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Ncmenclature

In general the time functions are denoted with small letters, the Fourier or Laplace-

transforms with capitals.

u
U
Uy

W

terminal voltage of the d. c. motor

transform of u

steady-state value of the terminal voltage of the d. ¢. motor
heat generated in the armature of the motor during the transient phenomenon
inertia of the motor

speed of the motor

transform of v

steady-state value of »

load torque of the d. ¢. motor

transform of m

armature current of the d. ¢. motor

transform of 1

steady-state value of {

T electromechanical time constant of the motor (See Eq. 42¢)

time constant of the armature of the d. c. motor (See Eq. 42b)

Ry resistance of the armature of the d. ¢. motor

additional resistance in the armature circuit
total resistance of the armature eircuit
main flux of the d. ¢. motor

K gain of the d. c. motor (See Eq. 42a)

"m transfer function of the d. c. motor relating to the terminal voltage (See Eq. 44)

transfer function of the d. c. motor relating to the load torque (See Eq. 45)
transfer function of the internal feedback used in the servomechanism (See Fig. 3c)
transfer function of the gear train (See Eq. 6)

resultant transfer function of the open-loop of the servomechanism

Y* resultant transfer function of the closed-loop of the servomechanism for which holds

Y
R i

I. Introduction

In high quality servomechanisms of larger output a frequently used

final control element is the separately excited direct current servomotor. The

operating conditions of a servomotor used as a final control element greatly
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differs from the normal operating conditions of electric motors to which the
characteristic data of the motors (rated voltage, current, speed, output, losses,
etc.) are related. In cases where motors rated for normal operating conditions
are to be used in servomechanisms, it must be carefully examined, under what
conditions the motors can be used as servomotors. Furthermore it has 1o be
determined how a motor suitable for a certain servomechanism can be selected
on the basis of its rated data.

If a motor is to be used in a servomechanism it is necessary to known
in the first place the values of the time constants. Taking these into con-
sideration the general layout of the control system should be selected and the
servomechanism be designed.

In addition to this there is need of a method for giving information on
the size (normal rated outpit) of the motor to be selected. It must be remembered
that these motors are constantly in transient operation, and thus the load torque
is not characteristic for the temperature conditions of the motor.

Among the losses arising in the transient operation of the servomotor
only the copper losses differ considerably from the losses in steady-state
conditions. The iron losses depend exclusively on the speed and the motor
must not even temporarily be run at a speed considerably higher than its
rated speed. Therefore the difference between the temperature rise of servo-
motors and that of motors in -normal operation must be determined on the
basis of copper losses.

It is a well-known fact that if a voltage u, is suddenly applied to a single
running separately excited d. c. motor from a voltage source having negligible
internal resistance, the amount of heat generated in the rotor is equal to the

- kinetic energy accumulated in the rotating parts.

o1
W= 0r2. 1
07 M

P4

In expression (1) it is assumed that the inductivity L of the armature
circuit is zero and the motor is not lvaded with any external torque.

It can be proved that taking the inductivity L of the armature into
consideration and in case of a constant load torque m. the heat arising during
the starting period is

R — S 2, L+ 2mrT, (2)

in addition to the heating power assumed constant, which causes in the armature
a resistance R, by the steady-state current i corresponding to the external
load torque m in steady-state. (See App. IL.)
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If thus a unit-step voltage is switched on a separately excited d. c. motor,
tke heat generated during the starting period consists of three parts in addition
to the steady-state copper loss 2K, One part of this heat is the kinetic energy
accumulated in the rotating parts, a second part is the magnetic energy of the
rotor, a third part is equal to the mechanical energy consumed by the driven
object during the time 2T,

To estimate the order of magnitude of the individual terms of the equation, let us introduce
the relative voltage drop y connecting voltage u, and current i..

. R .
b t2lm _t= T (3)

ug 1z myr:

where ir; and m,; are the short circuit (starting) current and torque respectively corresponding
to voltage u,.

So after some simple conversions not detailed herewith, in place of Eq. (2), the following
can be obtained for the heat generated during the starting period :

1w

. o Te .
W= R T [(1 — P T, 7 (47 —4 ?')] . )

The sequence of the three terms between square-brackets in the last expression corresponds to
that of the terms in Eq. (2).

If the relative ochmic voltage-drop is sufficiently small, the second and third term of the
expression between the square brackets are small, as compared to the first term. Therefore the
heat generated is with good approximation equal to the kinetic energy accumulated in the rotor

1 R 1 . -
) 6 Voo = X Af\‘;x Tm (1 -y )2 (5)

II. The amount of heat generated under transient conditions in the armature
circuit of metors used in servomechanisms

If the d. ¢. motor constitutes an element of a servomechanism, the copper
losses under transient conditions depend on the characteristics of the reference
input. Without giving up the claim for generality, the block diagram of the
control system mayv be assumed to be in accordance to Fig. 1. A possible feed-
back varying with frequency and spanning the motor (transfer element Y )
can be incorporated in Y, those feedbacks, however, not spanning the motor
can be converted into series elements according to the kunown rules of the block
algebra, and can thus be incorporated in Y,.

Y, is the transfer function of the gear train coupled to the motor. The
integrating effect of the motor can be transferred te this element by regarding
the angular velocity v as the output quantity of the motor. Thus the transfer
function is ‘

yo XK
v P

: (6)
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The d. ¢. motor with constant excitation is characterized as a linear
element by two transfer functions. One of them describes the variation of the
angular velocity with the terminal voltage, the other that with the torque.

As is known the two functions are

Y= > I<’m ; (7)
P Tm T, + PTm +1 .

and
Y, = - Rm K;zn (1 "}" PT”)_
1 PszTL‘-_:_—anI_{_]*

. (8)

(See App. IL.)

Fig. 1

Consequently for the Laplace-transforms of the speed the following can
be written :

M R, K2 (14 pT,) ) ©)
T, T.+pT,+1 pT, T, +pT,+1

From the fundamental equations of the d. c. motor, however, the variation
of the transform I of the armature current with the transform U of the terminal
voltage and with the transform M of the load torque can also be determined
in the following way (See App. I1.):

U T [ BrPTn(LEpTy) |
Rm p2 Tm T,. +me + 1 ‘PZ Tm TZ‘ +PT"” ; 1
= U _£Tn- Y.+ M Y. (10)
R, K,

If the servomotor is the element of a servomechanism, the independent variable
is not the terminal voltage u but the reference input x,. In this case the variation
of the transform I of the armature current i with the transforms X, and M
of the reference input and of the torque, respectively, may be determined. Accord-
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ing to the block diagram given in Fig. 1

U—x, Y. oy VYR Y, YeY,
14Y.Y,Y, Y. 14Y.Y,Y,Y,
—x, Y My, Y 11)
1+Y 1+1Y

Y =YY,Y,Y,.
By substituting the above expression of U in the expression of I as given
in Eq. (10) we have got

r=x, PTn_  Ye¥m g PTw Yi¥uY 4y (12)
RnK, 1+7Y RnK, 1+Y

In a given case knowing the time variations of the reference input and
of the torques, furthermore the transfer functions, a rational fractional function
is obtained for I. By inversely transforming this we obtain the time fuction
of the current:

F=HI(p)] =1i(@).

This may serve as a basis for determining the heat generated in the armature
of the motor.

It is known, however, that the inverse transformation cannot be carried
out by purely algebraic means on account of the high order of the denominator
of the reference functicn. There is, however, no need for it as Raleigh’s theorem
for Fourier transform gives a possibility to determine without inverse transform-
ation directly from the transform the inpreper -integral of the square of
time function.

It is alsu known, however, that the Fourier transformation can be defined
only for absolute integrable functions f(s), i. e. for those, which

- ff@d

is finite. Therefore our examination must be carried cut by adapting such a
reference function at which the current i(f) of the motor approaches a steady-
state value fo.. For in this case the absolute integrable function

fO)=1i(t) — i (13)
of Raleigh’s theorem may be applied. The current i(f) approaches a finite value
in case of a step or constunt-velocity refereiice input.




136 A. FRIGYES

In this case the heating power P(t) = i(t)* R, generatediu the rotoris as
indicated in Fig, 2 when plotted against time.
The steady-state value of P (i) is

Poo — i R, .

As the total heat gencrated during the starting period the infinite range
integral of the power

P (t) — P

will be defined. (See Tig. 2

W = (14a)

Thus this is the heat generated on account of the transient phenomenon in
addition to the heating power caused by the current i corresponding to the
given load. ‘

On the basis of Eq. (14a) we shall express W in the following form :

(2 — %) di= Ry | [(i — i) - 2icn (i — icc)] dr . (14D)

0

W:Rnx

P g

As W is expressed now as the integral of the function f(f) == i — ico,
the first term of Eq. (14b) can be determined by means of Raleigh’s theorem
while the second term, by means of the known final value and initial value
theorem, holding for Fourier transformations.

Our further investigations will be continued in that case, where the
external load of the motor is zero. For in this case ie = 0, hence the second
term between the square brackets is also equal to zero. This neglection gives
" a good approximation of the actual conditicns, provided the size of the servo-
motor is correctly selected, in view of the required accuracy of the control,

If for some reason the term 2i(i — i) in Eq. (14)) is required, it must
be taken into account that integral of infinite range can be calculated by the
method given in App. II. (See the derivation of Eq. (55).)
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Let us therefore examine the servomechanism having a lavout as shown
in Fig. 1 to which a constant-velocity input of a slope v is applied. The speed
of the reference input has to be of the value to which the rated speed of the
motor corresponds in steady state.

As the transform of the reference input is

B} v
Xy = —,
2
: p
furthermore
M=0,
therefore according to Eq. (12)

_ v pTw Ye¥o (15)
p* RnK, i+Y

After some alterations, taking into consideration that Y =Y,Y, Y, Y, and

. K
Y, = —L we have

P T 1 Y
I:__L’_T‘T._f.- 1_?, -(16)
R,K,K, Y. 1-+Y ’
But -fli} =1%o (being at least a control system of type 1 under discussion,

r . .
at which the speed of the controlled variable is also v in steady state), furthermore

1 Y - o
e 17
Y, 10Y (p) (17)
is the resultant reference function of the closed-loop. Therefore
Voo T -
I(p)=——=Y*(p). (18)
Rm Km
Because a load torque m = 0 has been assumed, the steady-state value of the

armature current is equal to zero as can be seen from Eq. (18) by means of
the finalvalue and initial value theorem. Consequently;, the second term between
the square-brackets in Eq. (14b) giving the heat during the transient phenomenon
is zero.

As I(p) expressed by Eq. (18) is the transform of an i(t) which is absolute
integrable, jo can simply be substituted for p in the expression of I(p), thus
the Fourier-transform of the current beinz obtained.

Voo T

I(jo)= E—I—&;ﬂ Y*(jo). (18a)

According to Raleigh’s theorem holding for Fourier transforms, if F(jo) is

3 Periodica Polytechnica El 12,
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the transform of some absolute integrable function f(z), then

=+ =
-

j[f() JPdt =

e GO

jiF(]w)’ . (19)

27

Accordingly, the total heat generated in the armature is

= L.

W:Rmf[i(t)th: R fgf(jw)}mw:
2w
0 —
2 T2 :
= e *(fow) 2 dow. (20

If it is considered that the electromechanical tinie constant in the last
expression is
m = 0Rm K)%n o
then after some simiple conversion we obtain
Py

W =2 T, — J}Y’*(jw)gzdw. 1)
2z

— o

For computing improper integrals of such a form known formulae can be found
in the literature provided,Y?*(jo) is a rational fractional function the numerator
of which is of lower order than the denominator.

In App. I/a the value of the integrals

o [ Gerpao

—ce

is indicated. In our case for Y*(p) which is nothing else but the transfer function
of the closed-loop, the following can be stated:

1. Y (0) =

2. The order of the numerator is lower by at least two, than that of the de-
nominator.

The statement 1 concludes from the type number of the control system.
As for statement 2 derivates from the fact that the servomotor and the succeed-
ing gear train constitute a series element of the system, in the resultant transfer
function of which the numerator is of an order lower of at least two, than the
denominator. As for the transfer function of the remaining elements of the
system, the order of its numerator is not higher than that of its denominator.




THE INFLUENCE OF THE LAYOUT AND DYNAMIC CHARACTERISTICS OF SERVOMECHANISMS 139

Consequently, in our case inthe expressions given in App. Ije B,_; = 0
and 4, = B,. For numerical calculations these expressions can be converted
into simpler forms. To this end the resultant gain K of the closed-loop, the
value of which can be proved to be 1 in case of a system of type 1 (See App. ITI),
will be lifted out of the expressions.

Ko Ao
(Al - Bl)

Thus the mentioned expressions can be converted into the following
form :

(22)

K A
Ji=—Fp=—"° __F,. (23)
2 2(4; — By)
Hence the total heat generated in the armature circuit
6 »2,
W= T,KFy. (24)

The values of F; are given in App. I/b. k

As an example, the heat generated in the armature circuit has been
determined for the case of servomotors, as according to Figs. 3a, 3b, 3¢,
provided a constant-velocity reference input is applied. The numerical values
chosen are indicated in the figures. The values of T}, K F) are given in the follow-
ing table.

T, = 0,25 sec
K F, T, KF, w
. 622,
2a 10/sec 2,02 3,03 3,03
- - G v2,
2b 30/sec 1,61 7.26 7,26 5
62,
2¢ 30/sec 1,88 8,46 8.46

Hence it can be seen that the heat generated during the transient pheno-
menon is in case of ) appr. 3 times, in case of b) appr. 7,3 times, in case of
¢) appr. 8,5 times, as much as, the kinetic energy accumulated in the rota-
ting parts.

The heat calculated above is geénerated in the entire armature circuit,
thus in case of a motor being supplied from an amplidyne, this is the total
heat generated in the armature of the motor, plus in that of the amplidyne.
This heat is evidently divided between the motor and the amplidyne in the
ratio of their resistances. )

3*
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| |

Fig. 3/a ’
. - Kin - Kq K
Ye=K;; Y= 1 Yo= Yr=—
¢ T Y X pTm YT U+ pTa) A=pTay ' p
Ke="0,1; Kg=10; Kpy = 2 "71"'; Kr=35V
- Vsee

Toy = 0,03sec; Tm = 0,15sec; Toa = 0,03 sec;

ﬁ’T—Mfg }{zl"r*‘l}fnl'—*—{%xk

l For

.

Fig. 3/b
Y’L‘l = Kl‘!
Ke=0,6;Ka=10;Km=2“/_1—‘,Kr:15-‘7;Kz'1=0,5
Vsec

Toy =0.03sec: Tp=0,15sec; Tgy = 0,03sec:

L2 mk?«ﬁﬂy,«}-——qrpﬁl
2 -
F

ig. 3/c

Yz'g = Krz

Kgl,g’, Ka:lO;Km‘—:?. !

Vsec
Tay = 0,03 sec; Tygz = 0,03sec: Ty = 0.15 sec

K, =20V: Ky = 0.5; Ko = 0,5

11L. The determination of the optimum transfer funetion in view of the temperature
conditions of the motor

By means of the expression derived above, the copper loss in the servo-
motor of a servomechanism designed according to specified control qualities
(i. e. response time, overshoot, etc.) can be determined when following-up a
unit constant-velocity reference input. It can be of interest to determine the
layout at which the amount of heat will be at minimum.

Accordingly, we could proceed by determining the minimum value of F,
while varying some parameters according to the conventional method for
computing extreme values. Unfortunately, by this procedure such a value of
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the parameter concerned is obtained, that cannot be realized either technically,
or at which the control quality is unacceptable. v

Therefore another approach should be made for the solution of the problem.
The values characteristic for the quality of the control (response time, overshoots,
ete.) should be specified, and an output signal should be sought for, by which
these requirements are just satisfactory, the copper loss in the rotor of the
servomotor being at the same time a minimum. Such transfer elements at
which this ideal output signal would arise cannot be realized in practice. If,
however, the amount of heat is determined that could be generated in this

X Xp=Vil
. x

s

€n

L= gyt raztd

Ex

Fig. 4

ideal case, this gives a good basis of comparison to decide, whether for the
sake of improving the temperature conditions of the motor is it advisable to
make alterations in the layout or parameters of the control system selected
in view of the quality of the control, and te see at all whether considerably
better results could be obtained. If not, the parameters selected on the basis
of the quality of the control should be retained.

A) The analytical expression of the optimum output signal

The current of the idly running motor is proportional to the acceleration
of the output signal. Because

. - dy K, 0 d*x,
l’:I‘mB_”:“JJ}_"*-OL—'

dt K, dre
where K, is the transfer coefficient of the gear train succeeding the motor.
Our task is to determine such a

xp = x4 (1)
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function for which the integral
RmQZK?nJ" d? x )2
2 dez |

7

dt (25)

W:JF@&&:

0 0
is a minimum.

It can be assumed that the follow-up of such an input is dealt with for
which the steady-state value of the current is zero (e. g. in case of a unit-step
or a unit constant-velocity input), hence from the output signal it can be assumed
to attain its steady-state value or its derivative in time T unknown for the
present, while from there it can be substituted by a straight line. (See Fig. 4)
As for t > T, the acceleration is zero, therefore in the above expression the
limit of integration is i; instead of co. Under these circumstances our task is
actually the solution of a variation calculus problem.

We shall apply the Euler-Poisson equation according to which the function

y=y(x)
for which the integral

dy d?y
dx = da?

H= [F (x,y, dx (26)

is a minimum, can be expressed by the following differential equation :
J P 3 g

dF d dF d® dF

v ey awma 20
dy &y
Here ¥ o= -(% and. ¥y = dxz .
In our case
x =1
y— . Y — dx;; = d2vc,‘_
dt } d?
H=W
and
F

_ R, O2K2 [ d?x,
K2 de2
Because in our case F depends only on its second order derivative, therefore

ar
dy

=0,
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_dF_ _o,
dy’
2 2 2
dF:RmG Km.zdx,(. 27)
dy” K2 dr?

By substituting these values into the above differential equations we get

2 2 12 2,
_é_RmﬁKm.zdxkzO (28)
di? Kz di?
that is
d4xk
T =0, 29
el (29)

The general solution of this differential equation is as follows :
Xy == aztd -+ azt? 4+ at--aq. . (30)

The constants in this differential equation can be determined by taking the
following boundary conditions as a basis (See Fig. 4):

1 ift=20 x,i———O
2 =0 e _
dt
3 if t=T; xp =015 — &,
4 if =T, e
dt

The first two conditions express that at the first instant the output signal
as well as its derivative are equal to zero, the latter being so, on account of
the inertia of the motor. The conditions 3 and 4 express that the output signal
continuously and with a continuous tangent passes through to the steady
state substituted with the straight line.

Based on these conditions the following expressions are cbtained for the
values of the constants :

a0=0,
(1120,
as = 20T —3¢e, v (2KT, — 3) (31)
T2 KT?

gy = 2on—vTs v 2 — KTy). : (32)
T3 KT? _
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In the expressions of a, and a, it is implied that a control system of the type -
1 is under discussion, therefore the following relation holds true hetween the
velocity of the reference input and the steady-state error:
v ) ,
LYK )
8”
where K is the gain of the open-loop.
The ideal output signal chosen, according to the mentivned above is
shown in Fig. 4. It can be well seen that the error has a maximum value. Let
us, denote the quotient of this maximum and the steady-state error with y.

7
151
10
5.
) log KTs
at 1 345 10 30 50 100

Fi

5

s

It can be verified in a simple way (See App. IV) that the value of the

quotient is
8'\:“ — ,l;/ — ’(éTS):‘(zl‘_{?_q_w‘S:__gA)_ (33)
&g 27T (KT, — 2)? )

The relation between y and KT, as given by Eq. (33) is shown in Fig. 5.

7

B) The heat generated in case of the optimum cutput sigrial

In order to determine the ideal output signal suitable for a given control
task, beside the gain K either the response time T, or the value of y charac-
teristic for the maximum dynamic error must he accessed beforehand.

As according to the above discussion, the current of the servomotor is
proportional to the second order derivate of the output signal, hence by dif-
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ferenciating Eq. (30) twice, and by substituting it into Eq. (25), for the total
heat generated during the starting period, in this ideal case
2 gz o
= R~—r—n—i’)1—irn (2[12 "1— 6(13 t)2 d.’
2

W

0

is obtained. By carrying out the integration and substituting the values of
the constants from Egs. (31) and (32), furthermore taking into consideration
that

and

9R,K: =T,

051

logKTs

1 345 10 30 50 100
Fig. 6

we have
o I'E.: Tm 8 [(—K:Ts)z —3 KTs “+ 3]
2 T, (KT4)?

W= (34)

In order to make a comparison poussible of the heat gencrated in case of
the practicable control system with that calculated above, it is worth while
to carry out the following siiaple alteration :

W = ————6 1%0 Tm K. E[(I<TS)2 —3 I{TS - 3]. =
2 (KT
§ 2
- if-fi T, K. F; (33)
where . )
F,.—8 (KTS)-—-?)KTS—;—?). (36)

(KTg)3

In Fig. 6 the variation of F;with KT} as expressed by the above equation
is shown. By comparing this with Fig. 5, F; can be plotted against y. (See
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Fig. 7) From this it can be seen that the maximum value of F;is 8/9 for y == 1.
For y = 1,5, F; == 0,67.

Taken into account the afore-mentioned it can be stated that in case of
an output signal that is optimum concerning the temperature rise of the motor,
and in case a control system advantageous as for overshoots, the value of F;
may be chosen to be between 0,7~0,9. Therefore the minimum amount of
heat generated in the armature of the servomotor is

5
6 v,

W=01~09 TnK-—=.

&

1]

a5

0 5 10 5 T
Fig. 7

It is evident that this cannot be achieved in practice, because such transfer
elements are not available, by means of which the ideal output signal could
be produced. Calculations carried out in several cases show that in practice
the value of F; can be reduced to appr. 1.4.

The calculation procedure shown above can be used not only to determine
the temperature conditions of servomotors, being an element in a closed-loop,
but it can also be used to examine the temperature conditions of motors in
intermittent operation, the armatures of which are supplied through elements
varying with frequency. This is true e. g. for Ward-Leonard drives of inter-
mittent operation and of those controlled by amplidynes.

Appendix T/a

Bn—lpn‘1+ ——Bo =
Anpi L ...+ Ao

Y*(p)=
1 | INFE (3 o) 12
J=T~,r Y*(jo)?2dw

*James—Nichols—Phillips : Theory of Servomechanisms. MeGraw-Hill Book Company,
Inc. 1947.
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B;
h= a4
By 2B
Jo= — Ao
” 2 As Az
Ay B} -+ 43 B: — 2A33032+i2-%§§.
o e o Ao
e 274, (A Az — Ay As)
BY( A, Ay— AoAs) - Bidy Ay 2B, By Ay Ay — Bl Ay Ay —2BoBads Ay - AQBE' (Ao ds— A1 Ady)
Jy= — 0
! 2 A, (A1 4s As — AT A; — 4, A2
Appendix I/b
Fi=1,
Fa—1,
B,
_ AO i 2
Fa=7, As — Ay 45
A — By
Bl g A op (e dy— Ay A
Fy = Ag Ao
Az Ap A3
(A Ay — Ay Ay —
A1 — B (A Ay — Az Ay A1 — By
, A ) A ) A :
BiS2 4 (Bl — 2By By) 1 + (Bl — 2By Bo) 1 4 A oy — As Avy)
A A, A,
0 Al A3 A,
— A; — 4 Asy ~—~ 2 A
gy Ag Az — Ay A1y 15 Asy 4B
where the following substitutions were carried out in Fj:
Arg= A1 Ay — Ao A3,
Ay = A1 Ay — Ao 45,
Ay = A3 Ay — Az A5
Appendix I
The voltage equation of the d. c. motor is
u:Rmi—{—Lm%:—-{-c@v 37)

and its torque equation is
dv

A (38)

cPi=m+ 0O
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By rewriting Eqs. (37) and (38) into.Laplace-transforms, with initial value equal to
zero we have :

U == (Rm -+ pLlm) I -+~c @V (39)
cPI=M-+pOyp (40)

By eliminating I from the last two equations and solving them for v, the transfer function
of the motor is obtained as follows :

: c® Ry <+ pLp
= U —M — : 41
v="= p O (Bm + pLm) + ¢ @2 p O (Rm + pLm) + ¢ ®* @1
If in the above equation the following substitutions are carried out
1 /
5 = Km (42a)
L
=T (42b)
OR
2 q)n; = ORu K} = Tn ., (42¢)

the equation assumes the following form :

. K R K2,(1 + pTy) . .
=U M - Bmit T = UYn+~ MY Y 43
PEY R T T+ p T = 1 32 T To— pTom & 1 m (Ym (43
where
- I{”l
o Bm _ (44
Ym p2 Tin Ty - me +1 ' )
Y—t s — Ran (1 —— pTz,-) . (45)

On the basis of the above written the block diagram given in Fig. 8 can be substituted for the
motor as a transfer element.

Now the transfer functions for current I will also be determined. To this end let us express
I from Eq. (40):

M | pO® ORy ¢ @ pTm

I = 3 —r'*CEIJ:I\mJI't"P =2 Ry v=KnM+ —Z-——p (46)

Then substituting p from Eq. (41) we have

I— U pTm T - KmpTm (1 4+ pTh) X 1‘ B
— B i , R S T T e T T mi| =
Rm p*Tm Ty + pTm—+—1 p2TmTe+plym--1 J
- PTm - - -
= U Ym -+~ M Y. 47
R Ky " me (47

Based on these, the time variation of the velocity, and that of the current of the motor
can be determined. Both have two components : one of them varies with the voltage, the other
with the current. While deriving the expressions we have had to assume that the linear relations
expressed by the initial equations (37) and (38) actually exist between the individual variables,
furthermore the constants therein are truly constants (this refers in the first place to @ and Ly), -
and the voltage u and load torque m are known variables, varying exclusively with time. This
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latter conditions must particularly be emphasized in case of the torque m as e. g. the bearing
friction or the windage loss depending on the speed, and the torque caused by the eddy-currents
cannot evidently be taken into consideration in this expression.

Note : If a damping torque mg = k 1 varies linearly with the speed exists, for the functions
relating to the angular velocity and to the current, it can be proved similarly to the above stated
that instead of Eqgs. (44), (43), (47) the following expressions hold good :

v Km
me PTuTo+paTe+Tm)+1-+a
v=UYm +MYYnm (48)
—pPTn=e 5y
I RITI Klﬂ moes } m
where
k Ry
o = P Fa (49)

In our further discussion those resistances, that are proportional to the speed will not be
taken into consideration. In place of the reactive frictional torques, however, we shall assume for
the time being, an active external torque.

As the constant torque requires a steady-state current i.. = J, to be maintained, there-
fore, the heat generated during the switching-on period will be defined as the following integral :

- (See Fig. 2)

W = { (i Rm— il Rm)dt . (50)
0
Let us express W as follows:
W =Rm | (2 — it) dt = R [ G = iw)? - 20w (§ —i)] . (51)
0 0

To determine this Raleigh’s theorem will be used according to which if F(jo) is the Fourier-trans-
form of some absolute integrable function f(t), then

— -

T L (. B}
[rera= o [1FGw 2do. (52)

— —o

According to the final value and initial value theorem it follows from Eq. (47) that as a result
. of a unit-step change of U and M

ixr: nmy Km
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(where m is the value of the applied torque).

R . u m
Consequently, by substituting U = — and M = ——> we have
p

T,
L[i_iw]zuom';(—m*ym’%'—niYm—ﬂ;I{—m—=
g Ty T (1 + pTo)

moK

T Rn pPPTmTotpTm+1 ™ Ty Ty pTm — 1

Tm [—Ri e T1) Km (1 *L pTv)}
m

p2Tm Ty -+ pTm -+ 1

(33y

By substituting jo for p in Eq. (53), we obtain the Fourier-transform of i—i.. And to
this the integral (52) is to be applied. That is

Tt " —mOKmRmijw—f—(lf?—moKm'Rm)
sk | T e TaT e Tnt T

P 2
‘(i—-im)?dtz Vdo.
z} i

For the determination of improper integrals of such a form closed expressions are available.
(See App.I/a.)
In our case using the symbole given in App. I/a

By =—myKmRmTy= —ixRmnTy.
By = ug — mo Km R = up—iw Rm ,
Ay =TmT:,
A =T,
Ag=1.
Hence
; (i —in)edt = T‘in iR, T+ Tm Ty (ua: 2ug i Ry + 12, an).
0 R;, 27T, Ty

By multiplying the last equation by Ry, after some simple conversions we obtain

1.,

z lgc: Rm Tz; — Uy lx Tm + —‘-)-l Rm Tm. (54)‘

o

=

3
—

|
&

E!;}

|

| =

|

[

&
-l_
0| =

By means of the final value and initial value theorem, the second term between the square~
brackets in Eq. (51) can very easily be integrated.

J—in)di=[[G—ix)dt]e — [ [ — i) dt]y.
0
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But according to the final value and initial value theorem,

[ G—ind]. = [—}%g (i— i”)"’Jo —[Z G — i
and similarly
[ —in)d]o=[F (@ — ix)l=-
Making use of the Laplace-transform of (i—ix) as written in Eq. (53) we have

o

(i — i) dt = Tn
0

ug - ug
—moKnTm=Tm

R Rm

=lewlm.

Hence after simple alteration we obtain
o :
2ie R | (i — ix) dt = 2u0ie Tm — 28 R T .
0

Let us substitute the expressions given in Eqgs. (34) and (55) into Eq. (51):

S N ) . 3 .,
W“—:_—2~ifnTTmT-El’meTu—ruolme——2—1;,Rme.

Let us convert the above expression in the following way :
As according to Eq. (41) the steady-state speed is

Voo == Ug Km — My Rm Kﬁn .

or
LT - Vo .
Ug — 3 7 Mo KnRn = + iz Rn
Km Km

therefore the first term of Eq. (56) is

1 u} 1, - 1 2
5 5 Im= 5 ui OKp = — Ovl, 4 mgreTm+

2 Rp

ot

Ii Rm Tm.

E)

For the second term

1., 1,
iy iIx Ry Ty =

2
:)loc
&

L.
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(56)

(36a)

(56b)

In the third term the power u, i» consumed by the supply network in steady state can be written

as the sum of the mechanical output m;v. and of copper loss i?,oRm :

gl T = move Tm -+ 1%, R Ty .

(36¢)

By substituting Egs. (56a), (56b), (56¢) into Eq. (56) the total heat generated during the starting

period is obtained :

1

W’:%@vi —}—~2—i‘;L+2movam.
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Appendix I

The verity of Eq. (22) can be seen in the following way :
If the transform of the error of the servomechanism is denoted E, the error transfer
function of the system is

E . - Bn—1 pn“l - P B1 D+ Bo
e = Y¥ = 1 — * S — - =
X, p)=1—-Y*(p)=1 Anp”-%... l A1p~,~Ao
_ Appt - (Ap—1 — Bp—) p0 - . *'*(41— Bi)p 4 By — Ao
_'1,1 pn T 41 p Ao
Considering that on account of Y*(O) =0 holdz B, — A, = 0, the transform of the error caused °
by unit constant-velocity input is
By L PIADP T oy = Buo) 2 (B
p p? Agpt+ ...+ Aip—+ Ap )

The steady-state value ¢, of the error can on one hand be computed from the above expression
by means of the final value and initial value theorem, on the other hand, however, it is known

that its reciprocal is equal to the reciprocal of the resultant gain in case of a system type 1.
Therefore

Ay — B 1
e= = [p E(p)]p=0 = _1_4%__1 =% -
Appendix IV
Let us introduce the expression a == KlT . With this Eqs.(31) and (32) assume the follow-
s
ing forms:

»
as = o 2~ 3 (58a)
agz%_,—(Qa—l). (58b)

S

According to Fig. 4 and Eq. (30) the error of the control is
g = vt — aztd — ast> : (59)

The extreme value of the error can be calculated from the following expression :

’ ‘J-(4 1204942+ 2 (§a— 3)

.
Y 7 S e
T 2—3u)+ T

2—3a_+’(3a—1')

=T 31 = 24
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Hence
1
t1="T; '3-(1—_‘*2—(;)‘ (60a)
Let us build the second-order derivative of Eq. (59)
d%e
= — 2as— 6agt

the value of which for ¢t = T is

d*e v
=1 @2
[dtz]t=Ts T, @09

This is positive, in other words the error has a minimum value for T if
o < L
3

In this case according to Eq. (60a) the error has its maximum value at
tl < Ts .

Consequently, only those curves can be of interest to us for which « is smaller than 1/;. Let us com-
put the quotient y of the maximum and minimum value of the error,
The maximum error ey according-to Eq. (59) is

I 2 T 1 v b h S
Ex=uh—aali — daly = U $~3-—(-l—— ___20()-—~1?(2a—-1)—2~7—(1-__~2~a)—3~
v 2 - ; e op T 4 .A?a e
;G 3a)9(1—-2a)2 TRIRTA 2w

As, however, v = £, K, (g, is the minimum value of the error, and in this case the steady-state
value of it, too) is therefore

. g Y KTs—9
ex == &n KT - - = &p (I\TS)L a7 (KT—: -
furthermore . )
o Ex o - > 4 KT5 -9
) = (KTs) 77'(KT: B

Summary

The article shows how to give anexplicite form tc the improper integral of the square
current of a d. e. servomotor used in automatic feedback control systems. Thus the heat
gencrated in the armature éircuit of the servomotor can be determined.

This method of variation calculus is suitable for determining the least quantity of heat
arising in the armature circuit in case of given parameters describing the behaviour of the
control system. This optimal value existing among the ideal circumstances gives a good
basis for considering, whether it is worth to change the lavout of the realized control for
reducing the quantity of heat arising in the armature circuit.

A. Fricyes, Budapest, XI., Budafoki 4t 4—6, Hungary.

4 Periodica Polytechnica EL Ij2.




