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1. 8. Introduction

The so-called Runge—Kutta—Nystrém method is very often applied
to the numerical evaluation of the initial value problems of ordinary differential
equations, particularly in the initial interval (s. [1], [2]).

The equation, or system of two or more equations, is usually reduced
to the form

¥y =f(x; x5 ),
l‘esp.
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The evaluation of the function values f resp. f; is a quite laborious and
burdensome problem even when employing any of the most practical numerical
method, by making use of modern electronic caleculators. The question is
important from that point of view whether the Runge—Kutta—Nystréom
method (further R.C. N.) can be improved by decreasing the number of the
pivotal points at which the function values fresp. f; are to be evaluated even
at the price of increasing the number of elementary operations. This means
that we intend to increase the degree of the R.C.N. metkod (over four),
without increasing the number of the pivotal points at which the function
values are to be evaluated.” But it can’t be carried out without making
modification in the procedure, because — as will be seen — increasing the
degree of the unmodified R. C. N. method, immediately by leaps and bounds
increases the number of the pivotal poinst at which the function values are
to be evaluated. As an illustration : employing the unmodified R. C. .
method of fifth, sixth, seventh resp. eighth degree, we have to evaluate
the function values at six, eight, eleven resp. fifteen points by each step,

* The degree of a procedure means the number of the terms equal in the Tavlor expan-
sion of the exact and of the approximative solution.
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for first-order differential equation. Moreover, by increasing the degree,
the parameter values of the procedure can only be computed with more
and more difficulties.®

In the following, a modification of the original method is presented,
partly to increase the degree almost as speedily as the number of the pivotal
values increase, partly for the easier evaluation of the parameters. The funda-
mental idea for this modification is to make use of the partial derivatives
of the functionys) f(f;) with respect to the numerical approach in the dependent
variables.

In the first part of this work the modification will be presented — restrict-
ed to first-order equations — further it will be shown that the degree, both
of the unmodified and of the modified R. C. N. method, atleast theoretically,
can be indefinitely increased. In the second part, the above-mentioned proce-
dure will be generalized for the case of higher-order equations, finally the third
part deals with the algoritmes. by means of which the parameters can, at least
partly, be computed.

2. §. The Taylor series of the exaet solution

21. Svmbols ; reductions ; of the operator D. It mav be assumed that
the equation is given by the form

Yy =f(xy) (21.1)

because the equation can surely be reduced to the above-mentioned form.,
in the surroundings of the points at which the approximate values of the
solution are to be evaluated. Moreover, it will be assumed that f(x, y) and
its derivatives of a sufficient high order with respect to both variables are
continuous in the surroundings of the point (x,, v,) for in the surroundings
of singular points numerical methods are not used.

It is convenient to express the higher-order derivatives of the solu-
tion of the equation (21.1) by means of the operator

D=+ 72 f=flx 3) (21.2)
gx Y

as suggested by HEUN, further denoting it by D, if there is no misunderstanding
to be feared. Let us suppose that the function

u = ux.v) (21.3)

%

In the third part of this work, algoritmes will be shown as how to determine the
parameters of the unmodified and modified R. C. N. method.
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is differentiable in Sto1z’s sense, in the domain T involving the point (xy, ¥q)s
if fis continuous in T. In this case u is differentiable along the solving-curve®
of the equation (21.1) supposing that (x,, y,) is a point of the curve, as follows
d ' du
Ly =2
dx v=y(x) dx

,O8u Bu , Bu

9
vy dx

L

= D;u=Du (214)

ay

It can easily be seen that
1° D is a linear operator, namely

D(u-+v)=Du-+ Dr (21.5)

2° D is of differential-operator type, applied to products
D (ur) = vDu -+ uDv (21.6)

It is convenient to define the powers of D formally by

il {‘ ) k a" 9 971 7
D=1 pr e (n=1,2,3,...) (21.7)
k=0 | J ¥ .

because by means of these the iterated values for D, and the higher-order
derivatives of u with respect to y can be obtained in a very simple manner.
It is easy to verify, that

~

D[D")=D"*+nDf D"? 8—(; (21.8)

(see e. g. [3])-

22. The Taylor series expansion. The derivatives of the solution of the
equation (21.1), and its Taylor expansion can also be written by means of
the operator D (supposing that f(x, y) and its derivatives of sufficient high-
order are continuous at the specified point) is as follows

d
y = 22.1
o2 f (22.1)
f y=D 22.2
FER ] (22.2)

* As fis continuous in T, there exists at least one solving curve through anv poiat of
T; if more exist through each point, the formula (21.4) is valid along each of them.
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43
Sy =D +fDf | (22.3)
j; y=D3f+ f.D*f + fi Df + 3 Df, Df (22.4)
oy =D f D D+ AD DA fiDf

+ 7f, Df, Df + 6 D%, Df = 3f,. (Df? (22,5)
oy = D3 + £y DA+ f3D°f + 5 Df, D+ [+ 9f, D D +

+ 10 D2f, D2 4 10 £, D2FDf = [ Df + 123 Df; Df +

+ 16£,Df, Df + 13, f,, (D) + 15 (DA)Df +

+ 10 D3f, Df + 15 Df,, (Df)? (22.6)
d?

e =D f+f, D5 f+fiD*f+ 6Df . D*f + f3 D f +
Xt : !

+ 11f, Df, D*f+ 15 D2f, D*f + 15 £, D°f Df - f1 D*f
L1303 Df D2 + 25, Daf, D2+ 45 f, i, D2 Df +
+ 24 (Df,)2 Df -+ 20 D*f, D2 f < 60 Df,, D*f Df
105, (D)% + £3 Df + 184 Df, Df + 313 D*f, Df +
383 o (D) 57f, (D) Df — 30, DA, Df +
735£, Df,, (Df)? -+ 15 Dif, Df - 81 D*f, Df, Df -

631, Df, (D)} + 45 Df,, (D =150y (DY°: (227
e © @
@ @ e
® & ©
dll
In the theorem which follows, the derivatives ——x (x) are given.
X

22.1. Theorem. In the expansion of the higher-order derivatives of ¥
1° every term can only contain factors taking the following form

a'f
D E>0;1>0 (22.8)
8_}'1
specially
! i 5 5]
p 2 f; pr 2L = D¥f; D vf (22.9)
3! 8yl 81 8y°

2° In the term taking the form of

P !m - i
H Dlm 9 f i H DP\A"If (2210)
Me=1

i
ay™ A=
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(there only exist terms of this type according to 1°, and Ky -£0: M=
r
=1,2,...,¢q); (the arrengement is natural that is JJ [,740) there is

m=1
a relation between the “exponents”™ k. K,;, and the “ordial numbers” I,

1 [l — (22.11)

me=1

from which immediately follows that

g=1
3° Whenever the term (22.10) occurs in the expansion of y*?, there
iz another relation between the exponents and the ordial numbers
p A 9
Nhy+ X+ YXKy=nmn=12,...) (22.13)
m=1 m=1 M=1

@+ are those, and only those terms which

4° In the expansion of ¥
suit the above-prescribed requirements of 1°-—3°,

These propositions can be proved by means of the mathematical induc-
tion. Let us suppose that the propositions 1°—4° are valid until n = NV,

namely

N = N4, [[DAm —— [[ D"”f (22.14)

m=1 Im M=1

and

1° kY >0, l},;’>0 K9 >1:

2°. q;, = 1 — P x \' 157'1) (71 > 1)‘

m- l

m m
M=1 Mz

Pi i . _
37 NP4+ 1)+ N K =N—1;

4% The sum (22.14) contains all the terms which suit the above require-

ments of 1°—3° prescibed. y"7! can easily be expressed by means of D,
using the relations (21.5)—(21. 8) Hence it can be immediately seen that 1°

is valid again. In order to prove 27, let us consider all the terms derived from

m==1

Whenever D is applied to one of the factors of the first group — e. g. to the
s-th one — it takes the following form

T Periodica Polytechnica EI IT/Z.
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(e8!

Dku);i 01°f f[ [1 : KD am(lf; UDAMf

M= +1 )lm M=1
) Meip (s— 10 i
. . ! ) (Y Qs N ‘ Lu) m
(lfl‘;““ - 0) e k;“DAS T ‘ H D ~~‘Tz7 11 Dth (92 1:)
8»'15 Lim=1 m=s+1 awlm M=1

2° is evidently valid for the first term of the relation (22.15), because ¢;, p;
and 1) are unchanged ; similarly, valid also to the second term, because
p; is unchanged while both ¢; and X 1) increase — after regrouping — with
the unit.

When D is applied to the S-th factor of the second group, it takes the
following form

[[D O 1({ DK =1 H H ;D"\Mf -

m=1 a} m M=1 M=
. i A“’ amf (IJ S_l -

+ K¢ [[ D' =2S s Df,l;l [1 ,D<Mf (22.16)
m=1 a)»m M=1 M=8+

Here 2° beccmes valid again, because : in the first texm p;, ¢; and 19 are
unchanged ; in the second term g; is unchanged, while both p; and X1 in-
crease with the unit. By reason of the relations (22.15) and (22.16) it can
be seen that ¢; cannot be decreased, and so ¢; remains > 1. The sum
(k(i) - l(i)) + vI&ﬁ{? increases in each of its terms with the unit, and so 3°

remains valid in every term of y N=1

The validity of 4° can be prov ed as follows : every term of y" ', which
has the form (22.10) and is in accordance to the properties 1°—3°, can be
derived from one of the term of y* by means of the operatien D.

Let the product then

AN+1)

one of the terms of the Taylor expansion for y , that is

1°. B >0; I >0; Kii>1;
2°. g, =1—p;, + _,\_' s (4,>1)3
m=1
pi 9i

3. (i1 + S Kf=N. (22.18)

m=1 M=1
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Let us moreover suppose that there is at least one factor — e. g. the
S-th one — among the factors of the second group in (22.17), by \\hlch

K& >1. (22.19)

In this case, for instance, (22.17) is derived from the term

iy S—1 i i i
77 % 8’“({ | H :DK(Mf. DK~y (22.20)

me=1 aym ?h: M=

—

of the Taylor expansion for ¥ by means of the operation D. One must
only realize that y™ has a term such as (22.20). If this term satisfies the
properties of 1°—3°, ™) will surely have such a term, but, according to the
conditions, even if thc requirement 4° is statisfactory, supposing that n = N.
It is easy to see that 1° is satisfactory ; 2° is realized for qi.p, and T I are
unchanged in comparison to (22.17); 3° is also valid, because X' I and Tk
remain unchanged, ZK%} decreased with the unit, but the right-hand member
of 3° must also be decreased with the unit, being (22.20) a term of yV,

If it is impossible to find such an S, which satisfies (22.19), namely §
has the form

(l‘

Pi km mf .
][lD o - (Df)t, (22.17%)
n= y m

then — by reason of (22.18) — p; > 0, supposing that n > 3. Now let us
gsuppose that ameong the factors of the first group there exists one — e. g
s-th one — by which

R 1 (22.21)

~

In this case, for instance, (22.17%) can be derived from the term

5] :u

kP —1 as f s—al L '”f q; 929 9
pé LM AT (02 oy (2222)
} m=1 m=s+ yim

of ¥ by means of the operation D. This proves that y¥ has a term formed
like (22.22) and is the same as above : 17 is evidently satisfied ; 2° is realized,
because ¢;, p; and 2 I{2 are unchanged in (2 2.22); 3°is also Vahd, for 2 Ky
and T 1% are unchanged and X kY is decreased with the unit, in comparison
to (22.17%), for it is necessarily one of the terms talked about with the unit

lower-order derivative.
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If, finally, one can’t find any s which satisfies (22.21), that is (22.17)
takes the form

I
m=1 g yim

then this latter product can, for instance, be derivated from the term

i)

8\1 m——a}m

o _Jf‘l]'a“"f (Dfy (22.23)

of y™ by means of the operation D (as the second term) y) rew]ly contains

the product (22.23), because it satisfies the propelue= 1°—3°, 17 is satisfied ;
the equality is again, valid, because both ¢; and X I are decmased with the
unit in comparison to (22.17%): 3° is valid toc, for ¢; = k%)
(i)

is decreased,
v;}l) = 1 is increcased and X I/ is decreased with the unit, so their sum is
decreased with the unit,

The theorem is proved, because its propositions are evidently valid
N=2,3,....7, by reason of (22.1)—(22.7)

3. §. Numerical solution by Taylor series

31. Formual evaluation. Let us again, suppose that the function f(x. v)
and its derivatives of sufficient high order, with respect to both variables,
are continuous in the domain T involving the point (xy. ¥,) and the point
[xg + a: ¥y T af(xg. ¥y) + f] too.

31.1. Lemma. The above-mentioned condition requires that the Tay-
lor expansion of the expression

or (31.1)

87 s o+ af (¥ yo) + 1

can be given in the form

r r ar1 1 r o1
O S Ly e 8 g yp ¥
¥y 8y’ R 21| 3y gyl
ar 2 1 n ) R r:-$s
e A f’ o N (D utE D”'é‘i—--f« -+ by (31.2)
8)"‘2} n! g-:” ayr-;s
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where the functions are to be taken at the point (xy, ¥,) and the remainder
is hyoq.
Proof: The proposition can he easily verified by rearrangement. The

expansion only contains the operations D anda—])ecause the coefficient of
Y
fin the increment of ¥ equals the increment of x.

The n-th term in the Taylor-series of the expression (31.1) has the form

I

nog ren
C _ 1 i (n) ey att (uf - ) =

nl = lt] san-toy !
n r-n { R
= ,}_ ~ nj 8 f_k, ot N w fr g =
nl =0\t 8 a" 7y 7m0 \ U
iy ! r:n
e ln | t)“w“") o ST s
nl T rseht! e Bty !

substituting z for (t — v)

f—v =23 V=1 — 3 (31.4)
So G, takes the form
toiay rongp
G,= 1 f\ N (n’ ( ! Al A A . (31.5)
nl =\t —s Ban-tgyrit

In the following the double sequence of sums are inverted. Substituting
s for t by the relations as follows

I—z5=35; =82 (31.6)

So
G _ ‘1 {“ ez 4 g\" ‘71 t ! f—z ar ”f
I I B i
nl o = LEIiE— 2 0 attagyr

I H n—:z PR r-n
_ R ‘n, s g N n ls I - ?A‘f" -
n! ozl Shls L s §antTE gy s (31.7)
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and further, on the other hand

or-* {n--:) r-:f
f— Dn——:
3 x(n—:)~s . ayr s ayr z

by reason of the powers of D, Taking (31.8) and (31.9) into consideration,in
(31.7) our proposition which had to be proved turns out to be right.

32. The terms of the expansion. In the following it will be shown that
the power series of the numerical solution contains only terms, and in certain
degrees all terms, that also occur in the power series of the exact solution —
whether the unmodified or the modified R. C. N. method is used.

For characterising the steps, we intend to introduce the sc-called step-
distance, —indicating it by h — which serves the independent variable resp.
its increment. So the series of the exact solution for the equation (21.1) takes
the form

dy

L
I
e
vl
&
2
I

) ) = R DI D D)

w(\

L Di (D) )
R : 1(:11 [[ km & I(;)/ [[ Dl&Mf _..I{”_, (321)

n! i m=1 8)"1 M=1

where the general term is denoted in accordance with part 22. and R, | ==

= O(R" )%

Let
b="hf(xg+a; vyg=uaf+p) (32.2)

and let us denote with § any linear combination of the terms at least of second
order in h. which ocecurs in the expansion of 4y

B =0 Df R [b2D2f b f, Df]1 + ... +
1 1 j

A1)

) n A AN m K ; <
R XD [[D = S rr pbips (32.3)

l =1 .) m M=l

and with «, a similar linear combination, but only those coefficients of its
terms can vanish, that contain the factor Df, finally let « the ratio of «, and

hDf.

* Here and in the following let us suppose that f(x, ¥) and its derivatives ol sufficient
high order,with respect to both variables, are continuous in the surrounding of the point (xy. ¥,).
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a=alh+afhfy +h[ad fE+aP D]+ ...+

- pi i 8 m a 1 -
+ B NEa JF Dim - l(n{; ﬂ Dfmyp (32.4)
i m=1 ¥ 1=2

where X* only extends to the terms of vV that have contained Df, and the
second factor-group is indexed, so that K{¥ = 1.
32.1. Lemma. The Taylor expansion of the increment k (32.2) about h,
only contains terms that occur in the expansion of the exact solution too.
Proof: We shall apply the lemma 31.1, substituting the expressions
(32.4) resp. (32.3) for « resp. f, if specially r = 0. Let us consider e. g. the
terms formed

s
hoats f’s Dn-9 _?‘Af_ (39.5)
oy

coming from the reduction of the expression

hlalh +a@ k2f, = .. .7~ - [b0 B2 Df + h? (b2 D2 +
85 .
+5D) + gD 2 (32.6)
Yy

We have to show that the propositions 1°—3° of the theorem 22.1 only hold
for the terms above mentioned. It is trivial that these terms may contain

al
only factors formed Dk —é—jl:, similarly the condition & > 0, I > 0 is valid.
too. The condition & + [ > 1 is also trivial, because it holds for all factor of
as
a and B, and if n > 1 for D"°F éf{;too 2° is also valid. According to

¥
(32.3) the equality

9 = 1+ : lm Ps (327)

m

holds for any term of ff. Acecording to (32.4) the equality

Qu = 2’(1 lm - pa (32’8)

m

holds for any term of «. (Divided by Df).
So the equalities

qrr=5qz = g‘*%HIm—Pu (s=1) (32.9)
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hold for any term of the second factor (coming from the raising tof s-th to
power).
On the other hand the equation

4 = 2rly,—p 1(32.10)

m

holds for any expanded term of the first factor. For any term of their product
holds

[:nm~y, if =0

m

qr:/ls—;-.’.\."rlm‘pr'l if >0

m

s 9 .
Finally, the factor D" s—é ~increases ¢ with the unit compared with ¢, if

s =0, X1, and p remain unchanged. thus really

q::l—:_.\.'lm_])'

m

If s > 0, ¢ remains unchanged, that is cqual to ¢, but X[, = 2, [, + s and
p=p-+1 and so again

q:S;—:ylm'_S_(p—l):]‘]T.:‘zm_'P'

m m

The validity of 3° can be shown in the same way; for any term of f
containing k'

-'\'[7 (lm ; I“’m) "%' .:'[7 I{—;\I =b—-1 (3212)

m M
0as L sh
thus for any term of §° containing h*

..\.‘II (Zm ; km) + .:.['11 Ii.\] =sbh—s. (3213)

Likewise for any term of a containing h“

:Ya (km '%' lm) JT" :'a -K.\I = a — 1 ] (32-14)
m M
thus for any term of P containing R

]

> (km an lm) + %'I I{J\"I = (" - S) a— (" - S) (32'15)
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and so, for any term of ¢" °#° containing A7 ¢
Db L) + I\u =sb—s—+ (n—s)a— (n—s) (32.16)
m
5
The result of the multiplication by D"7° —=is
ays
.‘.\.'f (]fnz -+ lm) - .‘.:v (km + lm) ; .’Yf ‘K:\'I +—n= .'\.' ‘K‘;\( (32-17)
m m M M
if s=20
.:'rkl71 T n—s= .‘: km :_"'rlm ”:' s = :' lnz;
m m m m
‘}.; Ii.\[ = \,Ii M _r (I‘m - nv) "_ n = ;‘..’ (km — lm);
I m m
if §>0 (32.18)

and so for anv term of (32.6) containing the factor p*’~ (* 94+1

\'(km—,le)—}%T’I{/\Izrl—f«-sb—s#’(n«—s)a~(n—s):sb+(1z—s)a.

m
(32.19)
This completes the proof for the theorem.

32.2. Lemma is more difficult to verify : The n-th partial sum of the
Taylor expansion of (32.2) contains every term which occurs in its exact
increment, if a{” == 0 in the expansion of a (32.4) and b {?==01in the expansion
of f (32.3), supposing that £ < n — 1.%

Proof: The proposition will be verified based upon the lemma 31.1
using the formulas (32.4) and (32.3) and the conditions of the coefficients
related to these formulas. Let us now consider an optional term in the expan-

sion of Ay, if s <n

%

. b RIS l”j 1% .
v {f D T D (32.20)

mM==1 a,‘m M=1

where then

1L k> 0:00>0; Ki>1

(9%}
5
’.
—
B
R
P
32
p——
|
le-
Sy
3
i
)
|
-
—
(S5
e
o
-
N’

* That is, if every term really occurs in the expansion of § till the (n — 1)-th power
of h inclusive.
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In the following it will be verified that the Taylor-expansion of &k has also

terms formed like (32.20) in case of s < n; e.g. such a term is to be found
regrouped in the term of the form

1 Y SIR I [ ED i b a’f’f

h _‘1 ‘1]-a1/31D1--—

ST o

(32.23)

by proceeding in ascending integral powers of h.

Namely let us consider the term a{"h from the series (32.4) of a. We shall
verify that the other factors of (32.20) are dividable into 10 groups that occur
in the expansion of § (32.3) (e. g. in the special case when I{ = 0 the first
factor group of (32.20) becomes identically equal to the unit). First we have
to see that in (32.20) there exists at the most Il(i) factors, even apart from the

)
factor Dk(ih __a_l_l_f_‘ , namely also

Lo
gyt

Pi

[t Y. gid A ! gi
[ e G .UD’*g;_am_f J] Dy (32.20%)

m=2 a} m M=1

can be divided into 1{” factor groups. But it can be immediately seen that the
second factor group alone has at the most I{” factors as q; > I by reason of
the condition 2° in (32.21). A possibility for the division will be shown as
follows, depending on the cases

a) p;— 1<l resp. b) p,—1>17.

In case a) we connect to each factor as many factors of the second factor
group (and from h) as would comply with the requirements 1°—3° of the
theorem 21,1 — so the expansion of /1 y and the expansionof g will contain
a so formed term. if the exponent h is not higher than (n — 1). Then we com-
plete each of these from one among the factors of the second group to I’
factors — so that these factors will also comply with the requirements 1°—3°
of 21.1 and will occur in the expansion of f. We have only to show that all
the factors of (32.20%) are only once used, moreover the sum of the exponents
of h is equal to the exponent in (32.20%). It is easy to show, as by reason of
the requirement 2° we have to exactly connect

1+1h—1=1 (32.24)
) glm
LD
factors from the second factor group to D"m—‘{thus
a yl m
Pi
> (32.25)

m=2
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factors to the (p; — 1) groups in all, and so we still have

B . .
g— > ta=1+—p;=0 —[p, —1] (32.26)
m=2
factors from the second factor group, just as many groups as we have to
construct.
The exponent in the group

81#; ;.'ald)
T

gym M=yl

(1)
DFm

(the required exponent of i by reason of 3°)

g1
m=kh I+ S K1 (32.27)
M=y+1
and so the sum of the exponents
Piﬁ ) ) ng ) pL ) . £ )
= kb= DKy == (R S Ky — 2l — k=
m=2 M=1 m=1 M=1
=s—1—1I — (B + 19 (32.28)

is equal to the exponent in (32.20%).

In case b) the procedure is similar, but here exactly one factor will be
attached to every group but pi—l(li) to the last group of the first factor group
and so many factors from the second that every group would comply with the
requirements 1°~—2°. Similarly as in case a) one can see that (32.20%) can be
divided exactly into I groups, which comply with the requirements 1°—3°
of the theorem 21.1 and which occur in 4 y; one can immediately see that
every exponent of k in every group in (32.20%) can not be higher than (n — 1),
if s < n, thus these terms occur in # and their product (32.20*) occurs in
ﬁlg). This completes the proof of our theorem — also considering (32.23).

The lemma which follows can be similarly verified, where ¢ and 3 have
the same significance as in (32.4) and (32.3).

32.3. Lemma. Let us consider the power series of

ED =}

81’
af[xo—}-a;y0+af~;—/‘3];(r=1,2,...) (32.29)
y.f
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about h. In this ease the expressions formed
(KOs . pr s=1,2,...:r=1,2,...) (32.30)

have an expansion f type, and the expression formed

EOP .1 (s=1,2,...5r

]

I
5

) (32.31)

have an GXPE{DSiOIl a t}’pe.

4. § On the improvement of the R. C. N. method

In the following it will be verified that both the unmodified and the
modified R. C. N. method can be improved by opticnally increasing the degree.
Th

the greatest parameter number — as follows

ky = hf(xo3 ¥0)

By =hflxo+e"hs yo — ¢ 1]
by =hflxg+ ' hs yo+ of by + ¢ (ky — k)] (4.1)

by = hflxg by vp el By L el (ky — By) = ...+

+ ¢ (Rrey — 1)]

k= Cq Ill Cs ]t'; ‘;_ Ve ““ (o k” (4.2)

Where we evaluate the constants c(:k); c;: inall n -
1 I

nn-+1) n(n-+3)
2 2
0, that the expansion of the k approximate steps™ correspond with the expan-
sion of A y till the highest degree inclusive as far as possible. According to the
lemmas 32.1—32.2, it is to be noted thatk contains all terms which occurin
the n-th partial sum of the expansion of Jy. nevertheless in case n > 4
n{n -+ 3)

the maximum parameter -—*7-—— is not sufficient to make the equality ofthe

coefficients sure in all such terms of the approximate and exact solution.

The maximum parameter number can be speedily increased by reason
of the lemma 32.3, so that we include the evaluation of the k§’> values in the
unmodified R. C. N. scheme, as follows e. g
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ky =hf(x, }'0)

EP =hf,[xg+cFh; ¥+ P Ry]

ke =hflxg+ cFh+-dPEPh +dPE R+ .. 5 vg+ Pk +
A dPh EY AP R R4 ]

k3 — h«f['t __ C(3l d!3) k(lJ h d(3) A(l)" h el _’YO _.;... 033) kl .
+ P ky— k) FdPEP R +dP B R ..+ DPEY (hy — k) -
‘—:‘ DI:?" k{l): (k2 —— kl) —‘— e ]

: (4.3)
K2 = hfylag— c0h AR R sy P kg o (h — k) - ..
ARk - A9 R R, wa( — k)]

hooy = hflxp = ¢S VR = dy VEP R L ... b eSVED (hy — ky) 4
Ve . eSTURR K (kg-——kl)T" Lt
BV — R L]

ete.; finally
E=Cult o+ Gy + CRRY (= ) + O A (1 — ) +
o Ol Rk — Fy) o b OB R (B — k) - L L

O R (b — k) 3;3&;2' (kg—kl) (kg — By) 2= ... (4.4)

It should be noted that the appcarance that in the given way an infinity of
parameters can be included even by finite degree, is only illusory. because
the individual parameter will effect only after a partial sum of a certain degree.
Lven though. including the magnitudes of kff) type in the scheme — one
can read it in formulas /4,3) — 4.4/ — on one hand the number of paran:eters
increases very rapidly, but on the other hand — we thall see — tihat the
svstem of equations — which requires the same coefficients of the individual
members of K, and of 4 y — for the evaluation of parameters falls into several
:vctem: thev can be solved independently, hut only after including the magni-
tudes k) — because the parameters in relating of the new type members
appeares only on a certain degree in the Tavlor-expansion of K.

We will show. as follows, that both the unmodified and the modified
R. C. N. method can be improved to a wished degree. We should mention in
advance that the theorem is not prenounced in the most exact form. that is:
we den’t say that one needs exactly so many steps of ED type for a given
degree, which must be calculated in such an order of succession. The reason
for this is : one can easily evaluate that making a certain number of auxiliary
steps of E{ type in a given order up to which exponent of k in the approximate
increment of k; will be found all terms occurring in the exact increment ;
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how many independent parameters will be included in the method till the
given degree, and whether their number is not smaller than the number of
all terms of several type which occur in the exact solution till this degree —
that is whether, supposing independent equationsitis possible that the approx-
imate and the exact increment will be equated by choosing suitable para-
meters. But in general it is nearly impossible to prove that the equations
are really independent — and it may happen that making the same number
of steps in several orders of succession the system of equations will sometimes
be independent and sometimes not. As it is convenient to include in practice
more than the required parameters in case of high orders of degree to make
the system of equations manageable, and in eventual dependency cases with
{urther steps to increase the number of occurring parameters. therefore it ix
sufficient to give the

4.5. theorem of fundamental importance by the value of which the
R. C. N. method of optional degree can be given by means of sufficient k{”
numerical steps.

Before demonstrating of a special sharpening of the theorem 4.3.
we will verify two important theorems and two lemmas.

4.1. theorem. The power series of the approximate inerement of K,
even of the k, auxiliary step, in the unmedified R. C. N, method given by the
formulas (4.1)—(4.2), contains all these, and only all those terms, inclusive.
the n-th degree which occur in the pewer series ¢f Ay (the exact increment)
Proof: The power series of the increment k, has the foim

f el f h3 (1% 29 hl i e i -
lfAz:lzf—;—h“Cl‘fog;/C‘l Dy .. T CHMDYf— ... (45

by reason of the formula (31.2). Hence it can immediately be seen that the
power series of (k, — k) is of g type, in which all the terms. inclusive the
quadratic ones, are contained which occur in the expansion of (d v —&f). too.
By reason of the lemmas 32.1 and 32.2, k; contains only such, and inclusive
the third partial sum, all such termswhich occur in the expansion of A v,
The theorem will be verified by means of general induction. We suppose that
the theorem is already wverified in case of n=1: 2: ... s: Consequently,

the sum

Gy (ky — k) — G5 (g — k) — ... = cy (ks — ky)

has an expansivn of § type, that contains, inclusive, the terms of s-th degrec
ail terms which occur in the power series of (d 3y — kf). So by reason of the
lemmas 31.1—31.2 the propositions hold for k, ;, too. This completes the

proof of the theorem.
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4.2. Lemma. The power series of the difference between the approximate
increment K, in the R. C. N. method modified with the formulas (4.3)—(4.4)
and between If, is of f type.

This lemma follows immediately by means of similar mathematical
induction with full knowledge of the lemmas 31.1 and 32.3.

4.3. Lemma. The coefficients of the h'D" ' f formed terms in the
approximate increment of Ky in the modified R. C. N. method given by the
formulas (4.3)—(4.4) contains only the parameters ¢{’(l =1,2,...n) and
C(l=1,2,...n). these parameters are absolutely independent of one
another.

Proof : The first part of the proposition follows from the formula (31.2).
It can be immediately seen by means of mathematical induction that the
coefficient of the h'D" ' f fcxrmed term in the power series of v 1s exactly

——. and so by reason of (31.2). the system of equations

C,-Cot...=C,=1
* [$23) i} ’ 3 _i 1
CQ e T Cg 013‘ TTT . = —:’im
T T4 1
Covef + Cref =
.. 21 . 1
Gl + . Gl = —— (4.6)
r—1

B+ reason of the well-known properties of the Van-der-Monde matrix also
fellows the cumplete independency. The direct consequence of this lemma
is the
4.1. Corollary. In the modified R. C. N, method of n-th degree there
n— 1

occur at least l»—;—} auxiliary steps of k, type (used in the unmodified

[

method).

The k, auxiliary step gives one, all the others give two independent
parameters by which the equations (4.6) can be satisfied. If the mecthod is
of n-th degree the number of the equations is exactlv n,

4.4. Theorem. Let

k= hflxg— s yo+ o f = o) (4.7)

-

where «, is an expression of optional « type. and J; is an expression of such j
tyvpe the expansion of which contains all terms inclusive, the n > 2-th degree
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. . 1 . e
occurring in (4 y — hf). Let moreover kY un opticnal auxiliary step of the

o

h

modified R.C. N. method. The expansion of k) starts as follows
EY=hf.+ ... (4.8)
In this case

K =D E—hf) + EkP (k—hf) + FEM (k—hf) + ... + GEY (k— hf) + ...
(4.9)

is an e\;pression of § ivpe, the series of which contains all terms inclusive,
the (n -~ 2)-th degree occurring in {d y — kf).

PlOOf. By reason of the lemmas 32.1 and 32.3 it follows directly that
K is really an expression of § type. On the other hand, by reasen of the lemma
32.2, it follows that every term of (4 y — hf) inclusive the (n -+ 1)-th degree
occurs. Let us now consider an optional term of (n 4 2)-th degree of .1y

e. g. the term
‘Ib

B2 HD’?%’ f][ DKM (4.10)

m=1 By Im =1

If {9 > 2, than we can verify, in the same way as in the proof of the lemma
32.2, that in K cccur a term like (4.10). Then the factor group reduced accord-
ing to (32.20%) is to be divided at least into two factors, so that no factor
can be of higher degree than the n-th. These factors necessarily oceur in the
expansion of p{ [See formula (3.23)]. 1f 19 = 1, but k¥ > 1, then (32. 20%)
is a single factor in the expansicn of f, but it occurs surely, because (32.20%)
is at most of n-th degree. As the indexing was arbitrary, we verified the occur-
rence of (4.10) in K in all those cases if one could find such 1 <m < p..
to which

ey =1 > 2 (4.11)

I\/

holds. After this we have only to verify the oceurrence of

I 2 (f\)p D 1~-,I’if: (-112)
hr-2Drf (4.13)

resp.,

in K, because the condition (4.11) being out of question, v may contain
the terms formed like (4.12), resp. (4.13) according to the theorem 2.1. But
the terms formed like (4.12) will surelyv occur in the term

(k377 (k — hf) (4.14)
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of K, because (k— hf) contains every term of (4 y— hf) at the most of
(n -~ 1)-th degree, so specially h”*z_pr"*l“pif (pi=1,2,...) too. One can
immediately read from the formula (31.1) that in case of ¢y=0 K contains
a term like (4.13). This completes the proof of cur theorem.

4.2. Corollary. The power series of the approximate increment of K,
given by the formulas (4.3)—(4.4), contains every term of 4y, inclusive the

. n-1
n-th degree, if K; contains at least [—;—:\ auxiliary steps of k;, and at least

one of k) type. The demonstration can be made by mathematical induction —
like that of the theorem 4.1, but using the theorem 4.4. Now the theorem 4.5
will be proved as follows.

The demonstration is based on the fact that the unmodified R. C, N.
method given by the formulas (4.1)—(4.2) is the special case of the modified
R. C. N. method given by the formulas (4.3)—(4.4), in that meaning that
if certain parameters vanish in the latter one, we get the former. Consequently,
if the theorem 4.1 bolds for the unmodified R. C. N. method, it rather holds
for the modificd one, for the system of equations for parameters has surely
that special solution-system, which we found presumed — in the special case.
Now the so-called Eulerian broken-line method is a special case of the unmo-
dified R. C. N. method — that is, if the sequence ¢, e, Ci is chosen

k '
to be the multiple Of;SHCCGSSi\'C‘I}’, c® (t=2,3,...k; k=2,3,...n)

i L
and C; are chosgen to be equal to g From this it follows that the theorem

4.1 holds for the unmedified R. C. N. method: if this statement were not
true, that is, there would exist such a degree denoted by »,, for which the
system of equations (considering it only until the ry-th power) would possess=
a contradict for any unmodified R. C. N. method with the auxiliary steps
of a number 1, no matter how great, then consequently we could find always,
choosing the step-number n and the related parameter-system no matter how
a set of the equations (21.1) which satisfies the strict conditions related to
the fanction f{x, v). and making a step by means of the chosen R, (. N. method,
the error would have a least limit H(vy; K; kh): H is independent of n.
(That iz, choosing any parameter group. there is a difference between the
derivatives not of higher order than »;: e.g. the 1;-th, in the expansion of
the approximate and of the exact solution, in consequence of the assumed
contradiction. Choosing a function the derivatives of which are small in abse-
Iute value, except the v,-th, and constructing the differential equation of
(21.1) tvpe, according to the assumptions, the error of this equation will be
over the limit H.) But this ieads to contradiction, because the Eulerian
broken-line method. as a special R. C. N. method assures,in case of sufficient
high step number, the existence of such a parameter group, by which the

S Periodica Polytechnica El 1172,
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error in the set of equations (21.1) satisfying the above-mentioned conditions

to f{x, ). assures uniformly an arbitrarily small e.g. Tlimit.

This completes the proof of our theorem: but we wish to mention
that in the third publication of this theme the theorem 4.5 will be proved

in a more strict form.

5. § Examples

In the followings, we want to point out the practical *"planning” of cer-
tain formulas of the modified R.C.N. method, and the practical method
for the evaluation of the required parameter system. Moreover, we make
a comparison Letween the obtained formula and the usual R. C. N. method,
by means of a numerical example. It is to be emphasized that the formula
(31.2) of the lemma 31.1 and the formula {32.6) were not given only for proving
the mentioned theorems, but by using thiz formulas, the expansion serving
for evaluation of the parameters can be made in an almost automatic wav
in practice too.

51. Formulas of fifth degree in five points. We give scme simpler methods
of fifth, resp., sixth degree. by means of parameters as follows. We will not
enter into lengrhy, tedious numerical evaluation details but we only notice.
that it is advisalle to outline the rquaticns. This goes to show haw the system
of equations can be divided into groups.

The formulas of {ifth degree in five points:

a)

by = hf(x0: 3) (31.1)
U . j
ky = h’fl"'o ——hivyg - = k1\ (51.2)
‘ 5 5 7
ky = hf,\' (x93 30+ 3 {ky — kp)] (51.3)
1 1, T o
by = hf[x“ ue “3:‘ by ‘f“é”" ky 241‘: (51.4)
. 37 2T 36, 1., o
b= lzf!:;\o he o= Skt k= = kil — )| (19)
5 125 27 1 29
ko= ek e Sy ok — ke (By — k) —
18T aae T s M T g T gy Ml T R
3 25 ., 3 .,
_Ekl(g 1)—’:9)“3‘(?]’1“ 2‘_]"1)“_’]1'(1'3_1‘1)—
1
— kP (ky— k) (51.6)
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b)
ky = hf (xg+ ¥o) (51.7)
ko= hf[xg +— ash; ¥o+ ¢ by (51.8)
ky = hfy [xg + b o + agky] (31.9)
By = by D+ g s v+ gy ky + a ] (51.10)

ks = hf[xy + ash + By hEys vo = agy by & ag by =+ g by kg (51.11)
k =Rk, — Ry ks + Ry ks %Rg(k2 — k) By + Ry (ks — k) ky —
=Rl =k K+ R s — k) K Bl — ) 2
i Ryg (ks — k) By -+ Ry (by — by ) B2 - Ryg (ks — k) K
Ry (ke — by) B (51.12)
Where
a, = 0.35505103 R, =0,11111111
a5 = % 0,33333333 R, = 0.51248580
oy = 0.6666667 R, = 0.46701860
ay == 0.84494897 R, = 0,33113104
ay; = 0.91990313 R, = 0.,37640309
s = —0,25323646 R, = 021161946
a; = 0,82731251 R. = —0.46810571
s, == 0.01763646 R, = Ry, == ~-0,19873047
f. = 0.25038934 R,, = 0,04907363
R, = 0.16725358
R, = —-0.,138380645

In both case, we planned the formula as follows. By reason of the formulas
(22.1—7) we evaluated the minimum parameter-number in case of formula
of fifth order (a~ many as the nomber of terms in the first five derivatives,

thatis: 1 1 — 2 = 4 + 8 = 16). Moreover, by reason of iormulm (32.20)—

{32.31) we L\aluatgd thaL atleast, how many steps of k; = = L 1\ pe are required
to have all terms oceurring in A \ till the fifth degree. As Lhexe exist at least 3,
the practicable solutionis 3 of E{” and somany k" steps which can assure the

2]
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occurring of 16 parameters. So we got the formula b) (because we had to include
at least two k{V). First we included all possible parameters —which can theore-
tically occur considering the first five powers of the sum —, and when the
equation was written down, we chose arbitrarily so many and such para-
meters as to solve the equation in the simplest way. The procedure is the same

in case of a), resp., generally.

52. 4 numerical example. We show, for comparison, in case of the
equation

a) by h=1 step

the several solutions, evaluated by means of
1° R. C. N. method of second degree.

y(1) == 1,833

2% the well-known R. €. N. method of fourth degree

R

v(1) = 1,772

3° the method of fifth degree shown in a)
V(1) a= 1,744

47 the method of {ifth degree shown in b)
y(1)=2=1,735

and 57 integration. The exact sclutionis y = 11_7_27

V(1) 2= 1,732
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Summary

We prove that approaching the solution of the equation
¥ =flx. ¥)

by means of the Runge—Kutta method, this method canbeofoptional order of degree. supposing
that we have evaluated as many auxiliary increments, asis sufficient. We show that using the
partial derivatives of function f, in respect to the dependent variable at the evaluation of the
auxiliary increments, the method can again be of optional order of degree, but the number
of the points rapidly decreases at which the function-value.resp..itsderivatives are to be evaluat-
ed. We illustrate the above-mentioned by examples.
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