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Ncmenclatnl'e 

In general the ti me functions are denoted with small letters, the F ourier or Laplace­
transforms with capitals. 
u terminal voltage of the d. c. motor 
U transform of u 
U o steadv-state value of the terminal voltage of the d. c. motor 
W heat generated in the armature of the m-;;tor during the transient phenomenon 
e inertia of the motor 

'1' speed of the motor 
l' transform of I' 

'I'~, stead v-state value of l' 

m load torqne of the d. c. motor 
,vI transform of m 

armature current of the d. c. motor 
I transform of i 
i", steady-state yalue of i 
Tm elect;omechanical time constant of the motor (See Eq. 42c) 
T,. time constant of the armature of the d. c. motor (See Eq. 42b) 
Bm resistance of the armature of the d. c. motor 
Ba additional resistance in the armature circuit 
R total resistance of the armature circuit 
(j) main flux of the d. c. motor 
Km gain of the d. c. motor (See Eq. 42a) 
Ym transfer function of the d. c. motor relating to the terminal voltage (See Eq. 44) 
Yt transfer function of the d. c. motor relating to the load torque (See Eq. 45) 
Y" transfer function of the internal feedback used in the servomechanism (See Fig. 3e) 
y,. transfer function of the gear train (See Eq. 6) 
Y resultant transfer function of the open-loop of the servomechanism 
y* resultant transfer function of the closed-loop of the servomechanism for which holds 

Y* 
y 

1 -i- Y 

I. Introduction 

In high quality servomechanisms of larger output a frequently used 
final control element is the separately excited direct current servomotor. The 
-operating conditions of a servomotor used as a final control element greatly 
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differs from the normal operating conditions of electric motors to which the 
characteristic data of the motors (rated voltage, current, speed, output, losses, 
etc.) are related. In cases where motors rated for normal operating conditions 
are to be used in servomechanisms, it must be carefully examincd, under what 
conditions the motors can be used a:; :;ervomotors. Furthermore it has 1:0 be 
determined ho" a motor suitable for a certain servomechanism can be selected 
on the basis of its rated data. 

If a motor is to be used in a servomechanism it is necessary to known 
in the first place the values of the time constants. Taking these into COIi­

sideration the general layout of the control system should be selected and the 
servomechanism bc designed. 

In addition to this there is need of a method for giving information on 
the size (normal rated output) of the motor to be selectcd. It must be remembered 
that these motors are constantly in transient operation, and thus the load torque 
is not characteristic for the temperature conditions of the motor. 

Among the losses arising in the transient operation of the servomotor 
only the copper losses differ considerably from the losses in steady-state 
conditions. The iron losses depend exclusively on the speed and the motor 
must not even temporarily be run at a speed considerably higher than its 
rated speed. Therefore thc diffcrence between the temperature risc of servo­
motors and that of motors in normal operation must be determined on the 
basis of copper los~es. 

It is a well-known fact that if a voltage U o is suddenly applied to a single 
running separately excited d. c. motor from a voltage source having negligible 
internal resistance, the amount of heat generated in the rotor is equal to the 

. kinetic energy accumulated in the rotating parts. 

Tl7 __ 
1 0' w . l'c:O. 
2 

(1) 

In expression (1) it is assumed that the inductivity L of the armature 
circuit is zero and the motor is not luaded with any E'xternal turque. 

It can be proved that taking the inductiyity L of the armature into 
consideration and in cai'e of a conEtant load torque lIL the heat ariEing during 
the starting peliod is 

1 w= eJi;", 
2 

-~ L"2 L = 2 
2mJ'=Tm (2) 

ill addition to the heating power assumed eonstant, \v hich eauses in the armature 
a resistance Rm by the steady-state current i= corresponding to the external 
load torque m in steady-state. (Sce App. H.) 
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If thus a unit-step voltage i;;: bwitched on a separately excited d. c. motor, 
tce heat generated during the starting period consists of three parts in addition 
to the steady-state copper loss i;'Rm• One part of this heat is the kinetic energy 
accumulated in the rotating parts,' a second part is the magnetic energy of the 
rotor, a third part is equal to the mechanical energy consumed by the driven 
object during the time 2T m' 

To estimate the order of magnitude of the individual terms of the equation, let us introduce 
the relative voltage drop {' COllnecting voltage !to and current i",. 

m 
(3) 

where ir: and mrz are the short circuit (starting) current and torque respectively corresponding 
to voltage !to. 

So after some simple conversions not detailed herewith, in place of Eq. (2), the following 
can be obtained for the heat generated during the starting period: 

1 u1. l ., T,.., • ] "8 Rm Tm (1 - {')- .. T~~ {'- ... (4 i' - 4{,-) . (4) 

The sequence of the three terms between square-brackets in the last expression corresponds to 
that of the terms in Eq. (2). 

If the relative ohmic voltage-drop is sufficiently small, the second and third term of the 
expression between the square brackets are small, as compared to the first term. Therefore the 
heat generated is with good approximation equal to the kinetic energy accumulated in the rotor 

(5) 

II. The amount of heat generated under transient conditions in the armature 
circuit of motors used in servomechanisms 

If the d. c. motor constitutes an element of a i'>ervomeehanism, the copper 
10;;8es under transient conditions depend on the characteristics of the reference 
input. Without giving up the claim for generality, the block diagram of the 
control system may be assumed to be in accordance to Fig. 1. A possible feed­
back varying with frequency and spanning the motor (transfer element Y m) 
can be incorporated in Y v, those feedbacks, however, not spanning the motor 
can be converted into series elements according to the known rules of the block 
algebra, and can thus be incorporated in Ye' 

Y r is the transfer function of the gear train coupled to the motor. The 
integrating effect of the motor can be transferred to this element by regarding 
thc angular yelocity p as the output quantity of the motor. Thus the transfer 
function is 

(6) 
v p 
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The d. c. motor with constant excitation is characterized as a linear 
element by two transfer functions. One of them describes the variation of the 
angular velocity "\vith the terminal voltage, the other that ,\ith the torque. 

As is known the two functions are 

Y 
_ Krr: m- ----

pZ T m Tt + pT m + 1 
(7) 

and 
pT,,) - R KZ (1 Y

t
- m m 

p2TmT,.+pTm+l 
(8) 

(See App. H.) 

Vv 1-------' 

Fig. 1 

Consequently for the Laplace-transforms of the speed the follo".-ing can 
be 'VTittell : 

lJ U 
p2 T m T" + pT m 

(9) 

From the fundamental equations of the d. c. motor, however, the variation 
of the transform I of the armature current ,vith the transform U of the terminal 
voltage and with the transform }VI of the load torque can also be determined 
in the following way (See App. H.) : 

_ U 1 T m -v -L M-v (10) 
- .1. m I - .1 m· 

RmKm 

If the servomotor is the element of a servomechanism, the independent variable 
is not the terminal voltage u but the reference input Xa' In this case the variation 
of the transform I of the armature current i with the transforms Xa and }VI 
of the reference input and of the torque, respectively, may be determined. Accord-
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ing to the block diagram given ID Fig. 1 

if Y = YeYmYrYv. 

Y 
-MYt --, 

Y I+Y 
(11) 

By substituting the above expression of U ill the expression of I as given 
in Eq. (10) we have got 

In a given case knowing the time variations of the reference input and 
of the torques, furthermore the transfer functions, a rational fractional function 
is obtained for I. By inversely transforming this we obtain the time fuction 
of the current: 

.2"-1 [I (p)] = i (t). 

This may serve as a hasis for determining the heat generated in the armature 
of the motor. 

It is known, ho,vever, that the inverse transformation cannot be carriccl 
out by purely algebraic means on account uf the high order of the denominator 
of the reference function. There is, how(;ver, no need fm: it as Raleigh's theorem 
for FOllrier transform gives a possibility to determine without invcrse transform­
ation directly from the transform the in proper integral of the square of 
time function. 

It is also known, howpver, that the Fourier transformation can be defined 
only for absolute integrable fUllction:;; f(t), i. e. for those, which 

J f(t) dt 

is finite. Therefore our examination mnst be carried out by adapting such a 
reference function at which the current i(t) of the motor approaches a steady­
state value i=. For in this case the absolute integrable function 

f(t) = i (t) (13) 

of Raleigh's theorem may be applied. The current i(t) approaches a fillite value 
in case of a step or constant-velocity refercllce input. 
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In this case the heating power P(t) = i(t/ Rm generatediuthe rotoris as 
indicated in Fig. 2 when plotted against time. 

The steady-state value of P (t) is 

P==i~Rm . 

As the total heat generated during the starting period the infinite range 

integral of the po" .. er 

P(t) - P cc 

will be defiued. (Sce Fig. 2) 

w = J [P (t) - P=] dt = Rm J [i (t)2 .. ) ] d Loot. (14a) 

Fig. :1 

ThuE' this is the heat generated Oil account of the transient phenumelhJU in 
addition to the heating pm.er caused by the current i= corresponding to the 
gi\en load. 

On the basis of Eq. (14a) we "hall express rv in th~ folIo" ing form: 

co 

W = Rm J (i2 - i~) dt" = Rm J [( i • )" I ? (. .)] d 1= ~ T ~L= I, - ke t. (14b) 
o 

As W is expressed now as the integral of the function f(t) =-~ i-ice, 
the :first term of E'1' (14b) can be determin,ed hy means of Raleigh's thcurem 
'while the serowl term, hy means of the known final value and initial value 
theorem, holding for Fourier transfurmations. 

Our further investigations will he continuerl in that case, where the 
external load of the motor is zero. For in this case ico = 0, hence the second 
term hetween the square hrackets is also equal tu zero. This neglection gives 
a good approximation of the actual conditions, pro\-ided the size of the serYo­
motor is correctly selected, in view of the required accuracy of the control. 

If for !:'ume reason the term 2i=(i -- ico) in Eq. (14b) is required, it must 
he taken into account that integral of infinite range can be calculated by the 
method gl'ven in App. n. (See the derivation uf Et{. (55).) 
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Let Lt.S therefore examine the servomechanism having a layout as shown 
in Fig. 1 to whieh a constant-veiocity input of a slope v is applied. The speed 
of the reference input has to be of the value to which the rated speed of the 

motor corresponds in steady state. 
As the transform of the reference input IS 

furthermore 
1vI=O, 

therefore according to Eq. (12) 

1= 
v pTm Ye Ym _._-

p2 RmKm 1 + Y 
(15) 

After some alterations, taking into consideration that Y = Ye Y m Y r Ye and 

Y r = Kr we have 
p 

1= 
1 Y 

Y 
. (16) 

r 
But -- = j! 0:; (being at least a control system of type 1 under discussion, 

Kr • 
at which the speed of the controlled variable is also v in steady state), furthermore 

1 

Y,. 
Y 

--= ·Y*(p) 
I+Y 

IS the resultant reference function of the closed-loop. Therefore 

j' T 
I(p) = ~~ y* (p). 

RmKm 

(17) 

(18) 

Because a load torque m = 0 has been assumed, the steady-state value of the 
armature current is equal to zero as can be seen from Eq. (18) hy mcans of 
the final yalue and initial value theorem. Consequently, the second term hetwcen 
the square-hrackets in Eq. (14b) giving the heat during the transient phenomenon 
IS zero. 

As I(p) expressed hy Eq. (18) is the transform of an i(t) which is ahsulute 
integrahle, jw can simply he suhstituted for p in the exprcssion of J(p), thus 
the Fourier-transform of the current heing ohtained. 

I ( .) Veo Tm y" (. ) jW= r "'jw. 
RmKm 

(18a) 

.According to Raleigh's theorem holding for Fourier transform5, if F(joJ) IS 

3 Pcriodica Polytechnic a El I,':!. 
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the transform of some absolute integrable function f(t), then 

Accordingly, the total heat generated in the armature is 

W=RmS[i(t)]2dt= Rm S lI(jw)12 dw= 
2n 

o 

= Rm --- - , Y'" (j OJ) ;2 d OJ . ))~ T~ 1 S .. : 
R~K~ 2n' I 

(19) 

(20) 

If it is considered that the electromechanical time constant III the Jast 

expression is 

then after some simple conversion we obtain 

W = v~ e T m 2
1
n S i y* (j w) 12 d w . (21) 

For computing improper integrals of such a form known formulae can be found 
in the literature provided, y* (jOJ) is a rational fractional function the llumeratur 
of which is of lower order than the denominator. 

In App. Ija the value of the integrals 

~ S [Y*(jw)1 2 dOJ 
2n 

is indicated. In our case for Y*(p) which is nothing else but the transfer function 
of the closed-loop, the following can be stated: 

1. Y(O) = 1. 

2. The order of the numerator is lower by at least two, than that of the de­
nominator. 

The statement 1 concludes from the ty-pe number of the control system. 
As for statement 2 derivates from the fact that the servomotor and the succeed­
ing gear train constitute a series element of the system, in the resultant transfer 
function of 'which the numerator is of an order lower of at least two, than the 
denominator. As for the transfer function of the remaining elements of the 
system, the order of its numerator is not higher than that of its denominator. 
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Consequently, in our case in the expressions given in App. lla Bn- 1 = 0 
and Ao = Bo- For numerical calculations these expressions can be converted 
into simpler forms. To this end the resultant gain K of the closed-loop, the 
value of which can be proved to be 1 in case of a system of ty-pe 1 (See App. Ill), 
will be lifted out of the expreSSIOns. 

(22) 

Thus the mentioned expressions can be converted into the follo"\,ing 

form: 

Hence the total heat generated in the armature circuit 

f) 1,2 

W=~TmKFk' 
2 

The values of Fk are given in App. lib. 

(23) 

(24) 

As an example, the heat generated in the armature circuit has been 
determined for the case of servomotors, as according to Figs. 3a, 3b, 3c, 
provided a constant-velocity reference input is applied. The numerical values 
chosen are indicated in the figures. The values of T mKFk are given in the follow­
ing table. 

T m = 0,25 sec 

K F" Tm KF" W 

2a IO/sec 2,02 3,03 3 03 f) 11;" 
, 2 

2b 30/sec 1,61 7,26 ~ ')6 f) 11;" 
I,. --

2 

2c 30jsec 1,88 8,46 846 f) 11;" 
, 2 

Hence it can be seen that the heat generated during the transient pheno­
menon is in case of a) appr. 3 times, in case of b) appr. 7,3 times, in case of 
c) appr. 8,5 times, as much as, the kinetic energy accumulated in the rota­
ting parts. 

The heat calculated above is generated in the entire armature circuit, 
thus in case of a motor being supplied from an amplidyne, this is the total 
heat generated in the armature of the motor, plus in that of the amplidyne. 
This heat is evidently divided between the motor and the amplidyne in the 
ratio of their resistances. 

3* 
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Fig. 3/a 

'" - K 'V Km ",,- Ka 
~'e= e: ~m=l+pTm ~'a=(l+pTal) (1+pTa2) 

Ke ='0,1; Ka = 10; Km = 2 ,_1 __ ; Kr = 5 Y 
- 'sec 

Tal = 0,03 sec; Tm = 0,15 sec; Ta2 = 0,03 sec; 

Fig.3b 

Y"l= K"j 

Kr 
Y r =-­

p 

Ke = 0,6: Ka = 10: Km = 2 ,T 1 
; Kr 15 Y; Ktl = 0,5 

sec 

Tal = ,0,03 sec: Tm = 0,15 sec; Ta2 = 0,03 sec: 

Xa 

Ke 1,8; Ka = 10; Km 

Fig. 3'c 

2 ,-J:-: Kr = 20 Y: K"l 0,5: Kt2 = 0,5 
'sec' 

Tal = 0,03 sec; Ta2 0,03 sec; Tm = 0,15 sec 

Ill. The determination of the optimum tmnsfer function in "iew of thc temperature 
conditions of the motor 

By means of the exprcssion derived above, the copper 10::;s in the servo­
motor of a servomechanism designed according to specified control qualities 
(i. e. response time, overshoot, etc.) can be determined when follov.-ing-up a 
unit constant-velocity reference input. It can be of interest to determine the 
layout at which the amount of heat , .. ill be at minimum. 

Accordingly, we could proceed by dt)termining the minimum value of F" 
while varying some parameter;;; according to the conventional method for 
computing extreme values. Unfortunately, by this procedure ;;;uch a value of 
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the parameter concerned is obtained, that cannot be realized either technically, 
or at which the control quality is· unacceptable. 

Therefore another approach should be made for the solution of the problem. 
The yalues characteristic for the quality of the control (response time, overshoots, 
etc.) should be specified, and an output signal should be sought for, by which 
these requirements are just satisfactory, the copper loss in the rotor of the 
servomotor being at the same time a minimum. Such transfer elements at 
which this ideal output signal would arise cannot be realized in practice. If, 
hm-.'ever, the amount of heat is determined that could be generated in this 

x Xb=V.t 

Fig. 4 

ideal case, this gi...-es a good basis of comparibon to decide, whether for the 
sake of improving the temperature conditions of the motor is it advisable to 
make alterations in the layout or parameters of the control system selected 
in view of the quality of the control, ·and to see at all \\hether considerably 
better results could be obtained. If not, the parameters selected on the basis 
of the quality of the contrul should be retained. 

A) The analytical expresszon of the optimum output signal 

The current of the ielly running motor is proportional to the acceleration 
of the output signal. Becau~e 

d)' 
i=KmfJ 

dt 

d2 Xl; 

dt2 

where Kc is the tramfer coefficient of the gear tIain succeeding the motor. 
Our task is to determine ;:uch a 
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function for which the integral 
'" DO 

W = S i 2 (t) Rm dt = Rm (92 K'fn f ( d2 
XI; '12 dt 

K~ dt2 
. 

(25) 

o 0 

is a minimum. 

It can be as"umed that the follow-up of such an input is dealt with for 
which the steady-state value of the current is zero (e. g. in case of a unit-step 
or a unit constant-velocity input), hence from the output signal it can be assumed 
to attain its steady-state value or its derivative in time Ts unknown for the 
present, while from there it can be substituted by a straight line. (See Fig. 4) 
As for t > Ts the acceleration is zero, therefore in the above expression the 
limit uf integration is ts instead of =. Under these circumstances our task is 
actually the solution of a variation calculus problem. 

We shall apply the Eliler-Poisson equation according to which the function 

y = y (x) 
for which the integral 

H = fX'F (x.y dy. d.
2y

) dx 
. ." dx' dX2. 

(26) 

IS a minimum, can be expressed by the follo"'ing differential equation: 

dF d dF d2 dF 
=0. 

dy dx dy' dx2 dy" 
(27) 

Here 
dy 

and yl! == d2 y 
y"==--

dx dx2 

In our case 

x=t 

, dXI; 
Y= 
. dt 

" y 

H=W 

and 

F = Rm (92 K'fn ( d2 XI; ) 2 • 

K~ dt2 

Because in our case F depends only on its second order derivative, therefore 

dF 
--=0. 
dy . 
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dF 
---=0, 
dy' 

dF 
(27) 

dy" 

By substituting these values into the above differential equations we get 

(28) 

that is 

(29) 

The general solution of this differential equation is as follows: 

(30) 

The constants in this differential equation can be determined by taking the 
following boundary conditions as a b~~is (See Fig. 4) : 

1 if t = 0 

2 if t = 0 

3 if t= Ts 

4 if t = Ts 

XI; = 0 

dXk = 0 
dt 

dXk _ • 
---t;, 

dt 

The first two conditions express that at the first instant the output signal 
all well as its derivative are equal to zero, the latter being so, on account of 
the inertia of the motor. The conditions 3 and 4 express that the output signal 
continuously and with a continuous tangent passes through to the steady 
state substituted 'with the straight line. 

Based on these conditions the follow-ing expressions are obtained for the 
values of the constants: 

ao = 0, 

al = 0, 

2vTs -3cll =_v_(2KT -3) 
T2 KT2 s s s 

2cn - vTs v T) 
a3 = = -KT3 (2 - K s . 

T~ s 

(31) 

(32) 
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In the expressions of a2 and a3 It is implied that a control system of the type 
1 is under discussion, therefore the following relation holds true between the 
velocity of the reference input and the steady-state error: 

where K is the gam of the open-loop. 
The ideal output signal chosen, according to the mentioned above is 

shown in Fig. 4. It can be well seen that the error has a maximum value. Let 
us. denote the quotient of this maximum and the steady-state error with y. 

(f' 

15 

10 

5 

/ogKTs 
0,1 1 J 45 fO .30 50 fOO 

Fig. 5 

It can be wrified m a simple ,,·ay (See App. IV) that the value of the 
quotient is 

(KTs)2 (4 KTs - 9) 
= '/ = -- - ----

, 27 (KTs - 2)2 
(33) 

The relation between i' and KTs as glyen by Eq. (33) IS shmm in Fig. ;). 

B) The heat generated iil wse of the optimum output siglwZ 

In order to determine the ideal output signal suitable for a given control 
task, beside the gain K either the respunse time Ts or the value of y charae­
teri&tic for the maximum dvnamic error must he !1ccessed beforehand. 

As according to the ahove discussion, the current of the servomotor is 
proportional to the second order derivate of the output signal, hcnce hy dif-
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ferenciating Eq. (30) twice, and by suhstituting it into Eq. (25), for the tutal 
heat generated eluring the starting period, in this ideal case 

T. 
R (92 [(2 .' 

W = --"2.... __ m I (2a2 + 6a3 t)2 d, 
K~ J 

o 

IS obtained. By carrying out the integration and substituting the values of 
the constants from Eqs. (31) and (32), furthermore taking into consideration 
that 

and 

{ 

F 

0,5 

{ 

we have 

w= (j )';0 

2 

V 
--=1';::0 

Kr 

eRmK'fn = Tm 

logKlS 
345 fO 3050 fOO 

Fig. 6 

Tm 8 [(KTs)2 - 3 KTs 

Ts (KT )2 s, 

3] 
(34) 

In order to make a comparison pussible of thc hent gcnerated in CaE(' of 
the practicable control system ,,'ith that calculated above, it is worth while 

to carry out the following simple alteration: 

w = (j v;' T .K. !,[(KTs)2 - 3 KTs + 31 
2 n, (KTs)3 

O ., 
. )'~c T K-. F· 

m I 

2 
(35) 

where 
3KTs + 3 

(36) 
(KTsP 

In Fig. 6 the ,ariatiun of Fi with kT3 as exprc5sed by the above equation 
IS shown. By comparing this with Fig. 5, Fi can be plotted against I'. (Sec 
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Fig. 7) From this it can be seen that the maximum value of Fi is 8/9 for y = l. 
For y = 1,5, Fi = 0,67. 

Taken into account the afore-mentioned it can be stated that in case of 
an output signal that is optimum concerning the temperature rise of the motor, 
and in case a control system advantageous as for overshoots, the value ,of Fi 
may be chosen to be between 0,7 rvO,9. Therefore the minimum amount of 
heat generated in the armature of the servomotor IS 

as 

o 

() ')12 

W=0,7 ~0,9· TmK~. 
2 

5 -ID 15 0 

Fig. 7 

It is evident that this cannot be achieved in practice, because such transfer 
elements are not available, by means of which the ideal output signal could 
he produced. Calculations carried out in several cases shmv that in practice 
the value of Fi can he reduced to appr. 1,4. 

The calculation procedure shown above can be used not only to determine 
the temperature conditions of servomotors, being an element in a closed-loop, 
hut it can also be used to examine the temperature conditions of motors in 
intermittent operation, the armatures of 'which are supplied through elements 
varying with frequency. This is true e. g. for Ward-Leonard drives of inter­
mittent operation and of those controlled hy amplidynes. 

Appendh Iia 

Y*(p)= Bn-1pTl-l + ... -:- Bo * 
pTl-i- ... -:- Ao 

-7-0::: 

J=-l-f iY*(jW)'2dw 2:'1" . 

*James-Nichols-Phillips: Theory of Servomechanisms. McGraw-Hill Book Company, 
Inc. 1947. 
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Ja=----
2 Aa (AI A2 - Ao A;) 

m( Al A 2- AoA3)+B~."hA4 - 2BIBaAIA4 - BiAaA4 - 2BoB2AaA4 + A~~~ (A 2A 3 - AIA4) 
J4 = -----------

2-.:44 (AI A2 Aa - Ai A4 - Ao A? 

Appendix l!b 

Fl = I, 

F2 = I, 

Bi -'- A., 
Ao' • 

Fa= -- ---­
Al A2 - AoAa 
--AI-BI 

m ~l - Ri 4a - 2 Be A3 ..L (A2 Aa - Al A4) 
F4 = __ ~o~,-__ .~o ______ ___ 

k AoM 
A B 

(A2 Aa Al A4) -, B 
1 1 ·-'11 - 1 

where the follo,ving substitutions were carried out in F5 : 

A12 = Al A2 - Ao Aa , 

All = Al A4 - Ao A5 , 

Aa4 = Aa A4 - A2 A5 . 

Appendix n 

The voltage equation of the d. c. motor is 

R L di I cP 
U = m i -:- m Tt ! C l' 

and its torque equation is 

(37) 

(38) 
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By rewriting Eqs. (37) and (38) into Laplace-transforms, with initial value equal to­
zero we have 

[j (Rm -:- pLm) I -i- c (j) v 

.11 -i- pG v 

(39) 

(40) 

By eliminating I from the last two equations and solving them for v, the transfer function 
of the motor is obtained as follows: 

_--o,","..---,-_c_(j)c;;.--:-.,.---;:-:~ _ 'I _. Rm -i- p_L--,n_'-;--~ p= [j , 
p G (Rm pLm) c2 (j)2 - p G (Rm + pLm) + c2 (j)2 

If in the above equation the following substitutions are carried out 

1 -K --- m 
c(j) 

Lm 
--·-=T,. Rm ~ 

GRm 0 

~= GRmKin= T m , 
c- ""-

the equation assumes the following form: 

where 
Km 

Ym= - - - ---
p2 Tm Tv -:- pTm + 1 

- RKm (1":" pT, .. ). 

(41) 

(42a) 

(42b). 

(42c) 

(43) 

(44) 

(45) 

On the basis of the aboye written the block diagram given in Fig. 8 can be substituted for the 
motor as a transfer elelnent. 

~ow the transfer functions for current I will also be determined. To this end let us express 
I from Eq. (40) : 

1= _Il 
c 

pG '. G Rm c (j) 
-- 1-' = Km _Il -'- p--- 1-' 
c(j) . c2 (j)2 

Then substituting: lJ from Eq. (41) we have 

pTm 
Km.11 + -K:;'--R- P 

m m 
(46) 

(-17) 

Based on these, the time variation of the velocity, alld that of the current of the motor 
can be det~rmined. Both have two components: one of them varies with the voltage, the other 
with the cnrrent. While deriying the expressions we have had to assnme that the linear relations 
expressed by the initial equations (3,) and (38) actually exist between the individnal variables, 
furthermore the constants therein are truly constants (this refers in the first place to (j) and Lm), 
and the voltage II and load torque m are known variables, varying exClusively with time. This 
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latter conditions must particularly be emphasized in case of the torque nl as e. g. the hearing 
friction or the windage loss depending on the speed, and the torque caused by the eddy-currents 
cannot evidently be taken into consideration in this expression. . 

Note: If a damping torque nld = k I' varies linearly with the speed exists, for the functions 
relating to the angular velocity and to the current, it can he proved similarly to the ahove stated 
that instead of Eqs. (44), (43), (47) the following expressions hold good: 

I 

where 

1) = U 1'~, +]I 1'/ 1';" 

kRm 
a=--­c2 qy2. • 

Fig. 8 

(48) 

(49) 

In our further discussion those resistances, that are proportional to the speed will not be 
taken into consideration. In place of the reactive frictional torques, however, we shall assume for 
the time being, an active external torque. 

As the constant torque requires a steady-state current i~ = 10 to be maintained, there­
fore, the heat generated during the switching-on period will be defined as the following integral: 
(See Fig. 2) 

co 

TF = J (i2 Rn; - i;'" Rm) dt . (50) 

Let us express TF as follows: 

'" 
TF = Rm J (i2 - i;"') dt = Rm J [(i - i",Y i",)] dt. (51) 

o 0 

To determine this Raleigh's theorem will be used according to which if F(jw) is the Fourier-trans­
form of some absolute integrable function f(t), then 

~ 1 r J f(t)2dt= 2:r J F(jW)2dw. (52) 

According to the final value and initial value theorem it follows from Eq. (47) that as a result 
of a unit-step change of U and III 

i", = nloKm 
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(where mo is the value of the applied torque). 

Consequently, by substituting U = ~ and Jf = -~ we have 
p p 

. .] T m I mo mo Km L [~-z"" =uo---Ym , -- Y m - ---= 
RmKm p p 

!lo Tm _moKm __ Tm(~-1-pT~= 
= Rm p2 Tm Tv -1- pTm -1- 1 p2 Tm Tv -1- pTm -1- 1 

Tm[;:, -mo K m (l-1-PT,.)] 

- ---p2T;;T" -1- pTm -1- 1--
(53} 

By substituting jw for p in Eq. (53), we obtain the Fourier-transform of i-i",. And to­
this the integral (52) is to be applied. That is 

I'· . 0 Tin -J~ 
(z - ko)- dt = -'1-, -,­

• _nRm 
o 

- moKmRm Tvj w -1- (uo - moKmRm) 12 
W)2 Tm Tv -1- j c; Tm + 1 \ d w" 

For the det~rmination of improper integrals of such a form closed expressions are available. 
(See App. I/a.) 

In our case using the symbole given in App. Ija 

BI =-moKmRmTv= -i",RmTv, 

Bo = Uo - mo Km Rm = uo-i",Rm, 

Ao = 1. 

Hence 

,"(- . )2d _ T~n i~R'fnT~+TmTv(ug-2uoi",Rm+i;"Rin) 
I -Z'" t - R' ? T'T . 

• m .... m v 
o 

By multiplying the last equation by R m, after some simple conversions we obtain 

ex> 

R f (" ')0 d 1 115 T I m I - b - t = :2 R- m I 
. m 

1 .0 RT' T I 1 .-, R T I;" m v - !lo I", m, z;" m m. (54)' 

o 

By means of the final value and initial value theorem, the second term between the square­
brackets in Eq. (51) can very easily be integrated. 

'" J (i - ix) dt = [J (i ix) dt]oo - [J (i - i",) dtlo . 
o 
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But according to the final value and initial value theorem, 

[ \ (i - ix) dtL = [2.2' (i - ix)' p] = [2' (i - ix»)o 
, p 0 

and similarly 

tJ(i-i,,,)dt]o L2" (i - ix»)oo. 

11aking use of the Laplace-transform of (i-i",) as written in Eq. (53) we have 

. ) d T Ito K T T Uo . T 
too t = m -R - mo m m = m -R = too m· 

m m 

Hence after simple alteration we obtain 

2 ixRm J (i - i",) dt = 2uo i", Tm - 2i';" Rm Tm. 
o 

Let us substitute the expressions given in Eqs. (54) and (55) into Eq. (51) : 

m 1 u~ T ' 1 '0 R T' . T 3 ., R T 
n = T Rm m T ""2 I", m v T lIO kc m - T 1:0 m m· 

Let us convert the above expression in the following way: 
As according to Eq. (41) the steady-state speed is 

I'", 1£0 Km - mo Rm Kin , 

or 

Voo I K- RI'''' +. R 
lIo = -K T mo In In = -K I", m 

In In 

therefore the first term of Eq. (56) is 

1 0eK' 2 Un" m = el'';" + mo 1'00 T m + ~ i';" Rm T m • 

For the second term 

1 .0 R T 2 l~ T7l '!,' 
1 ., L 
2 l~ m· 

(55) 

(56} 

(56a) 

(56b) 

In the third term the power 1£0 i", consumed by the supply network in steady state can be written 
as the sum of the mechanical output mo v", and of copper loss i;"Rm : 

(56c) 

By substituting Eqs. (56a), (56b), (56c) into Eq. (56) the total heat generated during the starting 
period is obtained: 

W' = ..!.. e 1,2 , 1 '2 L I ? T 2 cc T lee T ..... mo Voo m· (57). 
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Appendix III 

The verity of Eq. (22) can be seen in the following way: 
If the transform of the error of the servomechanism is denoted E, the error transfer 

function of the system is 

-~-;; = 1-; (p) = 1 - y* (p) = I 
B n-1 pll-l -'- ... -i- Bl P -+- Bo 

An pll -'- ... -i- Alp -+- Ao 

-+- Bo - Ao 

Considering that on account of Y:(O) = 0 holds Bo - Ao = 0, the transform of the error caused 
by unit constaut-velocity input is 

The steady-state value c'" of the error can on one hand be computed from the above expression 
by means of the final value and initial value theorem, on the other hand, however, it is known 
that its reciprocal is equal to the reciprocal of the resultant gain in caEe of a system type l. 
Therefore 

Cx = [p E (p) Jp=o = __ A-,,1--c-_Bc...1 

Appendix IV 

I 
K 

Let us introduce' the expression a 

ing forms: 

1 
With this Eqs.(31) and (32) assume the follow-

t" 
(/2= -T-(2 

s 
3 a) 

According to Fig. 4 and Eq. (30) the error of the control is 

The extreme value of the error can be calculated from the following expression: 

d C 3 0 -- = t" - (/31-
dl 

2 (/2/ = 0 

3 v (1 - 2) 

(6 a 3) 

(58(/) 

(58b) 

(59) 
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Hence 
1 

11 = T- ---- --­
, 3 (1 - 2 a) 

Let us build the second-order derivative of Eq. (59) 

d2 1i 
-- = - 2 a. - 6 a3 1 
dt 2 -

the value of which for t = Ts is 

[ 
d2liJ 1: d"" = -T (2 - 6 a) , 

t- t=Ts s 

This is positive, in other words the error has a minimum value for Ts if 

In this case according to Eq. (60a) the error has its maximum value at 

t1 < Ts. 

(60a) 

(60b) 

Consequently, only those curves can be of interest to us for which a is smaller than 1/a. Let us com­
put the quotient i' of the maximllm and minimum value of the error. 

The maximum error lix according to Eq. (59) is 

" T 1 
(/2 t; = v S 3(1 2 (1) 

·1- 9 a 
vT- ----- --

, 27 (1 ::! '1)2 

As, however, v = enK, (ell is the minimum yalue of the error, and in this case the steady-state 
value of it, too) is therefore 

(KT )., .J, KTs 9 
= ell s - 27 (KTs--::!)2 

furthermore 

Summary 

The article shows how t'l give an explicite form te the improper integral of the square 
current of a d. c. scrYomotor used in automatic feedback control systems. Thus the heat 
generated in the armature circuit of the seryomotor can be determined. 
~ This method of variation calculus is suitable for determining the least quantity of heat 
arising ;Jl the armature circuit in case of given parameters describing the behaviour of the 
control system. This optimal value existing among the ideal cirCulll,tance:; gives a goou 
basis for considering, whether it is worth to change the layout of the realized control for 
redncing the quantity of heat arising in the armature circuit. 
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