ÜBER DIE NUMERISCHE LÖSUNG DER MIT DEM LAPLACE-SCHEN AUSDRUCK ZUSAMMENHÄNGENDEN DIFFERENTIALGLEICHUNGEN

Von

G. FODOR

Lehrstuhl für Theoretische Elektrotechnik an der Technischen Universität, Budapest (Eingegangen am 5. September 1958)

Bei der Behandlung technischer und physikalischer Probleme taucht häufig die Notwendigkeit der Lösung partieller Differentialgleichungen auf, die den LAPLACEschen Differentialoperator \varDelta enthalten. Es sind dies die LAPLACEsche Differentialgleichung :

die LAPLACE-POISSONsche Differentialgleichung :

$$\Delta U = S, \tag{1b}$$

die Wellengleichung :

und die inhomogene Wellengleichung:

$$\varDelta U - k^2 U = S. \tag{2}$$

S bezeichnet in diesen Gleichungen eine gegebene Ortsfunktion, k ist im allgemeinen eine bekannte Konstante, kann aber auch eine bekannte Ortsfunktion sein. U ist die gesuchte Funktion, die wir Potential nennen werden, obwohl sie in physikalischem Sinn oft kein Potential ist.

Für die Lösung der Gleichungen stehen uns in gewissen Sonderfällen mathematische Hilfsmittel zur Verfügung, deren Anwendung jedoch meistens großen mathematischen Aufwand erfordert. Die weitere Schwierigkeit besteht darin, daß die Lösung im allgemeinen eine unendliche Reihe oder ein Integral ergibt, deren Auswertung langwierig ist, und oft einen eigenen Apparat beansprucht.

Der Gedanke liegt nahe, das Problem bei gegebener Geometrie numerisch zu lösen. Diese Methode hat den grundsätzlichen Nachteil, daß die Änderung der Abmessungen dem Wesen nach eine neue Aufgabe stellt. Dementsprechend

4 Periodica Polytechnica El II/4.

ist die Ermittlung einer allgemeinen (für alle Abmessungen gültigen) Tabelle oder eines Schaubildes nur nach langwierigen numerischen Berechnungen möglich. Das Verfahren hat jedoch den großen Vorteil, daß seine Anwendung keine großen mathematischen Vorkenntnisse erfordert. Im konkreten Fall führt die numerische Methode schneller zum Ziel als die analytische. In den meisten Fällen benötigt die Auswertung der allgemeinen analytischen Lösung fast so viel numerische Arbeit wie das unmittelbare numerische Verfahren. Daher bedeutet die »geschlossene Formel« oft ein trügerisches Ergebnis.

Im weiteren sollen die Möglichkeiten der numerischen Lösung der erwähnten Differentialgleichungen in einigen Koordinatensystemen unter der Voraussetzung untersucht werden, daß die Funktion U an der Bereichsgrenze gegeben ist (erstes Randwertproblem). Wir spezialisieren die Aufgabe, indem wir nur Fälle untersuchen, bei denen das Potential bloß von zwei Veränderlichen abhängig ist. In praktischen Fällen — infolge der Symmetrie der Anordnung oder anderer Ursachen — ist diese Bedingung recht häufig erfüllt. Zuerst soll die bekannte Methode für die Lösung der ebenen LAPLACEschen Differentialgleichung in rechtwinkligen Koordinaten (Verfahren von LIEBMANN) besprochen werden, worauf die Lösung der inhomogenen Wellengleichung (2) folgen soll, da die übrigen Gleichungen als deren Spezialfälle auffaßbar sind. Der Gegenstand unserer Untersuchung ist die Ermittlung einer neuen, unabhängigen oder abhängigen Veränderlichen, die die numerische Arbeit erleichtert.

1. Die Laplacesche Gleichung in der Ebene in rechtwinkligen Koordinaten [1, 2, 3, 4]

Die bekannteste der numerischen Lösungsmethoden ist diejenige für die Lösung der ebenen LAPLACEschen Gleichung, das sogenannte LIEBMANNsche Verfahren. Es besteht im Wesen aus folgendem :

Es wird die Lösung der ebenen LAPLACEschen Gleichung

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0 \tag{3}$$

gesucht, wenn der Wert des Potentials U längs einer (geschlossenen) Kurve gegeben ist. Versehen wir den Bereich mit einem gleichmäßigen rechtwinkeligen Gitter, wobei der Gitterabstand d viel kleiner ist als irgendeine lineare Abmessung des Bereiches (Bild 1). Untersuchen wir den Zusammenhang zwischen dem Potential eines beliebigen mit 0 gekennzeichneten Punktes und den Potentialwerten der benachbarten Gitterpunkte (1, 2, 3, 4). Ist der Gitterabstand d genügend klein — wie dies soeben vorausgesetzt wurde —, lassen sich die Änderungen mit einem TAYLORschen Polinom dritten Grades gut annähern und es wird

$$\begin{split} &U_{1} \approx U_{0} + \left(\frac{\partial U}{\partial x}\right)_{0} d + \left(\frac{\partial^{2} U}{\partial x^{2}}\right)_{0} \frac{d^{2}}{2} + \left(\frac{\partial^{3} U}{\partial x^{3}}\right)_{0} \frac{d^{3}}{3!}, \\ &U_{2} \approx U_{0} + \left(\frac{\partial U}{\partial y}\right)_{0} d + \left(\frac{\partial^{2} U}{\partial y^{2}}\right)_{0} \frac{d^{2}}{2} + \left(\frac{\partial^{3} U}{\partial y^{3}}\right)_{0} \frac{d^{3}}{3!}, \\ &U_{3} \approx U_{0} - \left(\frac{\partial U}{\partial x}\right)_{0} d + \left(\frac{\partial^{2} U}{\partial x^{2}}\right)_{0} \frac{d^{2}}{2} - \left(\frac{\partial^{3} U}{\partial x^{3}}\right)_{0} \frac{d^{3}}{3!}, \\ &U_{4} \approx U_{0} - \left(\frac{\partial U}{\partial y}\right)_{0} d + \left(\frac{\partial^{2} U}{\partial y^{2}}\right)_{0} \frac{d^{2}}{2} - \left(\frac{\partial^{3} U}{\partial y^{3}}\right) \frac{d^{3}}{3!}. \end{split}$$

$$\end{split}$$

Addiert man diese vier Gleichungen, gelangt man zu der Beziehung :

$$U_1 + U_2 + U_3 + U_4 = 4 U_0 + d^2 \left| \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right|_0.$$
 (5)

Die LAPLACEsche Gleichung in der Ebene (3) ist erfüllt, wenn der Klammerwert gleich Null ist. Die Bedingung hierfür lautet :

$$U_0 = \frac{1}{4} \left[U_1 + U_2 + U_3 + U_4 \right].$$
 (6)

Die die LAPLACEsche Gleichung befriedigende Gitterpunkt-Potentialverteilung ist somit gefunden, wenn der Potentialwert jedes Gitterpunktes das arithmetische Mittel des Potentialwertes der vier benachbarten Gitterpunkte darstellt.

Bild. 1. Das Netz im rechtwinkligen Koordinatensystem

Am Rande eines krummlinigen Bereiches sind die Gitterabstände dnicht sämtlich gleich (siehe die rechte Hälfte in Bild 1). In einem solchen Fall schreiben sich die Änderungen, mit einem TAYLORschen Polinom zweiten Grades ausgedrückt, zu

$$U_{1} \approx U_{0} + \left(\frac{\partial U}{\partial x}\right)_{0} d_{1} + \left(\frac{\partial^{2} U}{\partial x^{2}}\right)_{0} \frac{d_{1}^{2}}{2},$$

$$U_{2} \approx U_{0} + \left(\frac{\partial U}{\partial y}\right)_{0} d_{2} + \left(\frac{\partial^{2} U}{\partial y^{2}}\right)_{0} \frac{d_{2}^{2}}{2},$$

$$U_{3} \approx U_{0} - \left(\frac{\partial U}{\partial x}\right)_{0} d_{3} + \left(\frac{\partial^{2} U}{\partial x^{2}}\right)_{0} \frac{d_{3}^{2}}{2}.$$

$$U_{4} \approx U_{0} - \left(\frac{\partial U}{\partial y}\right)_{0} d_{4} + \left(\frac{\partial^{2} U}{\partial y^{2}}\right)_{0} \frac{d_{4}^{2}}{2}.$$
(7)

Diese vier Gleichungen ergeben zusammen mit (3) für die fünf unbekannten Größen im Punkt 0 (U_o und die vier partiellen Derivierten) gerade fünf lineare Gleichungen, deren Lösung lautet :

$$U_{0} = \frac{d_{1}d_{2}d_{3}d_{4}}{d_{1}d_{3} + d_{2}d_{4}} \left| \frac{1}{d_{1} + d_{3}} \left(\frac{U_{1}}{d_{1}} + \frac{U_{3}}{d_{3}} \right) - \frac{1}{d_{2} + d_{4}} \left(\frac{U_{2}}{d_{2}} + \frac{U_{4}}{d_{4}} \right) \right].$$
(8)

Das Verfahren setzt sich sodann folgendermaßen fort : Am Rande des Bereiches ist das Potential unserer Bedingung gemäß bekannt. Die Aufgabe besteht darin, das Potential der einzelnen Gitterpunkte derart zu bestimmen, daß diese die Gleichungen (6) bzw. (8) befriedigen. Praktisch geschieht dies, indem man die Potentialwerte — dem Gefühl nach richtig, sonst aber beliebig annimmt und die so angenommenen Potentiale gemäß (6) bzw. (8) korrigiert, wobei man alle Gitterpunkte systematisch durchgeht. Das Verfahren ist mehrmals und so lange zu wiederholen, bis sich innerhalb der Rechengenauigkeit keine weitere Korrektion ergibt. Sind die Potentialwerte der Gitterpunkte bekannt, können die Äquipotentialkurven leicht konstruiert werden.

Die numerische Arbeit läßt sich mit gewissen Kunstgriffen übersichtlicher gestalten (»Methode der Reste«). Es mag erwähnt werden, daß man sich zur Beschleunigung der Konvergenz anfänglich zweckmäßig zu einer Über-Korrektion der Potentialwerte entschließt. Es kann übrigens nachgewiesen werden, daß die ursprünglich angenommenen Potentialwerte die Konvergenz höchstens verzögern können, daß jedoch das Verfahren bestimmt zu richtigen Ergebnissen führt. Das bedeutet zugleich, daß ein im Zuge der Berechnung eventuell vorkommender Rechenfehler automatisch korrigiert wird.

2. Die allgemeine Lösung des zweidimensionalen Problems

Als allgemeinsten Fall soll nun die Differentialgleichung

$$\Delta U - k^2 U = S \tag{9}$$

untersucht werden, die die inhomogene Wellengleichung darstellt. Ist S = 0, gelangt man zur homogenen Wellengleichung, ist k = 0, zur POISSONSchen Gleichung und, sofern k = 0 und S = 0, zur LAPLACESchen Gleichung.

Anderseits soll die Aufgabe derart eingeengt werden, daß die Untersuchungen auf Fälle beschränkt bleiben, bei denen die Größen nur von zwei Koordinaten abhängen, d. h.

$$U = U(x_1, x_2), \quad S = S(x_1, x_2).$$
(10)

Bedeuten x_1 , x_2 und x_3 allgemeine orthogonale Koordinaten, dann lautet bekanntlich die allgemeine Form des LAPLACEschen Ausdruckes [4]:

$$\Delta U = \frac{1}{g_1 g_2 g_3} \left[\frac{\partial}{\partial x_1} \frac{g_2 g_3}{g_1} \frac{\partial U}{\partial x_1} \right] + \frac{\partial}{\partial x_2} \left(\frac{g_3 g_1}{g_2} \frac{\partial U}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\frac{g_1 g_2}{g_3} \frac{\partial U}{\partial x_4} \right) \right].$$
(11)

Hier sind g_1 , g_2 und g_3 die Maßfunktionen, die durch den nachstehenden Ausdruck des Quadrates des elementaren Abstandes definiert sind :

$$\mathrm{d}s^2 = (g_1\,\mathrm{d}x_1)^2 + (g_2\,\mathrm{d}x_2)^2 + (g_3\,\mathrm{d}x_3)^2.$$

Im gewählten Sonderfall nimmt die Differentialgleichung (9) folgende Form an :

$$\frac{1}{g_1g_2g_3}\left[\frac{\partial}{\partial x_1}\left(\frac{g_2g_3}{g_1}\frac{\partial U}{\partial x_1}\right)+\frac{\partial}{\partial x_2}\left(\frac{g_3g_1}{g_2}\frac{\partial U}{\partial x_2}\right)-k^2U=S.$$
 (12)

Nach dem Differentieren wird

$$\frac{1}{g_1^2} \frac{\partial^2 U}{\partial x_1^2} + \frac{1}{g_1 g_2 g_3} \frac{\partial}{\partial x_1} \left(\frac{g_2 g_3}{g_1} \right) \frac{\partial U}{\partial x_1} + \frac{1}{g_2^2} \frac{\partial^2 U}{\partial x_2^2} + \frac{1}{g_1 g_2 g_3} \frac{\partial}{\partial x_2} \left(\frac{g_3 g_1}{g_2} \right) \frac{\partial U}{\partial x_2} - k^2 U = S.$$
(13)

Führt man die Abkürzungen

$$\frac{1}{g_1g_2g_3}\frac{\partial}{\partial x_1}\left(\frac{g_2g_3}{g_1}\right) \equiv G_1, \quad \frac{{}^{l}1}{g_1g_2g_3}\frac{\partial}{\partial x_2}\left(\frac{g_3g_1}{g_2}\right) \equiv G_2 \tag{14}$$

ein, nimmt die zu lösende Differentialgleichung folgende Form an :

$$\frac{1}{g_1^2}\frac{\partial^2 U}{\partial x_1^2} + G_1\frac{\partial U}{\partial x_1} + \frac{1}{g_2^2}\frac{\partial^2 U}{\partial x_2^2} + G_2\frac{\partial U}{\partial x_2} - k^2 U = S.$$
(15)

G. FODOR

Bild 2 zeigt einen Teil des zweidimensionalen Netzes. Die α -Werte bedeuten Koordinaten-Differenzen und stellen nicht unbedingt einen Abstand dar (z. B. Winkel-Differenzen). Bei Auftragung des Netzes ist darauf zu achten. daß die Gitterabstände im Verhältnis zu den linearen Abmessungen des Bereiches klein sein müssen, damit sich das Potential U (und die Funktion S) zwischen zwei benachbarten Gitterpunkten nicht sehr ändere. Behandelt man

Bild 2. Das Netzteil in allgemeinen orthogonalen Koordinaten

eine Wellengleichung, so muß der Gitterabstand kleiner sein als der Parameter 1/k, der eine Länge als Dimension hat. es muß also auch die Bedingung $k g_i \alpha_i \ll 1$ erfüllt sein.

Werden die Änderungen durch ein TAYLORsches Polynom zweiten Grades angenähert, ergeben sich nachstehende Gleichungen :

$$\begin{split} U_1 &\approx U_0 + \left(\frac{\partial U}{\partial x_1}\right)_0 a_1 + \left(\frac{\partial^2 U}{\partial x_1^2}\right)_0 \frac{a_1^2}{2}, \\ U_2 &\approx U_0 + \left(\frac{\partial U}{\partial x_2}\right)_0 a_2 + \left(\frac{\partial^2 U}{\partial x_2^2}\right)_0 \frac{a_2^2}{2}, \\ U_3 &\approx U_0 - \left(\frac{\partial U}{\partial x_1}\right)_0 a_3 + \left(\frac{\partial^2 U}{\partial x_1^2}\right)_0 \frac{a_3^2}{2}, \\ U_4 &\approx U_0 - \left(\frac{\partial U}{\partial x_2}\right)_0 a_4 + \left(\frac{\partial^2 U}{\partial x_2^2}\right)_0 \frac{a_4^2}{2}. \end{split}$$
(16)

Gleichung (15) kann für den Punkt 0 in folgender Form aufgeschrieben werden:

$$S_{0} = -k^{2} U_{o} + G_{10} \left(\frac{\partial U}{\partial x_{1}} \right)_{0} + G_{20} \left(\frac{\partial U}{\partial x_{2}} \right)_{0} + \frac{1}{g_{10}^{2}} \left(\frac{\partial^{2} U}{\partial x_{1}^{2}} \right)_{0} + \frac{1}{g_{20}} \left(\frac{\partial^{2} U}{\partial x_{2}^{2}} \right)_{0}.$$
(17)

Betrachtet man U_1 , U_2 , U_3 , U_4 und S als bekannte Werte, lassen sich die fünf Unbekannten ermitteln, doch benötigen wir nur U_o :

$$U_0 = \frac{M}{N}, \qquad (18)$$

$$\begin{split} M &\equiv U_1 \frac{a_4 + a_2}{a_1} \left| \frac{1}{g_{10}^2} + \frac{a_3}{2} G_{10} \right| + U_2 \frac{a_1 + a_3}{a_2} \left(\frac{1}{g_{20}^2} + \frac{a_4}{2} G_{20} \right) + \\ &+ U_3 \frac{a_2 + a_4}{a_3} \left(\frac{1}{g_{10}^2} - \frac{a_1}{2} G_{10} \right) + U_4 \frac{a_1 + a_1}{a_4} \left(\frac{1}{g_{20}^2} - \frac{a_2}{2} G_{20} \right) - \frac{S_0}{2} (a_1 + a_3) (a_2 + a_4), \end{split}$$
(19)
$$N &\equiv \frac{a_4 + a_2}{a_1} \left| \frac{1}{g_{10}^2} + \frac{a_3}{2} G_{10} \right| + \frac{a_1 + a_3}{a_2} \left| \frac{1}{g_{20}^2} + \frac{a_4}{2} G_{20} \right| + \\ &+ \frac{a_2 + a_4}{a_3} \left(\frac{1}{g_{10}^2} - \frac{a_1}{2} G_{10} \right) + \frac{a_3 + a_1}{a_4} \left(\frac{1}{g_{20}^2} - \frac{a_2}{2} G_{20} \right) + \frac{k^2}{2} (a_1 + a_3) (a_2 + a_4). \end{split}$$

Sind die denselben Koordinaten zugehörigen Gitterabstände einander gleich, wird der Ausdruck etwas einfacher; $a_1 = a_3$ sowie $a_2 = a_4$ gesetzt, gilt

$$\begin{split} M &\equiv U_1 \frac{a_2}{a_1} \left(\frac{1}{g_{10}^2} + \frac{a_1}{2} \ G_{10} \right) + U_2 \frac{a_1}{a_2} \left(\frac{1}{g_{20}^2} + \frac{a_2}{2} \ G_{20} \right) + U_3 \frac{a_2}{a_1} \left(\frac{1}{g_{10}^2} - \frac{a_1}{2} \ G_{10} \right) + \\ &+ U_4 \frac{a_1}{a_2} \left(\frac{1}{g_{20}^2} - \frac{a_2}{2} \ G_{20} \right) - S_0 \ a_1 \ a_2, \end{split}$$
(20)
$$N &\equiv 2 \frac{a_2}{a_1} \frac{1}{g_{10}^2} + 2 \frac{a_1}{a_2} \frac{1}{g_{20}^2} + k^2 \ a_1 \ a_2. \end{split}$$

Bei Untersuchung der verschiedenen Koordinatensysteme kann man nun derart verfahren, daß man mit den bekannten Maßfunktionen g_1 , g_2 , g_3 die Beziehungen G_1 und G_2 gemäß (14) bildet ; setzt man diese in Gleichung (19) bzw. (20) ein, stehen die Zusammenhänge für die Korrektion des Potentials zur Verfügung.

3. Kartesische Koordinaten [1, 2, 3, 4]

In rechtwinkligen kartesischen Koordinaten gilt

$$x_1 = x, \ x_2 = y, \ x_3 = z;$$

 $g_1 = g_2 = g_3 = 1.$ (21)

woraus $G_1 = G_2 = 0$. (19) bzw. (20) nehmen mit $a_i = d_i$ die Form

$$U_{0} = \frac{U_{1}\frac{d_{4}+d_{2}}{d_{1}} + U_{2}\frac{d_{1}+d_{3}}{d_{2}} + U_{3}\frac{d_{2}+d_{4}}{d_{3}} + U_{4}\frac{d_{3}+d_{1}}{d_{4}} - \frac{S_{0}}{2}(d_{1}+d_{3})(d_{2}+d_{4})}{\frac{d_{4}+d_{2}}{d_{1}} + \frac{d_{1}+d_{3}}{d_{2}} + \frac{d_{2}+d_{4}}{d_{3}} + \frac{d_{3}+d_{1}}{d_{4}} + \frac{k^{2}}{2}(d_{1}+d_{3})(d_{2}+d_{4})}}$$
(22)

an (hier bedeuten die Gitterabstände wirkliche Abstände), bzw. falls $d_1==d_2=d_3=d_4=d,\,$ wird

$$U_0 = \frac{U_1 + U_2 + U_3 + U_4 - S_0 d^2}{4 + k^2 d^2}.$$
 (23)

Ist S = 0 und k = 0 dann geht (22) in die unmittelbar abgeleitete Gleichung (8), bzw. (23) in die Gleichung (6) über, wie dies auch sein muß.

4. Polare Koordinaten in der Ebene

Aus den Ausführungen unter 1. und 3. ist ersichtlich, daß sich für einen im Inneren des Bereiches liegenden Punkt ein einfacher Zusammenhang für die Potentialkorrektion ergibt. Dagegen ist die Ermittlung des gewogenen Mittelwertes für einen am Rande des Bereiches liegenden Punkt sehr langwierig. Da in der Praxis der kreisförmige Umriß häufig vorkommt, lohnt es sich, die Lösungsmethode auch für polare Koordinaten zu untersuchen.

a) Korrektionsbeziehung in den ursprünglichen Koordinaten [3]

Das polare Koordinatensystem ist nichts anderes als ein Zylinderkoordinatensystem, in welchem das Feld unabhängig von der axialen Richtung betrachtet werden kann (Problem in der Ebene). Die Koordinaten und die Maßfunktionen sind

$$x_1 = r, \quad x_2 = \varphi, \quad x_3 = z;$$

 $g_1 = 1, \quad g_2 = r, \quad g_3 = 1;$
 $G_1 = \frac{1}{r \partial r} (r) = \frac{1}{r}, \quad G_2 = 0.$
(24)

2

Bezeichnet man die radiale Unterteilung mit d, die azimutale dagegen mit α (Bild 3), folgt aus (19), daß

Bild 3. Das Gittersystem in polaren Koordinaten

$$M = U_1 \frac{a_2 + a_4}{d_1} \left(1 + \frac{d_3}{2 r_0} \right) + U_2 \frac{d_1 + d_3}{a_2 r_0^2} + U_3 \frac{a_2 + a_4}{d_3} \left(1 - \frac{d_1}{2 r_0} \right) + U_4 \frac{d_1 + d_3}{a_4 r_0^2} - \frac{S_0}{2} \left(d_1 + d_3 \right) \left(a_2 + a_4 \right),$$
(25)

$$N = \frac{a_2 + a_4}{d_1} \left(1 + \frac{d_3}{2r_0} \right| + \frac{d_1 + d_3}{a_2r_0^2} + \frac{a_2 + a_4}{d_3} \left(1 - \frac{d_1}{2r_0} \right) + \frac{k^2}{2} (d_1 + d_3) (a_2 + a_4).$$

Ist $d_1 = d_3 = d$ und $a_2 = a_4 = a$, so gilt gemäß (20)

$$U_{0} = \frac{U_{1}\left(1 + \frac{d}{2r_{0}}\right) + U_{3}\left(1 - \frac{d}{2r_{0}}\right) + \frac{d^{2}}{a^{2}r_{0}^{2}}(U_{2} + U_{4}) - S_{0}d^{2}}{2 + 2\frac{d^{2}}{a^{2}r_{0}^{2}} + k^{2}d^{2}} \cdot (26)$$

Rechnungstechnisch ist es zweckmäßig, den Parameter

$$n = \frac{r_0}{d} \tag{27}$$

einzuführen, der bei gleichmäßiger radialer Teilung die von innen gerechnete Ordnungszahl des betreffenden Kreises bedeutet. Damit wird

$$U_{0} = \frac{\left(1 + \frac{1}{2n}\right)U_{1} + \left(1 - \frac{1}{2n}\right)U_{3} + \frac{1}{n^{2}a^{2}}(U_{2} + U_{4}) - S_{0}d^{2}}{2\left(1 + \frac{1}{n^{2}a^{2}}\right) + k^{2}d^{2}}.$$
 (28)

Gesondert muß der Fall untersucht werden, wenn auch der Punkt r = 0in dem betrachteten Bereich liegt. Der Mittelpunkt hat selbstverständlich viele benachbarte Punkte, und infolge der Singularität der Differentialgleichung gelten dort auch die Korrektionszusammenhänge nicht. Da sämtliche Gitterpunkte vom Mittelpunkt gleich weit entfernt liegen, erübrigt sich jetzt ein Abwägen. Legt man vom Mittelpunkt in verschiedene Richtungen ein rechtwinkliges Netz, läßt sich (23) folgendermaßen verallgemeinern :

$$U_{0} = \frac{\overline{U}_{i} - \frac{1}{4} S_{0} d^{2}}{1 + \frac{1}{4} k^{2} d^{2}}; r = 0, \quad n = 0,$$
(29)

wobei \overline{U}_i das arithmetische Mittel des Potentials des *m* benachbarten Gitterpunktes bezeichnet:

$$\overline{U}_i = \frac{1}{m} \sum_{i=1}^m U_i.$$
(30)

b) Einführung einer neuen unabhängigen Veränderlichen [3]

Wie man sieht, gestaltet sich die Berechnung dieser Zusammenhänge viel umständlicher als derjenigen im kartesischen Koordinatensystem. Die Schwierigkeit ergibt sich dadurch, daß die Funktion G_1 von Null verschieden ist. Man kann versuchen, dies so auszuschalten, daß man den radialen Gitterabstand nicht als gleichbleibend annimmt, was im wesentlichen so viel bedeutet, daß man statt der Veränderlichen r eine geeignete, neue unabhängige Veränderliche $\varrho(r)$ einführt.

Die neuen Veränderlichen sind

$$x_{1} = \varrho(r), \quad x_{2} = \varphi, \quad x_{3} = z;$$

$$g_{1} = \frac{\mathrm{d}r}{\mathrm{d}\varrho}, \quad g_{2} = r(\varrho), \quad g_{3} = 1;$$

$$G_{1} = \frac{1}{\frac{\mathrm{d}r}{\mathrm{d}\varrho}r(\varrho)} \frac{\partial}{\partial \varrho} \left(\frac{r(\varrho)}{\frac{\mathrm{d}r}{\mathrm{d}\varrho}}\right), \quad G_{2} = 0$$
(31)

Aus der Bedingung $G_1 = 0$ folgt, daß die in der Klammer stehende Funktion konstant sein muß. Der Wert der Konstanten wird der Einfachkeit halber gleich 1 gewählt, womit sich die für die Ermittlung der Funktion r(g) dienende Differentialgleichung in der Form

$$\frac{\mathrm{d}\,\mathbf{r}}{\mathrm{d}\,\boldsymbol{\varrho}} = \mathbf{r}\left(\boldsymbol{\varrho}\right) \tag{32}$$

schreibt. Das Integral dieser Differentialgleichung lautet

$$r = Re^{\varrho}, \quad \varrho = \ln \frac{r}{R},$$
 (33)

wobei R eine unbestimmte Konstante mit einer Länge als Dimension ist. Die Maßfunktion g_1 hat den Wert

$$g_1 = \frac{\mathrm{d}r}{\mathrm{d}\varrho} = r = R\mathrm{e}^\varrho \;. \tag{34}$$

Bezeichnet man die Gitterabstände in der Richtung φ mit α , in der Richtung ϱ dagegen mit β , gilt mit $G_1 = 0$ aus Gleichung (20)

$$U_{0} = \frac{U_{1} \frac{a}{\beta r_{0}^{2}} + U_{2} \frac{\beta}{\alpha r_{0}^{2}} + U_{3} \frac{a}{\beta r_{0}^{2}} + U_{4} \frac{\beta}{\alpha r_{0}^{2}} - S_{0} \alpha \beta}{2 \frac{a}{\beta r_{0}^{2}} + 2 \frac{\beta}{\alpha r_{0}^{2}} + k^{2} \alpha \beta} .$$
 (35)

Zur einfachsten Beziehung gelangt man, wenn man $\alpha = \beta$ wählt ; in diesem Fall gilt in weitgehender Analogie mit (23)

$$U_{0} = \frac{U_{1} + U_{2} + U_{3} + U_{4} - S_{0} r_{0}^{2} a^{2}}{4 + k^{2} r_{0}^{2} a^{2}}.$$
 (36)

Sind die Gitterabstände ungleich, wird gemäß (19)

$$M = \frac{a_4 + a_2}{a_1} U_1 + \frac{a_1 + a_3}{a_2} U_2 + \frac{a_2 + a_4}{a_3} U_3 + \frac{a_3 + a_1}{a_4} U_4 - \frac{S_0}{2} r_0^2 (a_1 + a_3) (a_2 + a_4), \qquad (37)$$

$$N = \frac{a_4 + a_2}{a_1} + \frac{a_1 + a_3}{a_2} + \frac{a_2 + a_4}{a_3} + \frac{a_3 + a_1}{a_4} + \frac{k^2}{2} r_0^2 (a_1 + a_3) (a_2 + a_4).$$

Die azimutale Unterteilung α wird auf Grund der Geometrie angenommen. Durch zweckmäßige Wahl des Parameters R kann man $\beta = \alpha$ erreichen. Bezeichnet man den größten Halbmesser mit r_1 , lassen sich die Halbmesser des Netzes der Reihenfolge nach aus der Beziehung

$$r_{\lambda} = Re^{\varrho}, \quad r_{\lambda+1} = Re^{\varrho-a}; \quad \frac{r_{\lambda+1}}{r_{\lambda}} = e^{-a} = c$$
 (38)

ermitteln, und zwar

$$r_1 = r_1, \quad r_2 = c r_1, \quad r_3 = c^2 r_1, \quad \dots, \quad r_{\lambda} = c^{\lambda-1} r_1.$$
 (39)

Ein solches Netz zeigt Bild 4. Man erkennt, daß der radiale Gitterabstand nach außen zu anwächst, was gleichzeitig auch den grundlegenden Nachteil

Bild 4. Das Gittersystem in polaren Koordinaten mit den neuen unabhängigen Veränderlichen $\varrho = \ln R/r$. In diesem Fall ist $\alpha = \pi/12 = 15^{\circ}$ und daher $c = e^{-\alpha} = 0.77$

dieser Methode beleuchtet : In Nähe der Achse häufen sich die Gitterpunkte sehr an, was die Rechenarbeit überflüssig anwachsen läßt ; am äußeren Rande des Bereiches verschlechtert sich gleichzeitig die Genauigkeit des Verfahrens. Dies verursacht besonders dann große Schwierigkeiten, wenn der Bereich auch den Punkt r = 0 enthält.

c) Einführung einer neuen abhängigen Veränderlichen

Ein dritter Weg zur Lösung kann folgender sein : Man führt statt der Veränderlichen $U(r, \varphi)$ eine neue abhängige Veränderliche mit Hilfe der Gleichung

$$U(\mathbf{r},\varphi) = \mathbf{r}^m \, v(\mathbf{r},\varphi) \tag{40}$$

ein. Der Exponent m hat vorerst einen beliebigen Wert. In der Differentialgleichung (12) wird sich der Wert des ersten Gliedes ändern und es wird

$$\frac{1}{g_1g_2g} \frac{\partial}{\partial x_1} \left(\frac{g_2g_3}{g_1} \frac{\partial U}{\partial x_1} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial r^m v}{\partial r} \right) =$$

$$= r^m \frac{\partial^2 v}{\partial r^2} + (2m+1) r^{m-1} \frac{\partial v}{\partial r} + m^2 r^{m-2} v.$$
(41)

Ist $m = -\frac{1}{2}$, verschwindet der Faktor des ersten Derivierten, was formal bedeutet, als wäre G_1 gleich Null. (13) nimmt die Form

$$r^{m}\frac{\partial^{2} v}{\partial r^{2}} + m^{2}r^{m-2}v + \frac{1}{r^{2}}r^{m}\frac{\partial^{2} v}{\partial \varphi^{2}} - k^{2}r^{m}v = S; \qquad (42)$$

an, wobei

$$v = \sqrt{r} U \tag{43}$$

ist. Vereinfacht man durch r^m und substituiert man $m = -\frac{1}{2}$, so gilt

$$\frac{\partial^2 v}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \varphi^2} - \left(k^2 - \frac{1}{4r^2}\right)v = S\,\sqrt[3]{r}\,. \tag{44}$$

Nach Vergleich mit Gleichung (15) kann man formal schreiben, daß

$$g_1 \longrightarrow 1, \quad G_1 \longrightarrow 0, \quad g_2 \longrightarrow r, \quad G_2 \longrightarrow 0,$$

$$k^2 \longrightarrow k^2 - \frac{1}{4r^2} \quad , \quad S \longrightarrow \sqrt{r} S,$$
(45)

wobei r an der Stelle zu nehmen ist, wo die Korrektion geschieht. d. h. $r = r_o$.

Bezeichnet man den radialen Gitterabstand mit d, den azimutalen dagegen mit a, wird aus (20) im Falle gleicher Gitterabstände

$$v_{0} = \frac{v_{1} + v_{3} + \frac{d^{2}}{a^{2} r_{0}^{2}} (v_{2} + v_{4}) - S_{0} \sqrt{r_{0}} d^{2}}{2 \left(1 + \frac{d^{2}}{a^{2} r_{0}^{2}} \right) + \left(k^{2} - \frac{1}{4 r_{0}^{2}} \right) d^{2}}.$$
(46)

Führt man wieder die Ordnungszahl der Kreise $n = r_{\iota}/d$ ein, gilt

$$v_{0} = \frac{v_{1} + v_{3} + \frac{1}{n^{2} a^{2}} (v_{2} + v_{4}) - S_{0} \sqrt{n} \sqrt[3]{d^{3}}}{2\left(1 + \frac{1}{n^{2} a^{2}} + \frac{1}{8 n^{2}}\right) + k^{2} d^{2}}$$
(47)

Allgemeine Gitterabstände vorausgesetzt, ergibt sich aus (19)

$$M = \frac{a_4 + a_2}{d_1}v_1 + \frac{d_1 + d_3}{a_2r_0^2}v_2 + \frac{a_2 + a_4}{d_3}v_3 + \frac{d_3 + d_4}{a_4r_0^2}v_4 - \frac{S_0}{2}\sqrt[3]{r_0}(d_1 + d_3)(a_2 + a_4),$$

$$N = \frac{a_4 + a_2}{d_1} + \frac{d_1 + d_3}{a_2r_0^2} + \frac{a_2 + a_4}{d_3} + \frac{d_3 + d_4}{a_4r_0^2} - \frac{d_1 + d_3}{8r_0^2}(a_2 + a_4) + \quad (48)$$

$$+ \frac{k^2}{2}(d_1 + d_3)(a_2 + a_4).$$

Wieder muß der Fall separat untersucht werden, daß das Potential auch im Punkte r = 0 ermittelt werden soll. Da das Potential U und seine Derivierten überall endlich sind, lassen sich folgende Beziehungen schreiben :

$$v = \sqrt[]{r} U \to 0 \qquad \text{falls} \quad r \to 0,$$

$$\frac{\partial v}{\partial r} = \sqrt[]{r} \frac{\partial U}{\partial r} + \frac{1}{2\sqrt[]{r}} \quad U \to \frac{1}{2\sqrt[]{r}} \quad U = \frac{v}{2r}, \text{ falls} \quad r \to 0.$$
(49)

Im Punkt r = 0 streben also sämtliche Derivierte von v auf r gegen unendlich. Dem Halbmesser r = d (n = 1) entlang kann also nicht $v_3 = 0$ substituiert werden, da dort die Annäherung mit dem TAYLORschen Polynom zweiten Grades nicht gestattet ist. Die für die Ermittlung der Korrektionsbeziehung nötige vierte Angabe ist eben durch (49) gegeben. An der Stelle r = d lassen sich nämlich folgende Beziehungen aufschreiben:

$$v_{1} \approx v_{0} + \left(\frac{\partial}{\partial} \frac{v}{r}\right)_{0} d + \left(\frac{\partial^{2} v}{\partial r}\right)_{0} \frac{d^{2}}{2} \approx$$

$$\approx v_{0} + \frac{v_{0}}{2 d} d + \left(\frac{\partial^{2} v}{\partial r^{2}}\right)_{0} \frac{d^{2}}{2},$$

$$v_{2} \approx v_{0} + \left(\frac{\partial}{\partial} \frac{v}{\varphi}\right)_{0} a + \left(\frac{\partial^{2} v}{\partial \varphi^{2}}\right)_{0} \frac{a^{2}}{2},$$

$$v_{4} \approx v_{0} - \left(\frac{\partial}{\partial} \frac{v}{\varphi}\right)_{0} a + \left(\frac{\partial^{2} v}{\partial \varphi^{2}}\right)_{0} \frac{a^{2}}{2}.$$
(50)

Berücksichtigt man nun auch die auf den Punkt r = d bezogene Differentialgleichung (44), gelangt man zu der Korrektionsbeziehung

$$v_{0} = \frac{2 v_{1} + \frac{1}{a^{2}} (v_{2} + v_{4}) - S_{0} \sqrt[3]{d^{3}}}{2,75 + \frac{2}{a^{2}} + k^{2} d^{2}}, \qquad n = 1.$$
 (51)

Vergleicht man die Ausdrücke (28) bzw. (47), läßt sich der Vorteil dieser Methode feststellen : Während nämlich die Potentiale U_1 und U_3 gewogen werden müssen, ist dies bei den Hilfspotentialen v_1 und v_3 nicht notwendig.

Man verfährt wie folgt. Vorerst wird das Netz angefertigt. Anstatt der Randwerte schreibt man die Werte von $v = \sqrt{r} U$ ein. Danach wird die Potentialkorrektur an Hand der Gleichungen (47), (51) bzw. (48) durchgeführt. (Ist n > 3, bedeutet die Vernachlässigung des Gliedes 1/8 n^2 einen Fehler, der kleiner ist als 1%.) Aus den so erhaltenen Werten des Hilfspotentials v kann man mit Hilfe der Beziehung $U = v/\sqrt{r}$ die Werte des Potentials U errechnen. Das Potential des Mittelpunktes läßt sich aus (29) ermitteln.

5. Zylindersymmetrische Felder in Zylinderkoordinaten

a) Korrektionsbeziehung in den ursprünglichen Koordinaten (2)

In zylindersymmetrischen Feldern hängt das Potential U nicht vom Winkel φ ab. Die Koordinaten und die Maßfunktionen werden zweckmäßig in folgender Weise geordnet

$$x_{1} = z, \quad x_{2} = r, \quad x_{3} = \varphi;$$

$$g_{1} = 1, \quad g_{2} = 1, \quad g_{3} = r;$$

$$G_{1} = 0, \quad G_{2} = \frac{1}{r} \frac{\partial}{\partial r} r = \frac{1}{r}.$$
(52)

Bezeichnet man die Gitterabstände in der Richtung z mit d_1 , d_3 , in der Richtung r mit d_2 , d_4 , ergibt sich aus (19)

$$\begin{split} M &= U_1 \frac{d_4 + d_2}{d_2} + U_2 \frac{d_1 + d_3}{d_2} \left(1 + \frac{d_1}{2 r_0} \right) + U_3 \frac{d_2 + d_4}{d_3} + \\ &+ U_4 \frac{d_3 + d_1}{d_4} \left(1 - \frac{d_2}{2 r_0} \right) - \frac{S_0}{2} \left(d_1 + d_3 \right) \left(d_2 + d_4 \right), \end{split}$$
(53)

$$\begin{split} N = & \frac{d_4 + d_2}{d_1} + \frac{d_1 + d_3}{d_2} \Big(1 + \frac{d_4}{2 \, r_0} \Big) + \frac{d_2 + d_4}{d_3} + \frac{d_3 + d_1}{d_4} \Big(1 - \frac{d_2}{2 \, r_0} \Big) + \\ & + \frac{k^2}{2} (d_1 + d_3) \left(d_2 + d_4 \right). \end{split}$$

Im Inneren des Bereiches gilt im Falle gleicher Gitterabstände aus (20)

$$U_{0} = \frac{U_{1} + \left(1 + \frac{1}{2n}\right)U_{2} + U_{3} + \left(1 - \frac{1}{2n}\right)U_{4} - S_{0}d^{2}}{4 + k^{2}d^{2}},$$
 (54)

wohei $n = r_o/d$. Längs der Achse – wor = 0 – gilt aus Symmetriegründen $U_2 = U_4$, woraus

$$U_0 = \frac{U_1 + 2U_2 + U_3 - S_0 d^2}{4 + k^2 d^2}, \qquad r = 0.$$
 (55)

b) Einführung einer neuen unabhängigen Veränderlichen

Die Anwendung der Beziehung (54) gestaltet sich wieder deshalb schwierig, weil die Potentialwerte im Zähler gewogen sein müssen. Das System (52) weist eine weitgehende Analogie mit dem System (24) auf, man kann also versuchen, die neue unabhängige Veränderliche $\rho = \ln r/R$ einzuführen. Ganz ähnlich, wie in Punkt 4 wird

$$x_{1} = z, \quad x_{2} = \varrho = \ln \frac{r}{R}, \quad x_{3} = \varphi;$$

$$g_{1} = 1, \quad g_{2} = Re^{\varrho} = r, \quad g_{3} = r = Re^{\varrho};$$

$$G_{1} = 0, \quad G_{2} = \frac{1}{Re^{\varrho}} \frac{\partial}{\partial \varrho} \frac{Re^{\varrho}}{Re^{\varrho}} = 0.$$
(56)

Bezeichnet d den Gitterabstand in Richtung z und β in Richtung ϱ , ergibt sich aus (20)

$$U_{0} = \frac{U_{1} + U_{3} + \frac{d^{2}}{r_{0}^{2}\beta^{2}}(U_{2} + U_{4}) - S_{0}d^{2}}{2\left(1 + \frac{d^{2}}{r_{0}^{2}\beta^{2}}\right) + k^{2}d^{2}}.$$
(57)

(57) ist nicht einfacher als die Beziehung (54). Da ferner auch eine Ungenauigkeit wegen der ungleichen Gitterabstände auftritt, ist es hier unzweckmäßig, diese Methode anzuwenden.

c) Einführung einer neuen abhängigen Veränderlichen

Es kann das Verfahren der Einführung einer neuen abhängigen Veränderlichen angewendet werden. Da die zu Null zu machende Funktion G_2 aus demselben Glied stammt wie im vorigen Punkt, kann man die Ergebnisse von dort übernehmen (Gleichungen 40-42):

$$U(z,r) = \frac{v(z,r)}{\sqrt{r}},$$
(58)

$$g_1 \longrightarrow 1, \quad g_2 \longrightarrow 1, \quad G_1 \longrightarrow 0, \quad G_2 \longrightarrow 0,$$

$$k^2 \longrightarrow k^2 - \frac{1}{4r^2}, \quad S \longrightarrow \sqrt{r} S.$$
(59)

Bei gleichen Gitterabständen folgt aus (20)

$$v_{0} = \frac{v_{1} + v_{2} + v_{3} + v_{4} - S_{0}\sqrt{n}\sqrt{d^{3}}}{4 - \frac{1}{4n^{2}} + k^{2}d^{2}} \cdot$$
(60)

Sind dagegen die Gitterabständen allgemein, dann wird gemäß (19)

$$M = v_1 \frac{d_4 + d_2}{d_1} + v_2 \frac{d_1 + d_3}{d_2} + v_3 \frac{d_2 + d_4}{d_3} + v_4 \frac{d_3 + d_1}{d_4} - \frac{S_0}{2} \sqrt[3]{r_0} (d_1 + d_3) (d_2 + d_4),$$
(61)
$$N = \frac{d_4 + d_2}{d_1} + \frac{d_1 + d_3}{d_2} + \frac{d_2 + d_4}{d_3} + \frac{d_3 + d_1}{d_4} - \frac{(d_1 + d_3) (d_2 + d_4)}{8 r_0^2} + \frac{k^2}{2} (d_1 + d_3) (d_2 + d_4).$$

Auch hier muß wieder der Fall gesondert behandelt werden, daß das Potential auch längs der Symmetrieachse (r = 0) zu bestimmen ist. Wie im vorigen Punkt (Gleichung 49) läßt sich auch hier zeigen, daß die partiellen Derivierten der Funktion v auf r im Punkt r = 0 gegen unendlich streben. Mit derselben Methode läßt sich auch die Korrektionsbeziehung an der ersten Teilung ermitteln. Schreibt man in (51) statt α formal 1 und paßt man die Indizes den vorherigen an, dann ergibt sich

$$v_0 = \frac{v_1 + 2 v_2 + v_3 - S_0 \sqrt{d^3}}{4,75 + k^2 d^2}, \qquad n = 1.$$
 (62)

Das Verfahren und die Vorteile der Methode sind die gleichen wie bei den Polarkoordinaten besprochen, ja hier brauchen sogar die Werte des Hilfspotentials nicht erwogen zu werden. Verzichtet man auf eine größere Genauigkeit als 1%, kann in (60) bei n > 2 das Glied 1/4 n^2 neben 4 vernachlässigt werden. Ist k = 0 (LAPLACESche Gleichung, POISSONSche Gleichung), erleichtert man sich die Rechenarbeit sehr mittels einer Tabelle, die folgende Spalten enthält

Die Tabellenwerte lassen sich mit der Rechenmaschine schnell ermitteln.

⁵ Periodica Polytechnica El II/4.

6. Zylindersymmetrische Felder in Kugelkoordinaten

a) Korrektionsbeziehung in den ursprünglichen Koordinaten

Wegen der Form des Umrisses ist es häufig zweckmäßiger, die zylindersymmetrischen Felder in Kugelkoordinaten zu berechnen. Infolge der Zylindersymmetrie ist das Potential U unabhängig vom Winkel φ . Dementsprechend ergeben sich folgende Koordinaten und Maßfunktionen :

$$x_{1} = r, \qquad x_{2} = \vartheta, \qquad x_{3} = \varphi;$$

$$g_{1} = 1, \qquad g_{2} = r, \qquad g_{3} = r \sin \vartheta;$$

$$G_{1} = \frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial r} (r^{2} \sin \vartheta) = \frac{2}{r},$$

$$G_{2} = \frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta = \frac{\cos \vartheta}{r^{2} \sin \vartheta}.$$
(63)

Bezeichnet d den radialen Gitterabstand und a denjenigen in Richtung des Winkels, dann wird mit dem Parameter $n = r_a/d$ aus (20)

$$M = \left(1 + \frac{1}{n}\right) U_1 + \frac{1}{n^2 a^2} \left(1 + \frac{a \cos \vartheta_0}{2 \sin \vartheta_0}\right) U_2 + \left(1 - \frac{1}{n}\right) U_3 + \frac{1}{n^2 a^2} \left(1 - \frac{a \cos \vartheta_0}{2 \sin \vartheta_0}\right) U_4 - S_0 d^2, \qquad (64)$$
$$N = 2 \left(1 + \frac{1}{n^2 a^2}\right) + k^2 d^2.$$

Da dieser Zusammenhang außerordentlich umständlich ist, kann er praktisch kaum angewendet werden. Sind die Gitterabstände ungleich, so ergibt sich sebstverständlich eine noch unübersichtlichere Formel.

b) Einführung einer neuen abhängigen Veränderlichen

Es könnte versucht werden, die Vereinfachung mit Hilfe einer neuen unabhängigen Veränderlichen zu erreichen, doch bedeutete dies keine große Vereinfachung, und die ungleichmäßigen Gitterabstände verursachten weitere Nachteile. Es soll daher eine neue, zweckmäßige unabhängige Veränderliche gesucht werden, bei der die Funktionen G_1 und G_2 einfacher, womöglich Null werden.

Man führt die durch die Gleichung

$$U(\mathbf{r},\vartheta) = r^{\mu}\sin^{\nu}\vartheta\,v(\mathbf{r},\vartheta) \tag{65}$$

definierte neue, abhängige Veränderliche v ein. Der LAPLACEsche Ausdruck (11) nimmt dann folgende Form an :

$$\Delta U = \frac{1}{r^2 \sin \vartheta} \left[\frac{\partial}{\partial r} \left(r^2 \sin \vartheta \, \frac{\partial}{\partial r} r^{\mu} \sin^{\nu} \vartheta \, v \right) + \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \, \frac{\partial}{\partial \vartheta} r^{\mu} \sin^{\nu} \vartheta \, v \right) \right]. \tag{66}$$

Führt man die Differentierungen durch, wird:

$$\Delta U = \frac{r^{\mu} \sin^{\nu+1} \vartheta}{r^2 \sin \vartheta} \bigg[r^2 \frac{\partial^2 v}{\partial r^2} + 2(\mu+1) r \frac{\partial v}{\partial r} + \mu (\mu+1) v + \frac{\partial^2 v}{\partial \vartheta^2} + (2\nu+1) \frac{\cos \vartheta}{\sin \vartheta} \frac{\partial v}{\partial \vartheta} + \frac{\nu \cos^2 \vartheta - \sin^2 \vartheta}{\sin^2 \vartheta} v \bigg].$$

$$(67)$$

Die Differentialgleichung erhält schließlich die Endform

$$\frac{\partial^{2} v}{\partial r^{2}} + 2 \frac{\mu + 1}{r} \frac{\partial v}{\partial r} + \mu \frac{\mu + 1}{r^{2}} v + \frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}} + \frac{2 v + 1}{r^{2}} \frac{\cos \theta}{\sin \theta} \frac{\partial v}{\partial \theta} + \frac{v \cos^{2} \theta - \sin^{2} \theta}{r^{2} \sin^{2} \theta} v - k^{2} v = \frac{S}{r^{\mu} \sin^{\nu} \theta}.$$
(68)

Vergleicht man diesen Ausdruck mit der allgemeinen Form (15), so ergeben sich folgende Kongruenzen

$$g_{1} \longrightarrow 1, \quad G_{1} \longrightarrow 2\frac{\mu+1}{r}, \quad g_{2} \longrightarrow r, \quad G_{2} \longrightarrow \frac{2\nu+1}{r^{2}} \frac{\cos\vartheta}{\sin\vartheta},$$

$$k^{2} \longrightarrow k^{2} - \mu \frac{\mu+1}{r^{2}} - \frac{\nu \cos^{2}\vartheta - \sin^{2}\vartheta}{r^{2}\sin^{2}\vartheta}, \quad S \longrightarrow \frac{S}{r^{\mu} \sin^{r}\vartheta}.$$
(69)

Durch Wahl von $\mu = -1$, bzw. $\nu = -1/2$ lassen sich die Funktionen G_1 bzw. G_2 gleich Null setzen, so daß man nach Einführung der durch die Gleichung

$$U(\mathbf{r},\vartheta) = \frac{v(\mathbf{r},\vartheta)}{\mathbf{r}\sqrt{\sin\vartheta}}$$
(70)

definierten neuen Veränderlichen v mit folgenden Parameterwerten zu rechnen hat :

$$g_{1} \longrightarrow 1, \quad G_{1} \longrightarrow 0, \quad g_{2} \longrightarrow r, \quad G_{2} \longrightarrow 0, \quad S \longrightarrow S r \sqrt{\sin \vartheta},$$

$$(71)$$

$$k^{2} \longrightarrow k^{2} + \frac{\frac{1}{2}\cos^{2}\vartheta + \sin^{2}\vartheta}{r^{2}\sin^{2}\vartheta} = k^{2} + \frac{1 + \sin^{2}\vartheta}{2r^{2}\sin\vartheta}.$$

- *

Mit $n = r_o/d$ erhält man aus (20)

$$v_{0} = \frac{v_{1} + v_{3} + \frac{1}{n^{2} \alpha^{2}} (v_{2} + v_{4}) - S_{0} n \sqrt{\sin \vartheta_{0}} d^{3}}{2\left(1 + \frac{1}{n^{2} \alpha^{2}} + \frac{1 + \sin^{2} \vartheta_{0}}{4 n^{2} \sin^{2} \vartheta_{0}}\right) + k^{2} d^{2}}.$$
(72)

Sind die Gitterabstände ungleich, folgt aus Gleichung (19)

$$M = v_1 \frac{a_4 + a_2}{d_1} + v_2 \frac{d_1 + d_3}{a_2 r_0^2} + v_3 \frac{a_2 + a_4}{d_3} + v_4 \frac{d_3 + d_1}{a_4 r_0^2} - \frac{S_0}{2} r_0 \sqrt{\sin \vartheta_0} \left(d_1 + d_3 \right) \left(a_2 + a_4 \right),$$
(73)

$$N = rac{a_4 + a_2}{d_1} + rac{d_1 + d_3}{a_2 \, r_0^2} + rac{a_2 + a_4}{d_3} + rac{d_3 + d_1}{a_4 \, r_0^2} +
onumber \ + rac{1 + \sin^2 artheta_0}{4 \, r_0^2 \sin^2 artheta_0} \left(d_1 + d_3
ight) \left(a_2 + a_4
ight) + rac{k^2}{2} \left(d_1 + d_3
ight) \left(a_2 + a_4
ight) .$$

Die Frage der Geraden sin $\vartheta = 0$ (Symmetrieachse) und der folgenden Netzgeraden ($\vartheta = a$ bzw. $\vartheta = \pi - a$) muß wieder separat betrachtet werden. Da $v = r \sqrt{\sin \vartheta} U$, streben die Derivierten von v nach ϑ an der Stelle sin $\vartheta = 0$

Bild 5. Das Gittersystem in Zylinderkoordinaten

(d. h. $\vartheta = 0$ und $\vartheta = \pi$, wo v = 0) gegen Unendlich, genau so, wie im Falle der Polar- oder Zylinderkoordinaten. Hier kann ebenfalls die Annäherung

$$\frac{\partial v}{\partial \vartheta} = r \sqrt{\sin \vartheta} \frac{\partial U}{\partial \vartheta} + \frac{r U}{2 \sqrt{\sin \vartheta}} \approx \frac{r U}{2 \sqrt{\sin \vartheta}} = \frac{v}{2 \sin \vartheta}$$
(74)

Tabelle	1

Koordinatensystem	Veränderliche	Korrektionszusammenhang im allgemeinen Fall	Korrektionszusammenhang, wenn die Gitterabstände gleich sind
Rechtwinkliges kartesisches (ebenes Problem, urabhängig von <i>z</i>)	x, y, z U = U (x, y) $U_{a} = rac{M}{N}$	$M = U_1 \frac{d_4 + d_2}{d_1} + U_2 \frac{d_1 + d_3}{d_2} + U_3 \frac{d_2 + d_4}{d_3} + U_4 \frac{d_3 + d_1}{d_4} - \frac{S_0}{2} (d_1 + d_3) (d_2 + d_4)$ $N = \frac{d_4 + d_2}{d_1} + \frac{d_1 + d_3}{d_2} + \frac{d_2 + d_4}{d_3} + \frac{d_3 + d_1}{d_4} + \frac{k^2}{2} (d_1 + d_3) (d_2 + d_1)$	$M = U_1 + U_2 + U_3 + U_4 - S_0 d^2$ $N = 4 + k^2 d^2$
Ebenes polares (ebenes Problem, unabhängig von z)	r, φ, z $U = U(r, \varphi)$ $U_{0} = rac{M}{N}$	$M = U_1 \frac{a_2 + a_4}{d_1} \left(1 + \frac{d_3}{2 r_0} \right) + U_2 \frac{d_1 + d_3}{a_2 r_0^3} + U_3 \frac{a_2 + a_4}{d_3} \left(1 - \frac{d_1}{2 r_0} \right) + U_4 \frac{d_1 + d_3}{a_4 r_0^5} - \frac{S_0}{2} \left(d_1 + d_3 \right) \left(a_2 + a_4 \right)$	$M = \left(1 + \frac{1}{2n}\right)U_1 + \left(1 - \frac{1}{2n}\right)U_3 + \frac{1}{n^2 a^2} (U_2 + U_4) - S_0 d^2$ $N = 2\left(1 + \frac{1}{n^2 a^2}\right) + k^2 d^2$
	$n = \frac{r_0}{d}$	$N = \frac{a_2}{d_1} \frac{a_4}{d_1} \left(1 + \frac{a_3}{2r_0} \right) + \frac{a_1}{a_2} \frac{a_3}{r_0^3} + \frac{a_2}{d_3} \frac{1}{a_4} \left(1 - \frac{a_1}{2r_0} \right) + \frac{a_1}{a_4} \frac{1}{r_0^3} + \frac{k_2}{2} \left(d_1 + d_3 \right) \left(a_2 + a_4 \right)$	$r = 0 M = U_i - \frac{\pi}{4}, N = 1 + \frac{\pi}{4}$ $\overline{U}_i = \frac{1}{m} \sum_{i=1}^m U_i m = \frac{2\pi}{a}$
	arrho, arphi, z $U = U\left(arrho, arphi ight)$	$M = U_1 \frac{a_1 + a_2}{a_1} + U_2 \frac{a_1 + a_3}{a_2} + U_3 \frac{a_2 + a_4}{a_3} + U_1 \frac{a_3 + a_1}{a_4} - \frac{S_0}{2} r_0^2 (a_1 + a_3) (a_2 + a_1)$	$M = U_1 + U_2 + U_3 + U_4 - S_0 r_0^2 a^2$ $N = 4 + k^2 r_0^2 a^2$
	$U_0 = \frac{M}{N}$ $\varrho = \ln \frac{r}{R}$	$N = \frac{a_1 + a_2}{a_1} + \frac{a_1 + a_3}{a_2} + \frac{a_2 + a_4}{a_3} + \frac{a_3 + a_4}{a_4} + \frac{k^2}{2} r_0^2 (a_1 + a_3) (a_2 + a_4)$ $\delta \varrho = a_1, \ a_3 \delta \varphi = a_2, \ a_4$	$\delta arrho = \delta arphi$.
	$r, arphi, oldsymbol{z}$ $v\left(r, arphi ight) = rac{1}{2} \overline{r} U\left(r, arphi ight)$	$M = v_1 \frac{a_4 + a_2}{d_1} + v_2 \frac{d_1 + d_3}{a_2 r_0^3} + v_3 \frac{a_2 + a_4}{d_3} + v_4 \frac{d_3 + d_1}{a_4 r_0^3} - \frac{S_0}{2} \sqrt[3]{r_0} (d_1 + d_3) (a_2 + a_4)$	$M = v_1 + v_3 + \frac{1}{n^2 a^2} (v_2 + v_4) - S_0 \sqrt[3]{r_0} d^2$ $N = 2 \left(1 + \frac{1}{n^2 a^2} - \frac{1}{8 n^2} \right) + k^2 d^2$
	$v_0 = rac{M}{N}$ $n = rac{r_0}{d}$	$N = \frac{a_1 + a_2}{d_1} + \frac{d_1 + d_3}{a_2 r_0^2} + \frac{a_2}{d_3} + \frac{a_3}{d_4} + \frac{d_3 + d_4}{a_4 r_0^3} - \frac{d_1 + d_3}{8 r_0^2} (d_2 + d_4) + \frac{k^2}{2} (d_1 + d_3) (a_2 + a_4)$	$v_0 = \frac{2 v_1 + \frac{1}{a^2} (v_2 + v_4) - S_v \ \ \forall d^3}{2,75 + \frac{2}{a^2} + k^2 d^2}, n = 1$
Zylindrisches (zylindersymmetrisch, unabhängig von φ)	z, r, φ U = U(z, r) $U_0 = rac{M}{N}$	$\begin{split} M &= U_1 \frac{d_1 + d_2}{d_1} + U_2 \frac{d_1 + d_3}{d_2} \left(1 + \frac{d_1}{2r_0}\right) + U_3 \frac{d_2 + d_4}{d_3} + \\ &+ U_4 \frac{d_3 + d_1}{d4} \left(1 - \frac{d_2}{2r_0}\right) - \frac{S_0}{2} \left(d_1 + d_3\right) \left(d_2 + d_4\right) \\ &N &= \frac{d_4 + d_2}{d_1} + \frac{d_1 + d_3}{d_2} \left(1 + \frac{d_4}{2r_0}\right) + \frac{d_2 + d_4}{d_3} + \end{split}$	$M = U_{1} + \left(1 + \frac{1}{2n}\right)U_{2} + U_{3} + \left(1 - \frac{1}{2n}\right)U_{4} - S_{0}d^{2}$ $N = 4 + k^{2}d^{2}$ $U_{1} + 2U_{2} + U_{3} - S_{0}d^{2}$
	$n = \frac{r_0}{d}$	$+ \frac{d_3 + d_1}{d_1} \left(1 - \frac{d_2}{2r_0} \right) + \frac{k^2}{2} \left(d_1 + d_3 \right) \left(d_2 + d_4 \right)$ $M = v_1 \frac{d_1 + d_2}{d_1 + d_2} + v_2 \frac{d_1 + d_3}{d_1 + d_3} + v_2 \frac{d_2 + d_4}{d_1 + v_1} \frac{d_1 + d_3}{d_1 + d_3} - \frac{d_2 + d_4}{d_1 + v_1} \frac{d_1 + d_3}{d_1 + d_3} - \frac{d_2 + d_4}{d_1 + v_1} \frac{d_1 + d_3}{d_1 + v_2} \frac{d_2 + d_4}{d_1 + v_1} \frac{d_1 + d_3}{d_1 + v_2} - \frac{d_2 + d_4}{d_1 + v_2} \frac{d_2 + d_4}{d_1 + v_2} \frac{d_2 + d_4}{d_1 + v_2} \frac{d_4 + d_3}{d_1 + v_2} \frac{d_4 + v_2}{d_1 + v_2} d_4 + v$	$U_{0} = \frac{-1}{4 + k^{2} d^{2}} - \frac{-1}{4 + k^{2} d^{2}} = 0$ $M = n + n + n + n - S \sqrt{r} d^{2}$
	z, r, φ $v(z, r) =: \forall \overline{r} U(z, r)$ $v_{0} = M$	$N = \frac{d_1 + d_2}{d_1 + d_3} + \frac{d_2 + d_3}{d_2} + \frac{d_1 + d_3}{d_3} + \frac{d_1 + d_3}{d_4} + \frac{d_1 + d_3}{d_4} + \frac{d_1 + d_3}{d_4} - \frac{(d_1 + d_3)(d_2 + d_4)}{d_4 + d_4} + \frac{d_1 + d_3}{d_4} + \frac{d_1 + d_3}{d_$	$N = 4 - \frac{1}{4n^2} + k^2 d^2$
		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$v_0 = \frac{v_1 + 2v_2 + v_3 - S_0 \sqrt[3]{d^3}}{4,75 + k^2 d^2} n = 1$
Kugel (zylindersymmetrisch, unabhängig von φ)	r, ϑ, φ $v(r, \vartheta) =$	$\begin{split} M &= v_1 \frac{a_4 + a_2}{d_1} + v_2 \frac{d_1 + d_3}{a_2 r_0^2} + v_3 \frac{a_2 + a_4}{d_3} + \\ &+ v_4 \frac{d_3 + d_1}{a_1 r_0^2} - \frac{S_0}{2} r_0 \sqrt{\sin \theta_0} \left(d_1 + d_3 \right) \left(a_2 + a_1 \right) \end{split}$	$M = v_1 + v_3 + \frac{1}{n^2 a^2} (v_2 + v_4) - S_0 r_0 d^2 \sqrt[]{\sin \vartheta_0}$ $N = 2 \left(1 + \frac{1}{n^2 a^2} + \frac{1 + \sin^2 \vartheta_0}{4 n^2 \sin^2 \vartheta_0} \right) + k^2 d^2$
	$= r \bigvee \overline{\sin \vartheta} U(r, \vartheta)$ $v_0 = \frac{M}{N}$	$N = \frac{a_4 + a_2}{a_1} + \frac{d_1 + d_3}{a_1 r_0^2} + \frac{a_2 + a_4}{d_3} + \frac{d_3 + d_1}{a_4 r_0^2} + \frac{d_1 + d_2}{a_4 r_0^2} + \frac{d_2}{a_4 r_0^2} + \frac{d_1 + d_2}{a_4 r_0^2} + d_$	$v_0 = \frac{v_1 + v_3 + \frac{2}{n^2 a^2} v_2 - S_0 n d^3 / \sin a}{2 + \frac{2,5}{n^2 a^2} + \frac{1}{2 n^2} + k^2 d^2}; \ \vartheta = a, \ \pi - a$
	$n = \frac{r_0}{d}$	$+rac{1+\sin^2artheta_0}{4r_0^2\sin^2artheta_0}(d_1+d_3)(a_2+a_4)+rac{k^2}{2}(d_1+d_3)(a_2+a_4)$	$\left \begin{array}{c} U_{0}=\displaystyle \left(\displaystyle \frac{1+\frac{1}{n}}{n} \right) U_{1} + \left(\displaystyle 1 - \frac{1}{n} \right) U_{3} + \frac{2}{n^{2} a^{2}} U_{2} - S_{0} d^{2}}{2 \left(\displaystyle 1 + \frac{1}{n^{2} a^{2}} \right) + k^{2} d^{2}} , \vartheta = 0, \pi \end{array} \right $
			$U_{0} = \frac{\overline{U_{i}} - \frac{1}{6} S_{0} d^{2}}{1 + \frac{1}{6} k^{2} d^{2}}, \qquad r = 0$
			$\overline{U_i} = \frac{1}{6} \left[U\left(\vartheta = 0\right) + 4 U\left(\vartheta = \frac{\pi}{2}\right) + U\left(\vartheta = \pi\right) \right]$

benutzt werden. In der Umgebung eines an der Stelle $\vartheta = \alpha$ liegenden Punktes gilt

$$v_{1} \approx v_{0} + \left(\frac{\partial}{\partial r}\right)_{0}^{} d + \left(\frac{\partial^{2} v}{\partial r^{2}}\right)_{0}^{} \frac{d^{2}}{2},$$

$$v_{3} \approx v_{0} - \left(\frac{\partial}{\partial r}\right)_{0}^{} d + \left(\frac{\partial^{2} v}{\partial r^{2}}\right)_{0}^{} \frac{d^{2}}{2},$$

$$v_{2} \approx v_{0} + \left(\frac{\partial}{\partial \vartheta}\right)_{0}^{} a + \left(\frac{\partial^{2} v}{\partial \vartheta^{2}}\right)_{0}^{} \frac{a^{2}}{2} \approx$$

$$\approx v_{0} + \frac{v_{0}}{2\sin\vartheta_{0}}^{} a + \left(\frac{\partial^{2} v}{\partial \vartheta^{2}}\right)_{0}^{} \frac{a^{2}}{2}.$$
(75)

Berücksichtigt man auch die Gleichungen (68) und (71), ergibt sich an der Stelle $\vartheta = a$ folgende Korrektionsbeziehung

$$v_{0} = \frac{v_{1} + v_{3} + \frac{2}{n^{2}a^{2}}v_{2} - S_{0}n\sqrt{\sin a}d^{3}}{2 + \frac{2}{n^{2}a^{2}} + \frac{1 + \sin^{2}a}{2n^{2}\sin^{2}a} + \frac{1}{n^{2}a\sin a} + \frac{1}{k^{2}d^{2}}}, \ \vartheta = \begin{cases} a \\ \pi - a \end{cases}$$
(76)

Ist $a < 0.25 \approx 14^{\circ}$, so ist mit einem Fehler unter 1% sin $a \approx a$ und es wird

$$v_{0} = \frac{v_{1} + v_{3} + \frac{2}{n^{2} a^{2}} v_{2} - S_{0} n \sqrt{\sin a} d^{3}}{2 + \frac{2.5}{n^{2} a^{2}} + \frac{1}{2 n^{2}} + k^{2} d^{2}}, \qquad \vartheta = \begin{cases} a \\ \pi - a \end{cases}.$$
(77)

Sind an den Stellen $\vartheta = a$ bzw. $\vartheta = \pi - a$ die Werte des Hilfspotentials *v* und damit auch diejenigen des Potentials *U* bekannt, läßt sich das Potential längs der Symmetrieachse gemäß (64) ermitteln. Da hier aus Symmetriegründen $U_2 = U_4$, gilt

$$U_{0} = \frac{\left(1+\frac{1}{n}\right)U_{1}+\left(1-\frac{1}{n}\right)U_{3}+\frac{2}{n^{2}a^{2}}U_{2}-S_{0}d^{2}}{2\left(1+\frac{1}{n^{2}a^{2}}\right)+k^{2}d^{2}}, \ \vartheta = \begin{cases} 0\\ \pi \end{cases}.$$
 (78)

Eine weitere Singularität weist jener Mittelpunkt r = 0 auf, der viele benachbarte Gitterpunkte besitzt. Da jetzt $v = r \sqrt[3]{\sin \vartheta} U$, ist der Wert des Hilfspotentials im Punkte r = 0 gleich Null, und seine Ableitungen auf rbleiben endlich. An den Stellen r = d (d. h. n = 1) ist also Gleichung (72) anwendbar, und nur der Punkt r = 0 ist gesondert zu untersuchen. Will man die Potentiale sämtlicher benachbarter Punkte berücksichtigen, so müßte man ein ziemlich langwieriges Wiegen durchführen. Da am innersten Gitterkreis die Änderung nach ϑ ziemlich klein ist, genügt es, diejenigen Potentiale zu berücksichtigen, die den Werten $\vartheta = 0$. $\pi/2$ und π zugehören. Stellt man sich im Mittelpunkt ein räumliches kartesisches Koordinatensystem vor. kann man auf Grund des Gesagten leicht die Beziehung

$$U_{0} = \frac{\overline{U}_{i} - \frac{1}{6} S_{0} d^{2}}{1 + \frac{1}{6} k^{2} d^{2}}$$
(79)

ableiten, wobei \overline{U}_i den arithmetischen Mittelwert der Potentiale der sechs benachbarten Gitterpunkte bedeutet. Im zvlindersymmetrischen Fall stimmt das Potential des Punktes $\vartheta = \frac{\pi}{2}$ mit dem Potential der auf dem Ȁquator« liegenden übrigen drei Punkte überein, es wird somit

$$\overline{U}_{i} = \frac{1}{6} \left[U(\vartheta = 0) + 4 U \left(\vartheta = \frac{\pi}{2} \right) + U(\vartheta = \pi) \right].$$
(80)

Wie ersichtlich, ist Gleichung (72) von viel einfacherer Struktur als Gleichung (64), dieses Verfahren erleichtert mithin tatsächlich die Rechenarbeit.

Zusammenfassung

Es wurden die Methoden der numerischen Lösung der in der Form

$$\varDelta U - k^2 U = S$$

geschriebenen partialen Differentialgleichungen für den Fall untersucht, daß die Funktionen nur von zwei Veränderlichen abhängen, und das Potential der Randwerte gegeben ist. Es wurde festgestellt, daß in kartesichen, in zylindrischen und in Kugelkoordinaten die Rechenarbeit durch die Einführung einer geeigneten neuen abhängigen Veränderlichen vereinfacht werden kann. Das Verfahren hat immerhin den Nachteil, daß in singularen Punkten (wie z. B. im Mittelpunkt) und in den mit ihnen benachbarten Punkten andere Beziehungen für die Potentialkorrektion gelten als in den Punkten allgemeiner Lage. Die Konvergenz, die Fehlerschranken usw. der Methode wurden nicht erörtert, weil die Struktur der Differentialgleichungen für die neuen Veränderlichen dieselbe ist wie diejenige für die schon früher eingehende Untersuchungen durchführt worden sind.

Die verschiedenen Methoden sind in der beiliegenden Tabelle zusammengefaßt. Aus der Tabelle ist ebenfalls ersichtlich, daß die hier vorgeschlagene Methode der Einführung einer neuen abhängigen Veränderlichen (oder eines Hilfspotentials) im allgemeinen zu einfacheren Korrektionsbeziehungen führt.

Schrifttum

Grundlegendes Werk, welches ausführliche Literaturhinweise enthält: 1. COLLATZ, L.: Numerische Behandlung von Differentialgleichungen. Springer 1951.

- Für die Lösung der LAPLACEschen Gleichung und elektrotechnische Anwendungen:
 WEBER, E.: Electromagnetic Fields I. S. Wiley, 1950.
 RETTER, GY.: Mágneses terek és körök. Tankönyvkiadó, 1952.
- 4. SIMONYI, K.: Theoretische Elektrotechnik. Deutscher Verlag der Wissenschaften, 1956

G. FODOR, Budapest, XI., Budafoki út 6-8, Ungarn.