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1. Energy balance 

As is known from literature [1, 2, 3, 4], one of the most difficult problems 
in realizing thermonuclear reactors is that of confining the gas plasma of a 
-temperature of about 108 oK, the only solution seems to be the generating 
of a sufficiently strong magnetic field, most com-eniently by means of it" own 
magnetic field of high intensity current flowing through the plasma, represent
ing an electromagnetic wall. It cannot be envisaged to directly confine it into 
a vcssel having any actual material wall; the idea hat> ari;;en to surround the 
-central core of a several million degrees temperature by a very wide gas layer 
- similarly to the stars - to ensure heat isolation. The impossibility of this 
arrangement, because of the thermal conductivity of the plasma exceeding 
that of any metal, is pointed out in literature. 

In the following we treat at least in principle quantitatively the dimensions 
for realising, a steady energy production in DT gas at constant pressure, con
fined in a spherical container having a wall of a high, but technically not 
impossible temperature; in other words we consider the behaviour of the 
isobar DT star. 

This star has particular properties. As it is to be expected and subsequently 
verified, the phenomena of gravitation is of no importancc. because of the small 
mass of the star. The STEFAN-BoLTZ?lIANN distribution law does not hold for the 

radi~tion, as it is a space radiation proportional to V T,as stated simultaneously 
in several places in literature [1, 3]. The radiation pressure term too, vanishes 
in the equilibrium equations. In contrast to the common stars, here we precisely 
know the composition of the star, and further the dependence of the fusion 
energy production upon density and temperature, is well known_ Thus for 
the energy equilibrium an exact expression may be obtained. 

We depart from the equation for this energy balance. The difference 
between the fusion power generated within a sphere of radius r and the radiated 
power is equal to the energy lost from the surface by conduction: 
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S 
dT 

[Pi(T,e)-p,(T,e)]4nr2 dr= -4nr:lu(T,r) dr (1) 

o 

where Pi and Pr are the specific fusion and radiation powers, (! is the plasma-
density; n is the thermal conductivity. ' 

For these quantities the functions are plotted as follows: The fusion 
energy production according to [1] is: 

1 102 
----T/keV 

Fig. 1. Plasma-pressure dependence on temperature and density 

where Wo = 0,2 . 17 :Me Y, is the fraction of energy: .rel~ased per reaction imparted 
to charged reaction products. Thus the energy of neutrons may be considered 
as lost in regards to heating effect. (0" VDT)av is the probability, that a particle 
will react and N D and N T are the densities of the deuterium and tritium nuclei, 
respectively. The value of (0" VDr)av can be obtained from the diagram. 

According to [6] the thermonuclear power production may be expressed as: 

_1/3 
Pi = a N2 T-'}, e-fJ T 

A quantitative formula of this form is given by [5] 

Pi=I,88.10-24 (ND + N r)2 T-'I'e-3,9 T-

1

/, ~ 
cm3 

where differing from [5], T has to be substituted in keY. The formulas of [1] 
and [5] do not give the same results, the difference, however, does not essentially 
affect the result. 
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The radiation is the' Bremssttahlung of electrons. Its value obtained 
by [1] and [3] is identical, but in: discrepan~y with the numerical value gi~en 
by [5] is 

W 
pr = 0,54.10-30 (ND + NT)2 T '/, -

emS 

Here T has to be substituted in keY, and ND + NT in cm3 • 
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Fig. 2. Specific fusion and radiation energies at constant pressure p = I kat 

Density and temperature are related through pressure. Considering 
that ions and electrons are involved equally in producing pressure, the equation 
for gas takes on the form: 

If the pressure is measured in 1000 at (kat) and the temperature in keV~ 
it becomes: 

Here the density is given in m -3. This relationship is shown in Fig. 1. 
The curve of the produced and that of the dissipated energy have both. 

to be replotted against constant pressure instead of constant density. In the 
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graph in Fig. 2 the curve plotted in [1] has been used. The radiation power 
is expressed by: 

pr (T,p) = 5.1010 p2 T-'I, 

This can also be seen in Fig. 2. At first the fact may seem surprising, that the 
radiated power decreases with increasing temperature; this only means the 
influence of the decrease in density to be dominant at constant pressure. 

The thermal conduction coefficient may be evaluated in first approxim
.at ion on basis of the equation for the kinetic gas theory: 

k • k _ v 
%=-Nel.V=-Ne ----

2 2 (.lVD+NT)a 

where i- is the mean free path for electrons; v is the electron velocity; a is 
the effective cross section for collision. The value of the latter is according to [1] : 

6.10-19 

a = cm2 

W2 

where W i::: the kinetic energy of electrons. 

Thus for % the following expression is obtained: 

% = 1,68.1013 T'I, 
m·keV 

This relationship is shown by curve b, in Fig. 3. Here we have plotted 
the thermal conduction ClHye for the case of the effective collision cross section 
assumed to be constant, independently of the energy and to be just T~n where 
To is the BOHR radius. It can be seen that at low temperatures the curve gives 
an e:ll..4:remely low conductivity. 

For a as well as for b the conductiyity is obtained as independent of den
sity, and consequently of pressure: at low densities the small number of con-
ducting electrons are compensated by a proportionally longer mean free path. It 
According to the SPITZER-HARl\I theory [7] thermal conduction also depends 
cyen if in a smaller degree, on density. 

W-e did not as yet consider the electric field due to the diffusion of electrons, 
which tends to decrease the diffusion and thus the thermal conductivity too. 
In general there is a fItn.:: of electric charges and also of current density. In the 
steady state the generated field just compensates for the excess diffusion of 
electrons, thus the current density becomes zero. For this case the thermal 
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conduction expressed by SPITZER-H_iR.\I and calculated in units used by us, 
becomes: 

where 

6,43 . 1013 rI, 
In (qC2) 

w 
m·keV 

= 3 59 . 1017 1 ri, = 6 51 . 1051/" 1 T3 , VNe ' . p 

l' 
~ 10f8 1-+-i--f-+--t---I--I-
:::: -I 
~mfflr-T-'----+--I-+-~~~ 
~ 
i 10ft; r----:---+--+-- ---i---lj'-/----i'------+---! 

I 

10'D I-+--+---l:~ 

108 

m6~~~~~ __ ~L-~-L~ 
10-6 10-2 1 {02 

-T/kei 

Fig. 3. The variation of thermal conductivity as a function ef temperature 

{1) calculated according to the kinetic gas theory with the Bohr-radius as a radius 
for effective cross-section 

.b) calculated according to the kinetic gas theory, but with an effective cross-section, 
depending on the energy 

e) calculated according to the Spitz er-Harm formula 

",here e IS the electron charge; co is the dielectric constant in vacuum. For 
thermal conduction a relation almost similar to [7] is obtained, with the differ
ence that by the expression In (qO'-) density and pressure are also involved. 
The curve c, in Fig. 3 showE the value of % evaluated for a pressure of p = 1 kat. 
As it can be seen the error is not too important, even if we calculate with the 
more simple curve b. 

3 Periodica Polytechnica El 1/3. 
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2. Transformation of the energy equation into an integral equation 

Let us write our equation as follows: 

r 
1 " dT 
o J {Pi [T(s), p] - Pr [T(s), p]}s2ds = ~ (T, p) d 

r~ r 
o 

By integrating both sides from 0 to r, that is from the corresponding temperature 
To to temperature T. 

r t T 

J -t~ J (Pi - pr) s2 ds dt = - J ~ 
o 0 To 

dT dr 
dr 

The right hand side integrating by parts: 

f r r T. 

[- t-1 S (Pi- Pr)s2 dS] + J s (Pi- Pr) ds = f ~dT 
Considering that 

o 0 0 T 

t 
1 . 

lim J (Pi - Pr) S2 ds = 0 
t=O t 

o 

following integral equation is obtained: 

r T. 

J S (1 - 7) (Pi - pr) ds J~dT 
o T 

From this integral equation a simple law of similarity may be derived 
as a good app . .:oxima}ion; for approximation let us assume the value of x to be 
independent of density. 

Our equation may then be rewritten as follows: 

on the other hand 
Pi (T,p) =::p2p/ (T) 

pr (T,p) = p2 p' (T) 

thus introducing the new variable z = pr 

z ~ J s (1- ~)[pj(T) - P; (T)] ds = J udT 
o T 

(2) 
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Consequently the relations depend only on the product pr and not separately 
on p and r, respectively. 

Let us substitute for the temperature the new variable 

T 
~ 2 _ 

Y = J "dT ="7 . 1,68.1013 T'/· (3) 

o 

by using above approximation. The right hand side of equation 2., then becomes: 

To T, T 

f "dT = J "dr - f ~dr =y(o) - y(z) 
TOO 

Further, let us introduce the symbol: 

pj (T) - p; (T) = F (y) 

our integral equation may be ,vritten as: 

y (z) + J s (1 - : ) F (y) ds = y (0) 

o 

(4) 

In the case of calculating the thermal conduction by means of the SPITZER

HARM formula, y depends not only on T, but also on p, and thus the law of 
similarity does not strictly apply. Considering the portion of the function" 
above the curve a. (Fig. 3) - incidentally it is also the condition at which the 
formula may be applied - the approximate value of y is : 

T 

= j' ~ (T ) dT r-.J 7,95· 10
12 

T'/, W 
Y ,p In (q C2) m 

o 

3. Convergence of the integral equation iteration 

The kernel of the equation being positive, for y following limit may be 
given: 

.AJ5 point of departure for the iteration let us assume the temperature 
to be' constant: 

z 

y<n+l) (z) = y (0) - J s (1- ~) F [y(n) (s) 1 ds (5) 

o 
3* 
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For the error remaining after each step following limit may be given: 
As definition let it be that 

M(z) = Max M' (z) monotonous growing 
:Ym<r< '0 

il_dF(y) I .. , 
: d\' 

/
y(n+I)(z) - y(I1'(Z) I = I (s (I - : ') j F [ycl1)] - F [y(n-I)] t ds ! 

I ,', . I , ( , 
° 

< J s ( 1 - -: ) I F [;-'11)1- F k(n-I) '] I ds 

° 
< J s (1 - ~-) NI (8) : y(l1) (s) - y(I1-li (s) I ds 

° 
< NI (z) f 8 (1- : ) i y(l1) (s) - y(I1-I) (s) I ds 

° 
By inserting thE> product 8(0) (z, m) 

I I 2 N2 

beD) (z, m) = :y(l) (z) -la) (z) I = ~yo = ~ Fu 
I I 

b(I1-,-I) (z, m) = M (m) f s (~1- ~') b(l1) (s, m) ds 

° 
it is evident that 

I y(n+ I) (z) - y(l1) (z) ! < ben) (z, z) 

by Laplace transformation with respect to the variable z 

zb(n+l)(z,m)= M~m) z8(11)(z, m) 
r 

(
M (m) '}2 ~'O) z b(l1) (z, m) = p2 . Z u (zm) 

= i lVI (m) ')2 z3 F 
\ 2 6 0 p , 

= (~~l)2 Fo 
p2 p4 
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Z2n+3 
Z <5(n) (z, m) = Fo [M (m)]n ---

(2 n + 3)! 

Fo [zYM(z))2n+3 
<5(11) (z, z) = ,,[M (,,-)]',1 __ ;; _ z . -(2~+-3)-!-

!y-in). ~ 'yn-'-il _ y"..:.h-1 '< ~ <5(I1+h) (z, z) 
h-O h-O 

I)'(Z) _ f") (z)' < _Fo_,_, .L Jz VM (z) ]2h+3 
, - z[M(z)] I, 11-1. (2h+3)! 

4. Quantitative discussion of the first order approximations 

Let the temperature be constant in a zero order approximation 

then according to equation (5) : 

F z2 
y(z) =),(1) (z) = -'"0 - ~ 

or In a somewhat rewritten form: 

where as a definition: 

and Zkr is called the characteristic radius. 
Introducing the variable T from equation (3): 

T (z) = To [1- (z:rn 'f; 

251 

For Zkr = (prhr the temperature falls to zero. The true value of (pr) 
which - let us say - at a temperature of T ~ 2000° K is allowable, - is 
certainly smaller. The plot of T (z) is sho"",,>! in Fig. 4. 
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The value of the caracteristic radius depends - though in a small degree -
also on the density given by the exact value of ~. Further, again slightly, it 
depends on the value of To taken at point T = O. The following Table shows 
this dependence for 1 kat. 

P kat 1 1 1 

To keY 5 10 20 

lVD + lVT m-3 6,12 . 1022 3,06 . 1022 1,53 . 1022 

PI Wm-3 5,1 · 109 1,6 · 1010 1,26 • 1010 

pr Wm-3 4 · 109 1,6 · 109 5 · 108 

PI- pr Wm-3 1,1 · 109 1,1 · 1010 1,2 · 1010 

Y Wm-1 2,8 .1014 2,85 . 1015 2,9 · 1016 

rkr m 1250 1250 3850 

It can be seen that even by choosing a pressure of 1 kat, the radius will 
still be of the order of magnitude of' km. s. At lower pressures this value obtained 
would be proportionally greater. 

The high power production too, is due to the great size. In zero order 
approximation , ... ill be: 

for To = 10 ke V and p = 1 kat it is given as 

PI = 3,68.1016 W 

The radiation power in first approximation is : 

where 

B (x, y) = r (x). r(y) 
r(x + y) 

and it becomes by substituting the foregoing values: 

Pr = 3,7.1016 W 

J 
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About 10% of the total power production leaves in the form of radiation, 
the rest by th~mal conduction . 

. The energies here involved are rendered useless from a technical point 
of view by their order of magnitude. Taking into account, that a power plant 
of 200 MW is considered to be a large one, we can see what technical problems 
would have to be solved, in order to remove an output of 1000 MW from every 
m 2 of the surface of a sphere with 1 km radius. It has to be noted that also 
the neutron energy is to be considered. 

( ZIZ" 

Tiro 
1

1
--__ _ 

o a5 1 Z/Z/f 

Fig. 4. Curves plotted for the first order approximation. The relative position of the exact 
curve is shown by the dashed line 

Even if the conduction of 1000 MW could be realized - though with 
great difficulties - how and for what uses could the remaining energy be dis
posed of? This seems impossible on an earthly scale. 

The conditions calculated at the first approximation do not essentially 
alter by further approximations. In Fig. 1 we have plotted the difference 
Pi - p" obtained by the first approximation. It can be seen that it is constant 
excepted in a thin shell; thus further iteration does not lead to a decisive 
alteration. For the exact solution the curve runs somewhat below the curve 
obtained for the first approximation (Fig. 4). 

The value of the voltage taken at the center of the sphere and the point 
Zkr can be simply determined. According to SPITZER-HXRM following relation 
may be written for current density j: 

. dU dT 
J =O=O'E+aL1T= -O'--+a--

dr dr 
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From this 

T, 

U = - S~dT = 0,72 kTo 
a e 

o 

Let be To = 10 keY then V = 7,2 kV. 
This is a good value from a technical point of view: the tension of high 

power generators being of the same order of magnitude. In principle, if we 
could introduce an electrode in the center of the high temperature core, energy 
could be taken (Jut of it as from a galvanic cell working according to diffusion 
law. A tension of the same character would occur at the steady state operation 
of a plasma surrounded by an electromagnetic wall, due to the small temperature
gradient. 

5. Control of assumptions 

Our speculations were based on the follo",ring assumptions: 
a) The composition of the gas does not change. 
b) The gas is in plasma state. 
c) There is a MaxweHian distribution of velocity. 
d) The radiation absorption being negligible, the plasma is transparent. 
e) The pressure is constant. 
j) The mean free path is so short that the thermal conduction may be 

calculated by applying the formula. 
g) The reaction products reach an equilibrium with the gas at the place 

of their origin. 
ad a) Let us examine the consumption time of the total amount of gas 

in the case of constantly producing the initial energy. 

2 
= 0,67 sec 

(ND + N T) (a VDT)av 

From this it can be seen that our assumption is valid for only a fews 
msecs at the most. At a lower energy production an equilibrium is reached, 
mv-ing to the increasing radiation effects of the reaction products at a smaller 
temperature gradient, thus the critical radius will increase. 

ad b) The gas is at such a high temperature in the major part of the volume, 
that the plasma state is maintained. The conditions are uncertain in the neigh
bourhood of the external wall, where at a few~ thousand degrees, also neutral 
particles may be found. Of course, tbis effects the thermal conductivity. 
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The eyents here occuring may somewhat .mlargen the shell, at the same time, 
however, neither the dimensions, nor the produced energy will lmdergo any 
essential alteration. 

ad c) The essential difference from the lVIaxwellian distribution is the 
follmving: many reactions occur per unit time resulting in a great number 
of high energy reaction products. By transferring their energies to the D and T 
nuclei, the distribution density will be shifted towards higher energies. As 
the temperature To is chosen for the sake of stability near to the temperature 
for the maximum energy production, no appreciably higher production will be 
obtained, thus the decreasing in size cannot be expected. 

r 

Fig. 5. The total radiated power a) according to the Stefan-Boltzmann law; b) according 
to the law of space radiation 

ad d) In Fig. 5 we have plotted the total radiated power as evaluated 
according to the Stefan-Boltzmann law and on basis of the space radiation, 
respectively. It can be seen that our sphere is extremely transparent: the 
Stefan-Bolt:;;mann formula giving a value that is higher by seyeral orders 
of magnitude. Thus the absorption may again be neglected, except .for a thin 
shell. The two radiation curves sho'w an intersection at T = 14 e V. 

ad e) For some ten tons of material, obviously, the gravitation effects 
may be neglected. In order to estimate the radiation pressure let us suppose 
the total energy to be absorbed in the external wall. Thus 

A 2 Pr 
LJ P < -4--" rv 0,093 at 

c :r Tk 

which may be completely neglected, as compared to 1000 at. 
e ad f) The thermal conduction law is only valid, as long as the relative 

change per unit mean free path is small, that is : 

\
}. d (In T) I ~ 1 

dT I 
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By determining the value of j, from [I] this condition may be wTitten as : 

I}. d (In T) I = i p}, d (In T) I = T8 Z [I _ L.~ Yl-'/' = 
I dr ! d Z I Zk Zk \ z,,) 

=2,97.10-12 r 1- (;orT' (.~o t, 
for To = 20 keY. 

This value will be the unity for a temperature of 18 e V, thus immediately 
next to the wall, anywhere else it ,\ill be considerably smaller. 

ad g) Similarly the reaction products, except for neutrons, will be stopped 
in the major part of the space on a path along which T does not appreciably 

change. 
The mean free path of the reaction product 2He4 is, in fact, of the order 

of several 10 meters. Approximation holds here only for a smaller fraction oi 

space. 

6. Conclusions 

It can be seen that our assumptions hold, and that the results obtained 
for dimensions and power production may be considered true as regards to 
the order of magnitude. An improvement towards the approach of more real 
values cannot be expected from further refinement of calculations. By letting 
our imagination run loose, we may suggest the possibility of an artificial star, 
besides the artificial planet to be realised in the near future. In principle, thus 
a "black" wall temperature and radius might be found at which the total power 
output ,."ill be dissipated, and the problem of removing such an extremely large 
power does not arise. For the present, however, the resulting wall temperature 
makes the realisation quite illusory, even in the case of a sudden improvement 
in the heat resistivil y of materials. 

Summary 

The possibility of the steady state of a deuterium tritium plasma-mixture, confined 
at constant pressure in a spherical container, is considered. 

The temperature chosen for the plasma sphere center is in the vicinity of the temperature 
belonging to the maximum of thermonuclear energy production; the temperature of the 
external wall being fixed at about a few thousand degrees. Although the dimensions obtained 
are on an earthly scale, technically the realization of a fusion reactor of this type is found 
to be impossible. 

J 
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