -- • 

"~ll that is ~\"anted of B{ is that it should not have common points 
with the interior of the disk Cc (01), If this condition is fulfilled then there 
does not exist such a point P' E E' for which Cr/P') B' 0 and Cn (P') B; O. 

If we denote by a~ that arc of the peril;hery of Cc (01) which completes 
a; to the whole circumference, then we may choose B~ to be the arc a~. 

Again there is no point P" of E" for which C
Q 

(P") has no common point with 
B If

, but has a common point with a;. 
So we conclude 

Let us now denote the total length of the boundaries of I' S _ Q and 

I" S_g by L'--Q and L"_Q' As It S_g and E" S-e contain less than n compo-
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ncnts, we may use our inductive assumption and write 

L' L" <- B'- 2 e;t + B" 2 Il ;t + 2 (! ;T. 

This is formula (4a) 'with the proviso that 5 is under-convex of degree a > O. 
If the degree of under-convexity of 5 is 0, then according to our lemma 

S. is under-convex of degree at least SE and as S -e = (S -E) _ (e-E) (0 < c < e) 
(efr. Had\\'-iger [3] p. 17) we can state that L_ e L_ c 2 (e - c) n. 

Using the formula (1) we have again (4a). 

5 

For proving the inequality (4b) we suppose at first that the simply 
connected closed domain 5 is over-convex of degree fJ and we construct its 
outer parallel domain Se hy taking all closed circular disks of radius e which 

Fig . .f. 

do not contain points of S. The complementary set of the union Ue of the 
centres of all these disks is Se' 

First take a disk sufficiently far from 5, and move it continuously in 
every possible manner so that it should have no common points with S. 
Then a simple connected part U! of Ue is constructed which extends to infinity. 
The boundary BQ Q of the closure of (U!)Q partly consists of points of Band 
it may happen that Be Q contains other points too; it can be shown that these 
lie on circular arcs a;, a;, ... , a;. of radius e the central angle of which is 
at most n. Let (3" be that connected part of B, which does not belong to BQ,Q 
and has common end points ,~ith a:.. The remaining part of B will be denoted 
hy (31' Ohviously, /3;. is not shorter than al. hcnce the length Le Q of Be.Q is 
not greater than L. 
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If U~ = U
Q 

we argue that the boundary BQ of SQ is the same as the bound­
ary of UQ and La Q is the length of the boundary of the closure of (U*) _Q" 

Hence 

and formula (4b) is proved if SQ is a simply connected domain" 
If BD' the boundary of Sa consists of several disconnected parts, then one 

of these, ~ay B! is the same ~s the boundary of U! and the others lie in the 
domains bounded by p" and a~" 

Deforming B in such a 'way that each p" is replaced by a", and terming 
S(l) that point set, the boundary of which is the deformed boundary B, one 
sees that S(l) is the complementary domain of U! and so S(l) is the inner parallel 
point set of radius Q of the closure of (Ul) *. Let now a~ be the circular arc 
'which completes a~ to an entire circumference. Denoting by S(") the domains 
bounded by p" and a~ it can be shown that the' boundary of the inner 
parallel domain of radius Q of S(%) coincides with that part of Be' which is 
surrounded by /J" and a~" Using the letters p", a~, a~ for the notation of the 
length of these curves wc have 

and 
(% = 2, 3, .. " ).) 

Bv addition it follows 

.E L(") = La:S: L + (i. 
% ... 

1) . 2 Q:r -;- 2 Q:Z: - 2 (J. - I)Q :z: = L 2 Q:Z:. 

If the degree of over-convexity of S is 0, then we prove (4b) first for Se which 
is over-convex of degree at least E. As (S.)Q E = SQ (0 < E < Q) 'we have 

2(Q-E):Z:. 

Hence using (1), the inequality (4b) follows again. 

6 

These results can be generalized to domains of k-tuple cOllnectivity. 
,"re have in this case 

Theorem I I. IfS is a k-tupl)" connected domain, then 

(Q ;:; r) 

Hence it follows that e.g. for a ring-shaped domain L _ Q L. 

3 Periodica Polytechnica El. IlL!.I. 

(5a) 

(5b) 
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For a k-tuply connected domain can be completed by the addition of 

k - 1 simply connected domains, say 52' 53" .. , 5 k to a simply connected 
domain 51' The length of the boundaries Bi of 5 i will be denoted by L i. 

l' OW 5 _ Q consists of all those points which arc simultaneously part of 

(51) _g, [(52)Q]*"'" [(5k )g]* so 

From thi:3 

2:-r q) ., 

2 (k 2) :-r q. 

The le:-s informativ-e inequality (5b) is deriv-ed essentially in the same way_ 
Both (5a) and (5b) are in a sense bcst pO;:;:-5ible inequalities. Let namely 

5 be a circular disk, out of which k - 1 circular disks of radius c are cut out. 

If q <: (' then L _ Q = L 2 (It 2) :-r q and if q > F thrn Le = L -i- 2 :-r f}. 

A corollary of thc inequality (4a) is the extem,ion of the isoperimetric: 
inequalit.,. of Bonnesen to 110n-C0I1v-ex domains, namely that if A is the area 
of a ~imply connected domain 5, L the lcngth of its periphery, r the radiuE 
of the greatef't inscribed circle, then 

U-4:-rA (L 
or 

A:: L r (6) 

This is special case of an inequality found by L. FEJES TOTH [2]. We 
usc an argument due to HADvYIGER [7] according to which L _Q L - 2 :-r Q 

integrated in the interv-al 0 :'~ Q r yields 

r 

r (L - 2 ;r Q) dq 
ii 

or as the l('ft hand side of this inequality is A, ·we have (6). 
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Summary 

The following theorem and its generalizations are proved under conditions specified 
in the foregoing paper. 

Let 5 he a simply connected plane domain, L the length of its boundary, A its 
area. Ca and C_ Q are plane curves, not necessarily connected, I) ing outside and inside 
respectively of 5, consisting of the set of points the nearest distance of which from the 
houndary points of 5 is Q. If LQ and L-a are the lengths of the curves CQ and C_Q 
respectively, further A Q an. A-g are the areas included by CQ and C_g, then the inequal­
ities (3a), (2b), (4a), (4b) hold. 
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