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1. §. Introduction 

The so-called Runge-Kutta-Nystrom method is ycry often applied 

to the numerical evaluation of the initial value problems of ordinary differential 
equations, particularly in the initial interval (s. [1], [2]). 

The equation, or system of two or more equations, is usuallv reduced 

to the form 

resp. 

y(ll) =f(x' )" ),1. • ,\.(1l-1»). 
0/ ~ ~ '; ,.. • , ./ ' 

d -a y;=f(x; )'1; )'2; .. ")11)' i=1,2, ... 11 
·x 

The evaluation of the function values f resp. f; is a quite laborious and 
burdensome problem even 'when employing any of the most practical numerical 
method, by making use of modern electronic calculators. The question is 
important from that point of view 'whether the Runge-Kutta-Nystrolll 
method (further R. C. N.) can be improved by decreasing the number of the 
pivotal points at 'which the function values f resp. fi are to be evaluated even 
at the price of increasing the number of elementary operations. This means 
that we intend to increase the degree of the R. C. N. method (oyer four), 
"'ithout increasing the number of the pivotal points at which the function 
values are to be eyalUated.* But it can't be carried out without making 
modification in the procedure, because - as will be seen - increasing the 
degree of the unmodified R. C. N. method, immediately by leaps and bounds 
increases the number of the pivotal poinst at which the function values are 

to be evaluated. As an illustration: employing the unmodified R. C. N. 
method of fifth, sixth, seventh resp. eighth degree, we have to eyalnate 
the function values at six, eight, eleven resp. fifteen points by each step, 

* The degree of a procedure means the number of the terms equal in the Taylor e~pan­
sion of the e~act and of the appro~imative solution. 
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for first-order di.fferential equatioll. }Ioreoyer, by increaEing the degree, 
the parameter yalues of the procedure can oniv he computed with more 
and more difficultie:;:. * 

In the following, a modification of the original method is presented, 
partly to increase the degree almost as speedily as the number of the piyotal 
value:;: increase, partly for the easier evaluation of the parameters. The funda­
mental idea for this modification is to make use of the partial derivatiyes 

of the function,s) !(!i) with respect to the numerical approach in the dependent 
variahles. 

In the first part of this work the modification will be presented - restrict­
ed to first-order equations - further it will be shown that the degree, both 
of the unmodified and of the modified R. C. N. method, at least theoretically, 
can be indefinitely increased. In the second part, the aboye-mentioned proce­
dure 'will be generalized for the case of higher-order equations, finally the third 
part deals with the algoritmes, by means of which the parameters can, at lea;;t 

partly, be computed. 

2. §. The Taylor series of the exact solution 

21. Symbols; reductions; of the operator D. It may be assumed that 
the equation is given by the form 

y' = f(x,y) (21.1) 

because the equation can surely be reduced to the aboye-mentioned form, 
in the surroundings of the points at which the approximate yalues of the 
solution are to be eyaluated. }breover, it will be assumed that f(x, y) and 
its derivatiyes of a sufficient high order with respect to both yariables are 

continuous in the surroundings of the point (xo' Yo) for in the surroundings 
of singular points numerical methods are not used. 

It is conyenient to express the higher-order derivatiyes of the solu­

tion of the equation (21.1) by means of the operator 

o 0 
-:- f--: f=f(x, y) 

ox oJ· 
(21.2) 

as suggested by HEUl', further denoting it by D, if there is no misunderstanding 

to be feared. Let us suppose that the function 

u=u(x,y) (21.3) 

* In the third part of this work, algoritmes will be shown as how to determine the 
p:Hamet~rs of the unmodified and modified R. C. ~. method. 
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is differentiable in STOLZ'S sense, in the domain T inyolying the point (xo, )"0)' 
ifjis continuous in T. In this case u is differentiable along the solving-cun-e* 

of the equation (21.1) supposing that (xo' Yo) is a point of the curve, as follows 

d 
u (x, y) 

dx y~y(x) 

It can easily be seen that 

8u 1 ,8u 
-i.Y-
8x 8y 

8ll 

8x 
,.8u D D 

i = fll= U 
J 8y 

1 ° D is a linear operator, namely 

D (u v) = Du + Dv 

2° D is of diffeTential-operator type, applied to products 

D (uu) = VDll + uDu 

It is conyenient to define the powers of D for m a 11 y by 

(n = 1,2,3, ... ) 

(21.4) 

(21.5) 

(21.6) 

(21.7) 

because by means of these the iterated vah1.es for D, and the higher-order 

derivatives of u with respect to y can be obtained in a very simple manner. 
It is easy to verify, that 

(see e. g. [3]). 

8 
D (D") = DIl 1 + nDj DIl-l 

8y 
(21.8) 

22. The Taylor series expansion. The deriyatiyes of the solution of the 

equation (21.1), and its Taylor expansion can also be written by mean,. of 

the operator D (supposing that j(x, y) and its deri..-ath-es of sufficient high­
order are continuous at the specified point) is as follows 

d 
-)"=j 

dx 

d2 
--v = DI' 
d ') . J x-

(22.1) 

(22.2) 

* As lis continuous in T. there exists at least onc solving curve through any point of 
T: if more exist through each point. the formula (21,4) is valid along each of them. 
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d3 

dx3 .Y = D2f + fyDf (22.3) 

d
4 

. _ D3f i I D2f ' f2 DII' , 3 DII' DII' -) - ,. v ,. y J" Jv J 
d 4 . • . 

X 
(22.4) 

d
5
, .y = D4 f + fy D3 f + n D2 f + 4 D f\· D2 f + D Df + dxo .. . . 

+ 7 fy Dfy Df + 6 D2f· Df + 3f,}' (DJ)2 (22,5) 

d
6 

.y = D5 f + fy D4 J + n D3 f + 5 DJy D3J -[-D D2 f 9 I.v DJ.y D2 f + dx6 • • • • 

+ 10D3fy D2f + 10Ivy D2fDf ~ f~,Df -[- 12nDI\ DJ + 

+ 16 f' D2 Iv DJ -[- 13 f Jyy (DfF + 15 (DJY DJ 

-[- 10 D3 fv Df + 15 DJ"y (Df)2 (22.6) 
di • -

- v = D6f.J.... j D5 f.J.... J2 D4f.J.... 6 Dj D-!f.J.... f3 D3f.J.... dx7 ./ i)' I Y I Y I Y i 

+ llf,DIv D3 f+ 15D2fy D3J -+- 15I"yD3JDf + n D2f-;­

-[- 15n DJy D2f + 25J" D2f, D2f -[- 45 fIn ,D2fDf + 

+ 24 (Df,)2D2f -[- 20 D3f"D2f + 60 Df.yD2J Df 

+ IOf"y(D2f)2+nDf 18nDf.Df 31nD2fyDf+ 

-[- 38 nf,y (Df)2 + 57 fy (DIY Df 30Iy D3 fy Df + 

+ 75f,Dfyy(Df)2 15D4fv Df+ 81D2f,Dfy Df+ 

63 h,)' DJy (DfP -;- 45 D2 hy (Df)2 -;- 15 f,,,O' (DfP : (22.7) 

• • • • • • • • • 
d" 

In the theorem which follows, the deriYatiYes Y (x) are giYen. 
dx" " 

22.1. Theorem. In the expansion of the higher-order dcriYatiYes of y 
1 C eyery term can only contain factors taking the following form 

O• , o (22.8) 

specially 

(22.9) 

(22.10) 
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(there only exist terms of this type according to 1°, and KM -:::j.::. 0; NI = 
P 

= 1,2, ... , q); (the arrengement is natural that is II lm::):. 0) there is 
m=1 

a relation between the "expont'nts" km' KM, and the "ordial numbers" lm 

P 
q = 1 + FIlm - P (22.11) 

III = 1 

from which immediately follows that 

3° Whenever the term (22.10) occurs in the expansion of ,,(n 1) there 

i" another relation hetween the exponents and the ordial numbers 

P P q 
Y km + >~ lm + 2~ K,\! = Tl (n = 1, 2, ... ) 

,;:\ ;;':1 M=1 
(22.13) 

4° In the expansion of y(n. 1) are those, and only those terms which 

suit the ahove-prescrihed requirements of 1°-3°. 
These propositions can be proved by means of the mathematical induc­

tion. Let us suppose that the propositions 1°-40 are valid until n = N, 
namelv 

(22.14,) 

and 

2'. q, I-Pi 1) : 

Pi 

3', 2' (k~:,l + l;r\!) 
M=1 

4° The sum (22.14) contains all the terms ·which suit the above require­
ments of P_3° prescihcd. y(n

7
1) can easily he expressed by means of D, 

using the relations (21.5)-(21.8). Hence it can be immcdiately seen that 1° 
is valid again. In order to prove 2°, let us consider all the terms derived from 

(i) 
Pi k(i) aim f qi KW 

lID III --. IJD Mf 
a l(l) 

111=1 Y m M=1 

Wheneyer D is applied to one of the factors of the first group - e. g. to the 
s-th one - it takes the follo"wing form 

7 Peri()di(~a Polytf'('hnicn El II;:!. 
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2° is evidently valid for the first term of the relation (22.15), because qi' Pi 
and 1:1~~) are unchanged; similarly, valid also to the second term, because 
Pi is unchanged while hoth qi and 1: 19) increase - after regrouping - with 

the unit. 
When D is applied to the S-th factor of the ;;,econd grl)up, it takes the 

following form 

(22.16) 

Hcre 2° beccmes valid again, because: in the first term Pi, qi and 1: l~) are 
unchanged; in the second term qi is unchanged, while both Pi and 1: l~~) in­
crease 'with the unit. By reawn of the relations (22.15) and (22.16) it can 
be seen that qi cannot bc decreased, and so qi remains ~ 1. The sum 
1: (k~! + l~~») + 1: J(~l increaEcs in each of its terms with the unit, and so 3° 
remain s valid in cvery term of yN ~ 1. 

The validity of 4 ° can be proved as follows: every term of y"" - \ which 
has the form (22.10) and is in accordance to the properties 1°-3°, can hc 
derived from one of the term of y(N) by means of the operation D. 

Let the product then 

(22.17) 

one of the terms of the Taylor expansion for y(N; 1), that is 

0; l~ > 0; J(~!Jr > 1 ; 
Pi 

') 0 • 1 I ,",' l'i). - qi = - Pi '-":" m' 
m=1 

Pi qi 
_

~ (k'il ...L Id»)...L 'Y K'i) _ ~T m t m I.",.." A1 -..I.." • (22.18) 
",=1 M=1 
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Let us moreover suppose that there is at least one factor - e. g. the 
S-th one - among the factors of the second group in (22.17), by which 

In this case, for instance, (22.17) is derived from the term 

p' I'i) I S-1 

11' k<i) a m f IT Dm_'_'
l '[) 

m=1 aylm M=1 

(22.19) 

('l'l. 'lO) "'_.i-I 

of the Taylor expansion for y(N) by means of the operation D. One ruust 
only realize that iN) has a term such as (22.20). If this term satisfies the 
properties of 1 °_3°, y(N) will surely have such a term, but, according to the 

conditions, even if the requirement 4° is statisfactory, supposing that Tt = N. 
It is easy to see that 1° is satisfactory; 2° is realized for qi, Pi and .2..' l~,~) arc 
unchanged in comparisoIl to (22:17); 3° is also valid, because .I: l~~) and .I: k~~ 
rcmain unchanged, .I: K~ decreased 'with the unit, but the right-hand member 
of 3') must also be decreased with tllP unit, being (22.20) a term of J.{N). 

If it is impossible to find such an S, which satisfies (22.19), namely S 
has the form 

(22.17*) 

then - by reason of (22.18) -- Pi > 0, supposing that n > 3. Now let us 
suppose that among the factors of the first group there exists one - e. g. 
s-th one - by which 

1 (22.21) 

In thi~ ea~e, for instance, (22.17*) can be derived from the term 

I'i, ( 5-1 . / I'i) 
"li'_1 a 5 f' p, k1i) a mf ( 

D 5 -.- ·I fl · II, ID m "-.- (Dt)h 
z([! /([) J 

ayS m=1 m=5-;-1 aym 
(22.22) 

of y<N) by means of the operation D. This proves that y<N) has a term foniled 

like (22.22) and is the same as above: 1° is evidently satisfied; 2° is realized, 
because qi, Pi and .I: l~~) are unchanged in (22.22); 3° is also valid, for .I: KA-l 

and .I: lij! are unchanged and E k~ is decreased with the unit, in comparison 
to (22.17*), for it is necessarily one of the terms talked ahout with the unit 
lower-order derivative. 

7* 
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If, finally, onc can't find any s ,vhieh satisfies (22.21), that l~ (22.17) 
takes the form 

{ri) 
Pi a mf II --[,h . (Df)lf; (22.17**) 

m=1 ay m 

then this latter product can, for instance, he deriyated from the term 

[ri) 1 {'i) a 1 - J Pi a mf 
D ----.-" [J --. . (D+)q; 1 

/'1l_1 ., [w J ay1 m=_ aym 
(99 93) ............. 

of y(.Y) hy means of the operation D (as the second term) y(.\') really contains 

the product (22.23), because it satisfies the properties 1 o_3~, 1 ~ is satisfied; 

the equality is again, valid, because both qi and L l~) are decreasf'd with the 
unit in comparison to (22.17*); 3 0 is valid too, for qi = L k~) is decreased, 
L k~) = 1 is incrcased and L l~) is decreased with thc unit, so their sum is 
decreased with the unit. 

The theorem is proved, because its propo~itiom are evidently valid 
N = 2, 3, ... , 7, by reason of (22.1)-(22.7) 

3. §. Numerical solution by Taylor series 

31. Formal evaluation. Let us again, suppo~e that the function f(;>.;, y) 
and its derivatives of sufficient high order, with respect to both variahles, 
are continuous in the domain T involving the point (.1'0' Yo) and the point 

[xu + a: .1'0 + uj(xo' Yo) + 13] too. 
31.1. Lemma. The above-mentioned condition require:- that the Tay-

101' expansion of the expression 

srf 

ay'. Xo + u.; Yo + u.f(;>.;o, )'0) + rJ 

can be giyen ill the form 

erf 1 arf I' ar 1f 
_.- T aD --- T P ----
af a yr a f 1 

ar 2f I I 1.}.) 

Tlr -- o' T 
af ~.I 

(31.1 ) 

(31.2) 
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where the functions are to be taken at the point (xo' Yo) and the remainder 

is Iz n +1 • 

Proof: The proposition can be easily verified by rearrangement. The 
8 

expansion only contains the operations D and - because the coeffieient of 
8y 

f in the increment of y equals the increment of x. 
The n-th term in the Taylor-series of the expression (31.1) has the form 

(31.3 ) 

,:,uhstituting ;;; for (t - r) 

v=t -", (31.4 ) 
So Gn takes the form 

(31.5) 

In the following the double sequence of sums are inverted. Substituting 
s for t by the relations as follo'ws 

t-;;; s; t s+;;; (:31.6) 
So 

1 fl (n)' /1-,- o)~ /1~~ ---" (( -p --' 
1- ...... 

11; :=0 ,z 5---0 (31.7) 

Now only that is to be considered that on one hand 

Il! is_±'z)~. 
s! z! ____ l __ l _-_z_!. _. _____ = In -s Z) 

s!(n-z-s)! 
z! (n - z)! 

(31.8) 
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and further, on the other hand 

af Z (Tl-Z) 
_______ . ___ = D"-z 
a x(Tl-Z)-5 • a yf af Z 

by reason of the powers of D. Taking (31.8) and (31.9) into consideration, in 

(31.7) our proposition which had to be proved turns out to be right. 
32. The terms of the expansion. In the following it will be shown that 

the power series of the numerical solution contains only terms, and in certain 
degrees all terms, that also occur in the power series of the exact solution -
whether the unmodified or the modified R. C. N. method is used. 

For characterising the steps, we intend to introduce the so-called ster­
distance, - indicating it by It - which serves the independent variable resp. 

its increment. So the series of the exact solution for the equation (21.1) takes 
the form 

J y = v (x _L h) - Y (x ) ./ ..-' 0 I ./ 0 

h~ ha 
hf _L, DI' -- (D2j' -,'- !\. Dj') , 2! J I 3! _ J -r 

-;- (32.1) 

where tht· general term is denoted in accordance with part 22. and RTl . 1 = 
O(hTl 1).';: 

Let 

le = hI(xo -1- a: )"0 -;- af -;- rJ) (32.2) 

alld Id us dt'llotp with tJ allY linear combination of the term;; at It'as! of ;;('co\ul 

order in h, whieh occurs in the expaIl~ion of J y : 

(32.3) 

and with al a similar linear combination, but only those coefficicnts of its 
terms can vanish, that contain the factor DJ, finally let a the ratio of a 1 and 

hDf. 

* Herc and in the following let u~ suppose that j(x, y) allll its deriyativcs of sufficicnt 
highordcr,with respect to both variable:;, are continuous in the surrounding of the point (xo,Yo). 
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+ 

(32.4) 

where I* onlv extends to the terms of ",(rt) that have contained Df, and the 
second factor:group is indexed, so that ~K~i) = 1. 

32.1. Lemma. The Taylor expansion of the increment k (32.2) ahout h, 
only contains terms that occur in the expansion of the exact solution too. 

Proof: We shall apply the lemma 31.1, suhstituting the expressions 
(32.4) resp. (32.3) for a resp. p, if specially r = 0. Let us consider e. g. the 
terms formed 

coming from the reduction of the expression 

8S! + Iv DJ) + ... ]S . Drt-S --- . 
. 8y' 

(32.S) 

(32.6) 

'Ve have to sho'w that the propositions 1°-30 of the theorem 22.1 only hold 
for the terms ahove mentioned. It is trivial that these terms may contain 

8 l f 
only factors formed Dk -8-1 ; similarly the condition k > 0, I > ° is valid. 

y 
too. The condition k + I > 1 is also trivial, he cause it holds for all factor of 

8sf 
a and p, and if n ::2: 1 for Drt-s - too. 2° is also valid. According to 

8 y$ 
(32.3) the equality 

q,; = ] + ~',;lm - pp (32.7) 
T1l 

holds for any term of ri. According to (32.4) the equality 

(32.8) 

holds for any term of a. (Divided hy DJ). 
So the equalities 

8 qfi = S + ~' I I I", - P I I (8 1) (32.9) 
m 
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hold for any term of the second factor (coming from tlw rai"ing tof 5-th to 
power). 

On the other hand the equation 

qI = ~'rlm - PI . (32.10) 
m 

holds for any expanded term of the first factor. For any term of their product 
holds 

f ~, if s=o _rim - pr, 
m 

(32.11) qr = l I ~'I if 5>0 5 T .... r m - Pr' 
m 

F · 11 1 f Dn-s 8
5 

f . . I I < Ina v. t le actor --~-lncreases q WIt 1 t le . . 8 yS unit compared with qr if 

s 0, E Im and P remain unchanged, thus really 

q = 1 + ~' lm - p. 
m 

If 5 > 0, q remains unchanged, that is equal to qr hut Elm = Er Im + 5 and 

P = Pr + 1, and so again 

q = S ..l.. V I - s - (p - 1) 1_117 1 + ::.' lm - P . 
m m 

The validity of 3° can he shown in the f'ame ,,,ay; for any term of {3 
con taining hi! 

~'il ](,\1 = b - 1 
Al 

thus for any term of {3' containing hS/J 

~, (1 I k ) I V T ... - - I _ I I m T m T _ If .l," .\1 -- SI - S • 
m lv! 

Likewise for any tcrm of (1 containing ha 

::"a (km a-I, 
m 

h f f n-l .. /(n-s)a t us or any term 0 a contallung ~ 

~'(k I I )...L ~, 'y .... I ~m T m I _ f \.M (n - s) a - (11 - s) 
m /1'1 

(32.12) 

(32.13) 

(32.15) 
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and so, for any term of an -s p' containing hSb ... (n -5)a 

,",Sf 
The result of the multiplication hy Dfl-S _0 __ i~ 8 yS .. 

v (k _, 'm lm) = .:::: (km 
m m 

if s = 0 

s 

Y' T/- ",,' T,r ~. (k 'l)' _ r 1\..\[ == _ .1\...:\[ ; .-:: r 'm i rn - 7l 
m m m 

if s> 0 

Y' (k 'l) . -=- m:m~ 
m 

and so for any term of (32.6) containing the factor hS
"- (ns)a·,l 

". (k _ m 

m 
J:." 1(:\1 = n 
iVI 

sb - s + (1l - s) a - (1l - s) = sb 

This completes the proof for the theorem. 
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(32.16) 

(32.17) 

(32.18) 

(n - s) a . 

(32.19) 

32.2. Lemma is more difficult to yerify : The n-th partial sum of the 
Tay-Ior expansion of (32.2) contains every term which occurs in its exact 
increment, if a&l) 0 in the expansion of a (32.4) and b ~") 0 in the expan5ion 
of f3 (32.3), wpposing that k < 71 - 1.* 

Proof: The proposition ,,-ill he yerified hased upon the lemma 31.1 
using the formulas (32.4) and (32.3) and the conditions of the coefficients 
related to these formulas. Let us now consider an optional term in the expan-
sion of Lly, if s n 

(32.20) 

·where then 

Pt 
2° . qi = 1 ::: £;;,' - Pi; qi > 1 : 

m=l 

(32.21) 

* That i;, if every term really ')ccur" in the expansion of (J till the (n - l)-th power 
of h inclusive. 
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In the follo'villg it will be verified that the Taylor-expansion of k has also 
terms formed like (32.20) in case of s < n; e. g. such a term is to be found 
re grouped in the term of the form 

.. t G 
1 l'k~) + l<t) k'i) (3I'i) k li ) 81 f lz ·a 1 )ID1-__ . 

(k(i' ...L Z,i» I l'il 8 I'" 
1 ) l' 1 )"1 

(32.23) 

by proceeding in ascendin g integral powers of lz. 
Namely let us consider the term a~l)h from the series (32.4) of a. We shall 

verify that the other factors of (32.20) are cliviclable into lii) groups that occur 
in the expansion of (3 (32.3) (e. g. in the special case when lii) = 0 the first 
factor group of (32.20) becomes identically equal to the unit). First we have 
to see that in (32.20) there exists at the most 11(i) factors, eH'n apart from the 

I'il 
,.Iil 81 f 

factor Dr'l ---. namely also 
I'll 

8)"1 

(32.20*) 

can be divided into Zp factor groups. But it can be immediately seen that the 
second factor group alone has at the most lii) factors as qi > Z~) by reason of 
the condition 2° in (32.21). A possibility for tllf' division will he shown as 
follows, depending on the cases 

a) Pi - 1 < Z~) resp. b) Pi - 1 >l~i'. 

In case a) we connect to each factor a~ many factors of the second factor 
group (and from h) as would comply with the requirements 1°_30 of thr­
theorem 21.1 - so the expamion of J .y and the expansion of (3 will contain 

a so formed term, if the exponent h is not higher than (n -1). Then we com­
plete each of these from one among the factors of the second group to lii) 
factors - so that these factors will also comply with the rcquirements 1 °_3 0 

of 21.1 and will occur in the expansion of (3. 'Ve have only to show that all 
the factors of (32.20*) are only once used, moreover the sum of the exponents 
of It is equal to the exponent in (32.20*). It is easy to show, as bv reason of 
the requirement 2° we have to exactly connect 

1 + l~; - 1 = Z;;; 
I(i) 

k'il 8 m f 
factors from the second factor group to D m ---. tbus 

[Il! 
8'y m 

(32.24) 

(32.25) 
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factors to the (Pi - 1) groups in all, and so we still have 

~, l(i) = 1 
qi-"':" m 

rn=2 
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(32.26) 

factors from the second factor group, just as many groups as we have to 
construct. 

The exponent in the group 

(the required exponent of h by reason of 3°) 

j'+l~ 
.2 KXJ-1 (32.27) 

A1=i'-"-1 

and so the sum of the exponents 

Pi 

~ (kii,' 
~ (. 

""" (kU' ...L lU))...L ~ K _ ') j!i) _ k!i)-..;;;;;. m I m i ..;;;;. .H .... 1 1 -
m=2 m=! Af=! 

l~)) (32.28) 

is equal to the exponent in (32.20*). 
In case b) the procedure is similar, but here exactly one factor will be 

attached to every group but Pi-l~i) to the last group of the first factor group 
and so many factors from the second that every group would comply 'with the 
requirements 1°-2°. Similarly as in case a) one can see that (32.20*) can be 
divided exactly into l~) groups, which comply with the requirements P_3° 
of the theorem 21.1 and which occur in L1 y; one can immediately see that 
every exponent of h in every group in (32.20*) can not be higher than (n - 1), 
if s < n. thus these terms occur in f3 and their prodnct (32.20*) occurs in 

f31ii). This completes the proof of our theorem - also considering (32.23). 
The lemma which follows can be similarly verified, where a and fJ have 

the same significance as in (32.4) and (32.3). 
32.3. Lemma. Let us consider the power series of 

k( r) - I se f [x ...L a' , ...L f...L fJJ . (r - 1 ') ) .' - l '0 I , ) 0 I a I j, -, -, ••• 

8f 
(32.29) 
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about h. In this case the expressions formed 

(s = 1,2, ... ; r = 1,2, ... ) (32.30) 

haye an expansion fJ type, and the expression formed 

(s = 1,2, ... ; r 1,2, ... ) (32.31) 

naye an expansion a type. 

4. §. On the improvement of the R. C. N. method 

In the folIo"wing it will be verified that hoth the unmodified and the 
modified R. C. N. method can be improved by optionally increasing the degree. 
The scheme of the unmodified Runge-Kutta-NY5trom method is - u5ing 
the greatest parameter number - as follows 

k1 = hf(xo ; )'0) 

k2 = hf[xo + cill h; )'0 + ci1l kd 

(11) (k k )] Cll ",,-1 - 1 , 

. lI(n I) 
V;'here ,\-e evaluate the constants c;k); Ci: in all 11 - --'----'-

2 

(4.1) 

(4.2) 

3) 
--'--'_ .. 

2 
so, that the expansion of the k appro)cimate "steps" correspond with the expaIl-
5ion of Lt )' till the highe5t degree inclusiye as far as possible. According to tll(' 
lpmmas 32.1-32.2, it is to be noted that k contains all terms which occur in 
the n-th partial sum of the expanE'ion of Lt y. nevertheless in case n > 4 

the maximum parameter 
11 
--'-------'-- is not sufficient to make the equality of the 

2 
(Coefficients sure in all such terms of the approximate and exact solution. 

The maximum parameter number can be speedily increased by reason 
Bf the lemma 32.3, so that "we include the eyaluation of the kiT) values in the 
unmodified R. C. N. scheme, as follows e. g.: 
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= hf[xo + C~2) h + d~2) kill h + d'l' kip" h + 
+ d~2) kl k'l) + dl31 kl k lvo + . . . ] 

k3 = h f[ Xo + ci3) h + d'l) kill h + d~31 kill" h + ... ;- )'0 
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-L D"3l kill (k - k) , 
I 1 1 2 1'" 

I D (3) kill" (1. k)' J T 2 1 h2 - 1 T ... 

ci 1) h + d~ -lJ kill h + ... 
+ ... ; \ . -L -'- els -11 k(2) . 1. (k - k ) 

• 0 I ••• i 11 1i1 2 1 

-L EIS- 1) 1.(2) (k _ k )2 
I 1 1i1 2. "I ... ] ; 

etc.; finally 

C(1) kill (1. k ) 
121 "I fC2 - 1 0 1 ) kill (k - k ) -'-131 1 3 1, 

I I ,.. -'- Cl) kil)O (k - k ) -L -L cm kill (k - k ) 
I 122 '1 2 1 j ••• J 221 '2 2 1 "'1 

C>.2! k(2) (k k)2 i CI2i k(2) (k k ) (k k) 121 1 2. - 1 -,- 132 1 3 - 1 2 - 1 ,.. ... 

(4.3) 

(4.4) 

It should be noted that the alJpcarance that in the given way an infinity of 
parameters can be included even by finite degree, is only illusory, because 
the individual parameter will effect only after a partial sum of a certain degree. 
Even though, including the magnitudes of kir) type in the scheme one 
can read it in formulas /4,3: - /4,4/ - on one hand the number of parameters 
increases very rapidly, but on the other ha!1CI - we .~hall see - that the 

:-,"stem of equations - \I-hich requires the same coefficients of the indiddual 
~emhers of Kt and of J y - for the evaluation of parameter:;; falls into several 
Evstem", they can he f:oi--;ed independently, hut only aft(>r including th~ magni­
t~l(les hV) - hecause the parameters in relating of the new type members 
appeares only on a certain degree in the Taylor-expansion of Kt. 

"\\1 c will "how, as follo\fs, that hoth the unmodified and the modified 

R. C. :N. method can he improved to a wished degree. \Ve should mention in 
advance that the theorem is not pronounced in thc most exact form, that is : 
W(' d(,n't sny that one needs exactly so many steps of k)') type for a given 
degree, which must he calculated in such an order of succession. The reason 
for this is: onc can easilv evaluate that making a certain numl)er of auxiliarv 
steps of k~r) type in a giv;n order up to which cX~}Onellt of 1z in the approximat"c 
increment of k t "will he found all terms occurring in the cxact increment; 
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how many independent parameters will be included in the method till the 
given degree, and whether their number is not smaller than the number of 
all terms of several type which occur in the exact solution till this degree -
that is whether, supposing independent equations it is possible that the approx­
imate and the exact increment will he equated hy choosing suitable para­
meters. But in general it is nearly impos5ihle to prove that the equations 
are really independent - and it may happen that making the same number 
of steps in several orders of succession the system of equations will sometimes 
he independent and sometimes not. As it is convenient to include in practice 
more than the required parameters in case of high orders of degree to make 
the ;;ystem of equations manageable, and in eventual dependency cases with 
further "teps to increase the number of occurring parameters, therefore it i~ 

f'uffieient to give the 
4.5. theorem of fundamental importance bv thc value of 'which the 

R. C. :N. method of optional degree can be giv~n by means of sufficien1 kj") 
numerical steps. 

Bcfore demonstrating of a 5pecid sharpening of the theorem 4.3. 
\\-e will vel'ify [\\'0 important thcorems and two lemmas. 

4.1. theorem. The pO'wer series of the approximate illeI'tmcnt of Km 
nell of thc kn auxiliary step, in the unmodified R. C. ::\-. method given by the 
formulas (4.1)-(4.2), contains all those, and only all those term", indusin-. 
the Tl-th degree 'whieh occur in the pcwer series ef .J y (thc exact inelTm('nt) 
Proof: The }1(>wer series of the incn'mpnt k2 has the fOlm 

hI 
lz3 

h~ Cl' D I - ct" D2 f ~ ... 
2! 

(-1.5) 

by reason of the formula (31.2). Hence it can immediately bl' seen that tIlt' 
po\\-er series of (k2 - kI ) is of /) type, in \\-hich all the terms, inclusiye the 
quadratic Olle~, are contained \\-hich occur in the expansion of (J y - hI), too. 
By reason of the lemmas 32.1 and 32.2, k;3 contains only such, and inclu~in­
the third partial snm, all such term:- which occur in the expan:-ioll of J y. 
The theorem will be yerified by means of general induction. \\'t' ~l1ppO"C that 
the theorem is already verified in case of 1l = 1; 2: ... 5:. Con:'cquently, 

the :"um 

7.) , ("5\ (k 7. ) , C'S, (7. 7, ) 
hI -,- "3 3 - hI - ..• - 5 hS - hI 

ha" an cxpansiuu of fJ type, that contains. iuclusiye, the terms of 5-th degree 
ail terms which occur 111 the power :3eries of (.:1 y -hf). So by reason of the 
lemmas 31.] -31.2 the propositions hold for kS ,_1 too. This completes the 

proof of the theorem. 
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4.2. Lemma. The power series of the difference between the approximate 
increment Kt in the R. C. N. method modified with the formulas (4.3)-(4.4) 
and between hj~ is or f3 type. 

This lemma fo11o,\-s immediately by means of similar mathematical 
induction with full knowledge of the lemmas 31.1 and 32.3. 

4.3. Lemma. The coefficients of the h ID 1
-

i f formed terms in the 
approximate increment of Kt in the modified R. C. N. method giyen by the 
formulas (L1.3)-(4.'1) contains only the parameters cii)(l = 1,2, ... n) and 
C l(l = 1. 2, ... n). these parameters are absolutely independent of one 
another. 

Proof: The first part of the proposition follows from the formula (31.2). 
It can he immediatf'h- seen by means of mathematical induction that the 
coefficient of the hlDI'lf fcrm~d term in the power series of Lly i5 exactly 

1 
, and so hy reason of (31.2), the system of eCluations 

l! 

Cn = 1 

1 

2 

1 

3 

(-1.6) 

By rca:"on of the well-known properties of the Yan-der-}Iondc matrix also 
follow:" the cumplete independency. The direct consequence of this lemma 
is the 

4.1. Corollary. In the modified R. C.:.\". method of !loth dr;gr(>e therr' 

oceur at least r~l 2-~-J auxiliary :'teps of ks type (used in the unllloflifipr) 

method). 
The k1 auxiliary :,tep glyeS one, all the other,;: giye t"WO independent 

parameters by which tht: equations (4.6) can he satisfied. If the method is 
of n-th degree the numher of the equations i;:: exactly n. 

4.4. Theorem. Lpt 

k = hf[xo -7- !lo; )'0 (4.7) 

where Go is an expression of optional a type, and /10 is an expres8ion of such ('J 

type the expamion of whieh contains all terms illc1usiYe, the Jl 2-th degree 
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occurring in (Ll y - hf). Let moreover k?) all optional auxiliary step of the 
modified R. C. N. method. The expansion of k(l) starts as follows 

In this case 

K = D (k-hf) + E ki1! (k - Iif') 

k 'l) - I f I i - 1 yi ... 

Fkj1!"(k-hf) + 

(4.8) 

Gkj1,S(k - hf) + ... 
(4.9) 

is an expression of ,3 type, the series of which contains all terms inclusive, 
the (n + 2)-th degree occurring in (Ll y - hf). 

Proof: By reai'on of the lemmas 32.1 and 32.3 it follows directly that 

K is really an expression of f3 type. On the other hand, by reason of the lemma 
32.2, it follows that every term of (Ll y -- hf) inclusive the (n + 1)-th degree 
occuri'. Let us now eoni'ider an optional term of (n 2)-th degree of J y 
e. g. the tcrm 

P· . 8l'n
iJ!f c· . 

') ! I/ll -! KIP 

hn 
- . II D m - -. If D Ai 

m=! a ylh; Al=l 
(4.10) 

If If) > 2, than we can verify, in the same way as in the proof of the lemma 

32.2, that in K occur a term like (4.10). Then the factor group reduced accord­
ing to (32.20*) is to he divided at least into two factors, so that IW factor 
can he of higher degree than the n-th. These factors necessarilv occur in the 
expam;ioll uf

0 

(3lii! [S;e formula (3.23)]. If l~) = 1, but k ~i) 1: then (32.20*) 

is a single factor in the expamioll of (3, but it occurs surely, hecause (32.20*) 
is at most of n-th degree. As the indexing was arbitrary, ,re verified the oecur­
rence of (4.10) in K in all those cases if one could find such 1 <In pi, 
to which 

k;;; - l~; 2 (4.11) 

holds. After this we have only to verify the OCCUlTeI1C(' of 

(4.12) 

hn ' 2 D"'lf 

in E. because the condition (4.11) being out of question, J y may contain 
the terms formed likc (4.12), resp. (4.13) according to the theorem 2.1. But 
the terms formed like (4.12) will "mch-- occur in the term 

[k?F' (k hf) (4.14) 
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of K, because (k - hf) contains every term of (Ll y - hf) at the most of 
(n + l)-th degree, so specially hllC:-2-PiDIlC:-I-Pj (Pi = 1, 2, ... ) too. One can 

immediately read from the formula (31.1) that in case of ClO=O K contains 
a term like (4.l3). This completes the proof of our theorem. 

4.2. Corollary. The power series of the approximate increment of Kt~ 
given by the formulas (4.3)-(4.4), contains every term of LI y, inclusive the 

n-th degree, if Kt contains at least [~2 1 1 auxiliary steps of ki' and at least 

one of hill type. The demonstration can be made by mathematical induction -
like that of the theorem 4.1, but using the theorem 4.4. No'w the theorem 4.5 
will be proved as follows. 

The demonstration is baf:ed on the fact that the unmodified R. C. N. 
method given by the formulas (4.1)-(4.2) is the special case of the modified 
R. C. N. method given hy the formulas (4.3)-(4.4), in that meaning that 

if certain parameters vanish in the latter one, we get the former. ConsequentJY7 
if the theorem 4.1 holds for the unmodified R. C. N. method, it rather holds 
for the modified one, for the system of equations for parameters has surely 
that special solution-system, 'which we found presumed - in the special case. 
~ ow the so-called Eulerian broken-line method is a special case of the unmo­
dified R. C. N. method - that is, if the sequence cil >, Cl2

), ••• ; cill) is chosen 

to be the multiple of ~ successively, Cik) (i = 2,3, ... k; k = 2,3, ... n) 

h 
and Ci are chosen to be equal to -. From this it follows that the theorem 

n 

4.1 holds for the unmodified R. C. :!\. method; if this statement 'were not 
true, that is, there would exist ;.:uch a degree denoted hy 1'0' for which the 
"'ystem of equations (considering it only until the 7'0-th pO'wer) would possess 
a contradict for any unmodified R. C. N. method with the auxiliary steps 
of a number n, no matter how great, then consequently we could find always, 
choosing the step-number n Hnd the related parameter-system no matter ho'w 
a 5et of the equations (2l.1) which satisfies the strict conditions related to 
the functionf(x, y), and making a step by means of the chosen R. C. N. method, 
the error would have a least limit H(l'o; K; h); H is independent of Il. 

(That is, choosing any parameter group, therc is a difference between thc 
deriyatiyes not of higher ordcr than 110: e. g. the I'l-th, in the expansion of 
the approximate and of the exact solution, in consequence of the assumed 
contradiction. Choosing a fUllction the deriyatives of 'which are small in abso­
lute value, except the 1'l-th, and constructing the differential equation of 
(2l.1) type, according to the assumptions, the error of this equativn ,\-ill be 
oyer the limit H.) But this leads to contradiction, because the Eulerian 
broken-line method, as a special R. C. ~. method assures, in case of sufficient 
high step number, the existence of such a parameter group, by which the 

oS P('riodic<I Polytechnic;l £1 II ~. 
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error in the set of equations (21.1) satisfying the aboye-mentioned conditiom 
H 

to j'{,:1:. )'). assures uniformly an arbitrarily small e. g. limit. . . • • ~ 2 

This completes the proof of our theorem: but we wish to mention 
that in the third publication of this theme the theorem 4.;> will he pron~d 
in a more strict form. 

5. §. Examples 

In the followings, we want to point out the practical "pJallning" ef cer­
tain formulas of the modified R. C.::\". melhod, aEd the practical method 
for the evaluation of the required parameter system. :Jloreoyer, 'I-e make 
a comparison Let,,-een the 0btained formula and the usual R. C. :\. method, 
hy means of a numerical example. It is to he emphasized that the formula 

(31.2) of the lemma 31.1 and the forIUula (32.6) were not given only for proying 
the mentioned theorems, but by u~ing thi5 formulas, the expansion serving 
for evaluation of the parameters can be made in an almost automatic way 
in practice too. 

51. Formulas of fifth degree in fh'e points. \\' e give scmc simpler methods 
of fifth, resp., sixth degree, hy means of parameters a5 fullows. \Ve will not 
enter into li>ngthy, tedious numerical l'yaluation elt'tails but we only notic,~. 
that it j;,: ach-jsahle to outline tlu- pquatir,n;;. Thi;, go<',; to "how h"1I" the "v:,t('m 

d equations can be clividpd into group". 
Thf' formula5 of fifth degret' in fin' point:" : 

a) 

hI = hf(xo , -"0) 

I 
·1 

k~=hfx()--_ 
.J 

k ~ = hI, [.1'0: y" 

k3 hf[.1'O - ~ 

- 1')-
..'J_ k _ . :"J k.) 
48 1 336-

3 
h~(k3 

28 

- ~ k':l (k.) - k ) 
.18 1 - 1 

(51.1) 

(51.2) 

(51.3) 

(51.-1) 

(.31.5 ) 

(5Ui) 
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k1 = hf(Xo , )"0) 

k2 = hf[Xo a2 h;)"0 + a2 k1 ] 

k; = hf)' [xo + a3 h ; )"0 + a3 k1J 

k~ = hf)" [xo + a4 h; )"0 +. an k1 -;- a42 k2] 

k5 = hf[xo + (1.5 h + {J.51 h k; ; )"0 -;- (151 kl -- a.52 k2 {l51 k1 k;] 

k = RI k1 -;- R2 k2 + R5 k5 -;- R3 (k2 - k1) k~ R-I (k2 - k1) k~ 

- R6 (k5 - k1) k; R7 (k5 - k1) k~ -+ R& (k2 - k1) k;2 

RIO (k2 - k1) k~ RH (k5 - k1 ) k;;2 -;- R13 (k5 - k1) k? 
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(51.7) 

(51.8) 

(51.9) 

(51.10) 

(51.11) 

-:- RH (k2 - k1) k~3: (51.12) 

(I::. = 0,3550510:3 

1 
((3 = ~ .. = 0,33333333 

;) 

G. = 0,6666667 

(15 = 0,84494897 

((u = 0.91990313 

((42 = -0,253236·16 

a,,1 = 0,8273125] 

(1,::. = 0,017636·16 

(i:;1 = 0,:2.';938934 

0,11111111 

R2 = 0,51248580 

Ra = 0,'16701860 

R-I = 0,33113104 

R:; = 0,37640309 

RfS = 0,21161946 

R7 = -0.46810571 

R, = RlO = -0,198730·17 

Rn = 0,0490736:3 

Rn = 0,16725358 

RH --0.138386-15 

In both caSt>, \\-e planned the formula a~ follows. By reason of the formulas 

(22.1-7) we eYaluat{'d the mil1illl11m pal'amcler-number in case of formula 

of fifth order (as maliY as the nnmber of terms in the first fiYe deriYatiYe:', 
that is: 1 -:- 1 :2 -'- -1 8 = 16). i\Iorcoyer, by reason of formulas (32.20)­
(32.31) we eyaluated, that at least, how lllany step" of "'i = l:~O) typc are required 
to haye all terms occurring in -' \' till the fifth d·~gree. A" there exist at least 3_ 
the practicable solution is '3 of k;'O) and 50 many k;1) steps \\-hich can as"tue the 
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occurring of 16 parameters. So "we got the formula b) (because we had to include 
at least two kill). First we included all possible parameters -which can theore­
tically occur considering the first five po,\v-ers of the sum -, and when the 
equation was written down, "we chose arbitrarily ;;;0 many and such para­
meterS as to solve the equation in the simplest way. The procedure is the same 
in case of a), resp., generally. 

52. A nnmerical example. We show, for comparison, in case of the 
equation 

')x 

y' = y - ~; y (0) = 1 
Y 

a) by h = 1 step 

the :;everal solutions, evaluated by means of 
10 R. C. N. method of second degree. 

y(l) l,833 

2 0 the well-kno'\\-n R. C. N. method of fourth degree 

y(l) 1,772 

3° the method of fifth degree shown in a) 

y(l) 2 .. 1,744 

4° the method of fifth degree shown in h) 

Y (1) 1,735 

and 5° integration. The exact solution is y 

y(l) ;:::....:;:; 1,732 
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Summary 

We prove that approaching the solution of the equation 

y' =f(x, .r) 

by means of the Runge-Kutta method, this method can beof optional order of degree. supposing' 
that we have evaluated as many auxiliary increments. as is sufficient. "ce show that using the 
partial derivatives of function f. in respect to the dependent variable at the evaluation of the 
auxiliary increments. the method can again be of optional order of degree. hut the number 
of the points rapidly decreases at which thefunction-value.resp .• itsderivatives are to beevalual­
cd. We illustrate the above-mentioned hy examples. 

T. FREY, Budapest XI. Budafoki ut 4-6, Hungary 




