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Abstract
Current paper tries to find appropriate similarity transforma-

tion that could convert a given ME (Matrix Exponential) repre-
sentation to a more favorable PH (Phase-type) representation.
As the main result of this paper, we give necessary conditions for
the existence of such a representation. We also give methods for
the search and provide conjectures on necessary and sufficient
conditions too. PH distribution is the distribution of the time
until absorption into the absorbent state in a Markov chain. If
the arrival and service time distributions are PH distributions in
a queuing system, we can use simple linear algebraic methods
to derive the most important features or to perform simulation.
Robust methods exist that can approximate any distribution with
a ME distribution (with respect to a given measure and matrix
order), but the PH transformation have not been sufficiently ex-
amined yet. This transformation is the object of the current pre-
sentation.
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1 Introduction
If we want to model telecommunication networks, where the

global behavior is very complex, first we should look for flexi-
ble and tractable mathematical tools. It is crucial in the network
dimensioning, in the design of routing protocols, and during the
operation too. A queue is usually defined by the distribution
of the differences between consecutive arrival times of the re-
sources, and by the distribution of the serving time differences
(see the formalism of Kendall). The simplest resource flows fol-
low a memoryless Poisson process, where the time distributions
between the consecutive arrivals are exponentially distributed.

In this case the behavior of the queues can be characterized
by the help of algebraic methods. This process allows us to use
the methods of the Markov chains. We can derive the most im-
portant parameters (loss, distribution of the delay, etc.) of the
system directly by solving linear equations without any simu-
lation or statistical measurements. It can be shown how this
advantageous property survives if the arrival/service processes
follow the so called PH or ME processes (see [2] for PH Re-
newal Process, Markov Arrival Process (MAP), Matrix Expo-
nential Arrival Process (MEP) and Quasi Birth Death Process
(QBD)). As we will see, the set of ME distributions includes the
set of PH distributions. The difference is that PH distributions
have an expressive stochastic interpretation based on Markov-
chains unlike ME distributions. However, the major part of the
formulas used in the PH world is applicable in the class of ME
distributions too. An important exception is e.g. the so called
randomization, which gives already a practical reason for study-
ing PH representations.

PH and ME distributions have been studied for a long
time. Some important or classic results can be found here:
[14][15]. . . . The class of PH distributions is dense and hence
any distribution on [0, ∞] can be approximated arbitrarily close
by a PH distribution. Some main studies of this approximation
problem are Bux & Herzog [8], Lazowska & Addison [9] and
Thummler & Buchholz & Telek [10].

Bux and Herzog have implemented a non-linear estimation
approach based on the matching of the first two moments cou-
pled with the minimization of a distance measure with respect of

Spectral conditions for Phase-type representations 112010 54 1-2

http://www.pp.bme.hu/ee


the empirical distribution. Lazowska and Addison [9] provide
a technique for determining a method that matches the mean
and an arbitrary number of percentiles of an arbitrary distribu-
tion. Thummler, Buchholz and Telek [10] provide an efficient
and numerically stable fitting method that fits a restricted class
of phase-type distributions, namely mixtures of Erlang distribu-
tions, to trace data. The ME class has been proposed in [11].
The ME class includes the PH class while preserving the most
of its useful properties.

A robust methods exist that can approximate any distribution
with a ME distribution with respect to a given number of mo-
ments [3], but methods transforming ME representations to PH
representations have not been sufficiently studied yet. This step
is the object of the current paper. Since PH ⊂ ME the existence
of such a transformation is not guaranteed. As the main result
of this paper, we give necessary conditions for the existence of
such a representation. Stefanita Mocanu also gave a spectral
condition for PH representations [12], but the strengths have not
been compared yet. The major part of the current paper focuses
on the so called relaxed problem, where we ignore the initial
probability vector and examine only the form of the generator
matrix.

In Section 2 we discuss the basic concepts and properties of
ME and PH distributions. It does not contain any new results.

In Section 3 we derive the the main result of this paper: Theo-
rem 3.5. It provides n−1 necessary constraints for the existence
of PH representations. The constraints include only the spectral
invariants of the initial representation. We do not know whether
these conditions are sufficient. Theorem 3.6 is a modified ver-
sion regarding to the so called phase process. This condition
implicitly includes the initial vector so we take an analytic step
forward to the complete (non-relaxed) PH-fitting problem too.
The efficiency of the theorems is pointed out in the last sections.

In Section 4 we introduce the well known cyclic matrices.
As we will show, these matrices play an important role in the
PH world but they have not been examined yet in this context.
These matrices have some advantageous properties beside seri-
ous drawbacks. In Theorem 4.3 we show that it is easy to find
a cyclic form for a given spectrum and we point out that in the
case of cyclic matrices the sufficient constraints for the existence
of PH representations get simpler. The number of constraints of
the relaxed problem reduced from n2 to n − 1. These properties
inspired some conjectures on these matrices. The conjectures
gave clear necessary and sufficient conditions for the relaxed
problem. On the other side, cyclic matrices can not be diag-
onalized by a valid similarity transformation and can generate
only simple exponential distributions. However, small perturba-
tions can solve these problems. It is also an open problem at
the moment, whether the n − 1 sufficient conditions for cyclic
representations and the n − 1 necessary conditions for general
representations in the previous section are equivalent.

In Section 5 we propose two straightforward and useful mea-
sures for gradient algorithms which work on the space of the

matrix entries. Theorem 5.2 allows us to improve the ’good-
ness’ of representation using gradient methods with a differen-
tiable error measure. Theorem 5.3 can be used in general, for
the correction of non-valid transformation matrices. Theorem
5.4 states that cyclic matrices fulfil the necessary conditions of
a local maximum. So this result also supports our conjectures.

In Section 6 case studies will demonstrate the efficiency of
our spectral conditions.

2 Basic properties
PH distribution is the distribution of the time until absorption

into the absorbent state in a continuous time Markov chain (we
focus on continuous Phase Type Distribution in this paper).

The row of the absorbent state is redundant in the generator
matrix, since in this state there is no escape to other states.
The intensities of these transitions are zero. The column of the
absorbent state is also redundant, since the rowsums are zero
in the generator matrix (in the continuous case). The ’transient
generator matrix’ (A) of a PH distribution is the generator
matrix of the Markov chain without the corresponding row and
column of the absorbent state. The order (n) of a PH distribu-
tion is the size of A. In the followings we use the term ’initial
probability vector’ (π ) without the corresponding probability of
the absorbent state, since this value is also redundant.

The probability density function and the cumulative distribu-
tion function of the absorption time is the following:

f (t) = πeAt a, (2.1)

F(t) = 1 − πeAt 1I, (2.2)

where 1I is the column vector of ones and a = −A1I is the col-
umn vector of the absorbent transition intensities.

If n → ∞ then any distributions can be approximated by PH
distributions with arbitrary accuracy, but some properties of the
PH distributions always survive:

• the domain of PH distributions is infinite: [0, ∞]

• that is why the variance can not reach zero: σ ≥
1
n > 0

Now we summarize the constraints over the (A, π) represen-
tation:

∀i, j, i , j : Ai j ≥ 0

∀i : ai ≥ 0

∀i : πi ≥ 0

1 − π1I ≥ 0

The constraints over A imply that the diagonal entries are nega-
tive. These inequalities simply come from the representation of
the Markov chains. Roughly speaking, these constraints make
the difference between PH and ME distributions.
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ME distribution is a time distribution that can be expressed by
Eq. 2.2 (and by Eq. 2.1) where there are no constraints over the
(A, π) representation. The only constraint is the next:

∀t ≥ 0 : f (t) ≥ 0, F(∞) = 1

namely f (t) is a probability density function. These conditions
hold automatically in the case of PH distributions, P H ⊂ M E .
We will use terms ’valid transient generator matrix’ and ’valid
initial probability vector’ in the case of ME representations, if
the appropriate PH constraints hold for A or π . If both of them
are valid then we have a PH representation. If we demand the
validity of A only and neglect the form of π , we call it ’relaxed
problem’.

Definition 2.1 Two ME representations – ME(π, A) and
ME(π ′, A′) – are similar , if there exists such an invertible B
transformation matrix that

A′
= B−1 AB, (2.3)

B1I = 1I, (2.4)

π ′
= π B. (2.5)

B is a similarity transformation over the representation. If Eq.
(2.4) holds for B (the sum of all rows are one), we say B is
’valid’. The set of valid transformations is a group.

Theorem 2.1 If two ME representations – ME(π, A) and
ME(π ′, A′) – are similar, then they generate the same ME dis-
tribution.

Proof 2.1 F ′(t) = 1 − π ′eA′t 1I =

= 1−(π B)(eB−1 ABt )1I = 1−(π B)(B−1eAt B)1I = 1−πeAt 1I =

F(t)

Theorem 2.2 If two ME representations of the same ME distri-
bution have minimal order, then the representations are similar.

Now we can define the subject of this article more formally:
Given the initial ME representation we search for a similar PH
representation (valid ME representation).

It is clear that for every ME representation there is a domi-
nant λmax eigenvalue that is real, and it has the highest real part.
It means that the determinant of −A is positive. If the domi-
nant eigenvalue would not exist, the sign of the density function
would alternate. If this value were not negative then F(t) would
not converge to 1. The uniqueness of the dominant eigenvalue
does not hold in general (e.g. if A = −I ).

3 The residual polynomial
In this section we prove the main theorem of the current paper.

Theorem 3.5 is a very efficient tool for proving the non-existence
of any valid representation. At first we derive an inequality over

the coefficients of the characteristic polynomial and the so called
diagonal polynomial defined below. Then we apply this inequal-
ity to the maximal diagonal polynomial too, which is representa-
tion independent unlike an arbitrary diagonal polynomial, so we
get a stronger and representation independent statement: Theo-
rem 3.5.

Lemma 3.1 [19](page 59.) If A is valid, then A−1 consists of
only non positive entries.

Definition 3.1 P(λ): Characteristic matrix: λI − A
P(λ) =

∑n
i=0 Piλ

i : Characteristic polynomial: |λI − A|

D(λ) =
∑n

i=0 Diλ
i : Diagonal polynomial: |λI − A ◦ I |

R(λ) =
∑n

i=0 Riλ
i : Residual polynomial: R(λ) =

P(λ) − D(λ)

where ◦ denotes the element wise matrix product.

Lemma 3.2 If A is valid, then the product of the positive diag-
onal entries of −A is greater or equal than the product of the
positive eigenvalues (the determinant) of −A:

D0 ≥ P0.

Proof 3.1

∂ det (−A)

∂(−A)i j
= [adj(−A)] j i =

[(−A)−1] j i det (−A) = −[A−1] j i det (−A) ≥ 0, (3.1)

if A is valid. We also know that −Ai j ≤ 0 if i , j . So if we
increase the non diagonal, negative entries of −A, then the de-
terminant of the resulted matrix will not decrease. Moreover,
the result is also the additive inverse of a valid transient gener-
ator matrix, so the properties above survive. It means that while
we increase all the non diagonal (negative) entries of −A up to
zero, the determinant will not decrease. If all the non diagonal
entries reach zero, the determinant will be the product of the
remaining diagonal entries which is the 0-th coefficient of the
diagonal polynomial.

Lemma 3.3 If A is a valid transient generator matrix of order
n then

∀i : Di ≥ Pi or Ri ≤ 0. (3.2)

Proof 3.2 We get the value of Pi if we get all the combinations
of (n − i) pieces of diagonal entries from the [−A] matrix, cal-
culate the determinant of the corresponding submatrices sepa-
rately and finally sum these values. (It means

( n
n−i

)
submatri-

ces.) We can apply the previous lemma on these submatrices
and we can give an upper bound for the determinant of these
submatrices by the product of the appropriate diagonal entries.
The sum of these upper bounds is Di .

Some coefficients of R(λ) have no information content. It is
easy to see that Rn = Rn−1 = 0.
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We have to emphasize that the D(λ) diagonal polynomial is
representation-dependent. We can achieve arbitrary diagonal
patterns using appropriate similarity transformations, but there
is one constraint. The sum of the diagonal entries is independent
from the representation.

Let us denote the i th diagonal entry of A by di : di = Ai i and
the average of the negative diagonal entries of A by d̄.

d̄ =
1
n

n∑
i=1

di =
−Pn−1

n

.

Lemma 3.4 All coefficients of D(λ) are maximal if the diagonal
entries are equal (under the constraint of the next inequalities
∀i : di ≤ 0 and

∑
i di is constant).

Proof 3.3 Consider the case that there exists such a pair of
roots (di , d j ) of D(d) that fulfills the next inequality:

di ≤ d̄ ≤ d j .

We can always find such a pair, if the roots are not equal. Let
us separate these roots from the polynomial:

D(d) = (d − di )(d − d j )Di j (d) =

d2 Di j (d) − d(di + d j )Di j (d) + di d j Di j (d). (3.3)

Since all the roots of D(d) are negative, the coefficients of
Di j (d) are also positive. Let c denote d̄ − di . Let us change
the value of the root pair as follows:

d́i = di + c = d̄, d́ j = d j − c.

It can be achieved by an appropriate similarity transformation.
In this case the sum of the altered roots remains the same but the
product increases:

d́i d́ j = d̄(d j − d̄ + di ) = −d̄2
+ d̄(di + d j ) − di d j + di d j =

= −(d̄ − di )(d̄ − d j ) + di d j ≥ di d j ,

so the altered roots result increased coefficients in the D(d)

polynomial (see Eq. (3.3)). If we repeat this root alteration (at
most (n − 1) times) we arrive at such a D(d) polynomial, where
all roots are equal to d̄. During this procedure the coefficients
do not decrease. Since it works for arbitrary initial diagonal
entries, the resulted polynomial provides the highest coefficient
values for D(d):

Dmax (d) = (d − d̄)n
=

n∑
i=0

(
n
i

)
(−d̄)n−i d i

=

n∑
i=0

Dmax i d i

where

∀i : Di ≤ Dmax i =

(
n
i

)
d̄n−i (3.4)

Definition 3.2 Rmin(λ): Minimal residual polynomial:
Rmin(λ) = P(λ) − Dmax (λ) = P(λ) − (λ +

Pn−1
n )n so Rmin(λ)

is also independent from the representation.

Now we can rewrite lemma 3.3 to a representation-
independent form without loss of generality:

Theorem 3.5 If
∀i : Rmin i ≤ 0 (3.5)

does not hold then there is no valid representation.

Proof 3.4 For any representation we can write ∀i : Rmin i ≤ Ri

using the previous lemma. If there is a valid representation, we
can write ∀i : Ri ≤ 0 using lemma 3.3. So in this case we can
also write: ∀i : Rmin i ≤ Ri ≤ 0.

This theorem gives us n − 1 inequalities. We do not believe
that this necessary condition is sufficient too, but we have not
found any counterexamples yet.

We can also derive the so called phase process if we initi-
ate the Markov chain every time we reach the absorbent state.
(Phase processes occur e.g. at Quasi Birth-Death (QBD) Pro-
cesses.) It is easy to see that the generator matrix of the phase
process is the next: G = A + aπ .

Since G have to be valid, we can repeat the procedure dis-
cussed above. We can also define the minimal residual polyno-
mial for G: RG

min , and we can rewrite theorem 3.5 for the phase
process too:

Theorem 3.6 If
∀i : RG

min i ≤ 0. (3.6)

does not hold then there is no valid representation.

In this paper we examine only the relaxed problem except the
last theorem, where π took part implicitly. An other exception
occurs in Section 5, where the gradient methods use functions
of the complete ME representations.

Finally we invoke an old result from Stefanita Mocanu [12]
who also gives a spectral condition for a PH representation:

Theorem 3.7 If there is such a complex conjugate pair of eigen-
vectors – λmr ± λmi i –, that fulfils:∣∣∣∣λmr − λmax

λmi

∣∣∣∣ ≤ cot
π

n
, (3.7)

then there is no similar valid transient generator matrix.

This theorem gives only one inequality unlike Theorem 3.5,
but we have not performed a complete comparison yet.

4 Cyclic matrices
In this section we introduce the cyclic matrices because these

matrices play an important role in the world of valid transient
generator matrices.

Definition 4.1 An A quadratic matrix is cyclic, if the Ai j values
depend only from the ( j − i) mod n value. This kind of matrix
can be characterized by the entries of the first row (c).
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E.g.:

A(c) =

 1 2 3
3 1 2
2 3 1

 , where c = (1, 2, 3).

Definition 4.2 Let us denote the next matrix with U :

U =


1 1 1 . . . 1
1 ω1 ω2 . . . ωn−1

1 ω2
1 ω2

2 . . . ω2
n−1

...
...

...
. . .

...

1 ωn−1
1 ωn−1

2 . . . ωn−1
n−1

 ,

where ωk = e
2kπ i

n .

1
√

n U is unitary and symmetric (the Discrete Fourier Trans-

form), so U−1
= Ū/n. ( Here Ū is the complex conjugate of

U .)

Definition 4.3 If M AM−1 is diagonal then M is a left modal
matrix of A.

Each row of the left modal matrix is a left eigenvector of the cor-
responding eigenvalue in the diagonal form, so if we multiply
these rows separately by arbitrary constants, the resulted matrix
remains also a left modal matrix. This degree of freedom al-
lows us to ensure the validity of the left modal matrix in general.

Theorem 4.1 [4](page 255.) U is a left modal matrix of any
cyclic matrix.

Unfortunately all the rowsums of U (left modal matrix) are
zero except the first one, which is n, so we can not diagonalize
cyclic matrices with valid similarity transformations. It is not
good since the ordered diagonal form could be the intermediate
step between the cyclic and the initial representations1. More-
over, it can be shown easily that cyclic matrices can generate
only geometric distributions. Using Theorem 2.1 in this case,
we also get that there is no valid transformation between gen-
eral PH representations and cyclic forms. By all means, small
perturbations can eliminate the zero rowsums of the left modal
matrix. This elimination process has not been examined yet.

Theorem 4.2 [4](page 255.) If A is a cyclic matrix then there
is a simple linear transformation between the λ eigenvalues and
c:

λ = cU, or c =
λŪ
n

. (4.1)

In the next theorem we show that it is easy to find a real-
valued cyclic form for a given spectrum. We just have to order
the λ eigenvalues properly.

1here we have to remind the reader, that the set of valid transformations is a
group

Theorem 4.3 c =
λŪ
n is a real vector if and only if ∀i : λ̄i =

λ[(1−i) mod n]+1.

Proof 4.1 It is easy to see that for every row/column of U there
is a conjugate row/column too:

∀i : Ūi,: = U[(1−i) mod n]+1,:,

(Here Ūi,: denotes the i-th row of Ū .) The first row/column is
the conjugate of itself. If n is even then that is the case with the( n

2 + 1
)
-th row/column too. The complex components fall out in

the expression of ck:

(λiŪik + λ[(1−i) mod n]+1Ū[(1−i) mod n]+1,k) =

(λiŪik + λ̄iUik) ∈ <.

The other direction is straightforward.

We know that c1 is the average of the eigenvalues because
c =

λŪ
n . So the diagonal entries are negative. Moreover, the sum

of any row in the cyclic form is λ1 because λ = cU , which is
also negative. Only the positiveness of the non-diagonal entries
is not trivial. As we see the number of constraints of the relaxed
problem reduced from n2 to n − 1 in the case of cyclic matrices.
Since the number of appropriate orderings is huge, we can vary
them to find a valid cyclic form. Usually there are more than two
real-valued eigenvalues in the initial form of A unlike in cyclic
matrices. In this case we can divide the eigenvalues into more
groups and construct cyclic blocks separately.

Definition 4.4 A matrix is called block-cyclic, if it is block-
diagonal, and the blocks are cyclic.

Now we can express our main conjecture regarding to cyclic
matrices.

Conjecture 4.4 If all the similar real-valued block-cyclic repre-
sentations are not valid, then there is no similar valid transient
generator matrix at all.

This statement could be a necessary and sufficient condition
for the existence of a valid similar transient generator matrix.
We do not know any counter-example till now. Unfortunately
the number of real-valued block-cyclic representations is huge
but finite and we think, there could be efficient algorithms or at
least good heuristics to find valid ones. This question have not
been sufficiently examined yet.

Finally we have to mention that the ’best’ diagonal polyno-
mial in the previous section came from a setup where diagonal
entries were equal. It remains us to the cyclic matrices. More-
over, the number of validity constraints of Theorem 3.5 is ex-
actly the same as in the case of cyclic forms. However, in the
first case constraints are necessary conditions whilst in the sec-
ond case these are sufficient ones. If the constraints were equiv-
alent, we would find the final answer to the relaxed problem by
providing a necessary and sufficient condition.
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The next section also contains a conjecture regarding to such
cyclic matrices, where there is at most two real-valued eigenval-
ues. It will also say that cyclic forms are the ’best’ but uses a bit
different terminology.

5 Algorithms, goodness and error functions
If a ME distribution satisfies all the known necessary condi-

tions above for the existence of a similar PH representation, we
should try to find such a representation. In the followings we
will use valid infinitesimal transformations iteratively using the
gradient of different goodness/error functions and choose step
sizes adaptively.

Definition 5.1 B is a valid infinitesimal transformation if
B = I + β where β1I = 0 and the entries are so small that β2

is negligible according to β. That is why B−1
= I − β.

Definition 5.2 Adaptive step size (regarding to any gradient
method): The gradient is β in the transformation space. The
transformation can be written so: B = I + pβ, where p is
the adaptive step size. If the last step have just taken and the
previous step size was p′ then the current value is p = 1.2p′.
We transform the matrix using this p and derive the value of the
goodness or error function and compare it with the original one.
If the value gets better, we take the step and calculate the new
gradient. Otherwise we halve p until the value gets better or at
least remains the same then we also take the step.

First of all we have to introduce the indicator matrix and the
indicator vector.

Definition 5.3

Ă =


a1 A12 . . . A1n

A21 a2 . . . A2n
...

...
. . .

...

An1 An2 . . . an


π̆ = π =

(
π1 π2 . . . πn

)
The role of indicators is obvious. The corresponding (π, A)

pair is valid if and only if all entries of the indicators are non
negative. We have to emphasize that the diagonal entries of the
indicator matrix are the rowsums of −A. We will define the
goodness/error functions with the help of the indicators.

Definition 5.4 The R goodness functions:

RA = min Ă, Rπ = min π̆

R = min(RA, cR Rπ ), where cR ≥ 0

Definition 5.5 The E error functions:

E A(c) =

∑
x∈ Ă

e−cx , Eπ (d) =

∑
x∈π̆

e−dx

E = E A(c) + cE Eπ (d), wherecE ≥ 0, c, d > 0

cE , cR values are the binding coefficients. We usually set
them as follows: cE = 1, cR = n.

Theorem 5.1 A (π, A) pair is PH representation if and only if
R ≥ 0.

The R goodness functions are quite informative from the
viewpoint of the PH representations unlike the E function, but
R is not differentiable everywhere. That is why we use the E
function in the gradient method. The next theorem allows us to
enhance the value of R by using the gradients of E .

Theorem 5.2 If the E1(c, d, cE ), E2(c, d, cE ), R1(cR), R2(cR)

values are the goodness and error functions of two ME repre-
sentations, then

∀cE , cR ≥ 0 : lim
c,d→∞

E1(c, d)

E2(c, d)
=


∞ if R2 > R1

positive if R2 = R1

0 if R2 < R1
(5.1)

Theorem can be proved easily if we take the limit of the
expression above. This means that if we want to minimize
E(c), we get similar results as if we would maximize R, if c is
high enough.

We do not describe our algorithm in details because we
could test it only on small problem instances where n ≤ 3 (see
the case studies below for details). The main idea is that we
use grad E at first with small c, d values. The minimum is
unique if c and d is small enough because in this case we can
substitute the Taylor expansion of E with a positive definite
quadratic expression. So we can reach this unique minimum
from any similar representation. Then we increase the c, d
values slowly while we perform some iteration steps until
numerical difficulties arise: E diverges fast if R is negative.
MATLAB sources are available here: [6].

Sometimes it is easier to calculate the gradient in the complete
space of the infinitesimal transformations and then we derive the
closest valid one. In this case the next theorem could be useful.
It can be applied not only to infinitesimal transformations but to
general ones too.

Theorem 5.3 We look for such a B transformation matrix that
is not far from C but valid. If we maximize the 〈B|C〉

√
〈B|B〉〈C |C〉

value2 beside the validity condition B1I = 1I, then

B =
1I1IT

n
+ xC

(
I −

1I1IT

n

)

where x =
n

1IT C1I
. If we minimize 〈B − C |B − C〉 beside the

same condition then x = 1.
2〈X |Y 〉 :=

∑
i j Xi j Yi j
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Proof 5.1 We show only the second case. At first we have to ex-
press the partial derivatives of the expression what we minimal-
ize/maximalize in the space of valid transformations. I used the
set of valid infinitesimal transformations which differ from the
identity matrix only in one non-diagonal entry while validity is
ensured by a diagonal correction. In this case ∂〈B−C |B−C〉

∂bi j
= 0

implies that ∀i j : 2(bi j − ci j ) − 2(bi i − ci i ) = 0. Now we have
to merge these Eqs. into a matrix-equation as follows:

C − diag(C)1IT
= B − diag(B)1IT ,

where diag() gives back a column-vector including the appropri-
ate diagonal entries of the argument. Let us multiply the equa-
tion with 1I on the right.

C1I − ndiag(C) = 1I − ndiag(B),

so we san write

diag(B) =
1I − C1I

n
+ diag(C).

If we substitute it into the first matrix-equation, we get back the
statement of the theorem.

Now we mention an other aspect of the cyclic matrices.

Theorem 5.4 If a goodness/error function has the next form:
F(A) =

∑
x∈ Ă f (x) where f is differentiable and A is cyclic

then the gradient of F(A) is zero (in the space of valid infinites-
imal transformations).

The proof is too long to detail here, but we have to use the
same partial derivative of the infinitesimal transformations as in
the previous proof. The steps are straightforward. The property
of the cyclic matrices inspired the next conjecture:

Conjecture 5.5 If A has similar real cyclic representations
(consisting only one block) then the global maximum of RA

comes from one of these representations.

Conjecture 4.4 can be considered as the generalization of this
conjecture to the block-diagonal form. If there are more blocks
then RA ≤ 0 of course.

6 Case studies
We will show the power of our theorems and methods on real

data sets[5].

6.1 BC trace
The BellCore dataset (available at [5]) is a traffic data of a

LAN Ethernet network recorded 1989 in the Bellcore Research
Center in Morristown. The dataset was first analyzed at this
reference: [1].

The empirical moments are the next:

moments 8 35725624614.8032684326172
1 1.00000000000000000000000 9 3414160455559.02880859375
2 4.22360967056936154052000 10 339725592277090.125000000
3 64.7632019524897799556100 11 34637644509814440.0000000
4 1862.57143119453121471452 12 3587161604074151936.00000
5 82474.2108922783372690901 13 375441643826279284736.000
6 5136400.25600292067974806 14 39589661071358423990272.0
7 401428800.155969798564911 15 4197680784515048876802048

2n − 1 moments can determine the corresponding ME func-
tion with order n, so maximal order is 8.

Now we fit ME functions where n = 1, 2, 3, . . . , 8 with the
method of Appie [3].

If n = 8 or n = 7, there is no such an ME function that
has the same moments as above according to Appie’s method.
Otherwise this method gives the next representations.

A6 =



−1.069 −0.137 0.1479 0.023 −0.002 0.001
−1.000 0.000 0.000 0.000 0.000 0.000
0.720 −1.779 0.843 0.133 −0.014 0.003

−32.083 32.147 −15.352 −2.267 0.240 −0.050
34.026 −36.225 17.285 2.661 −0.387 0.080
487.515 −505.237 241.161 36.464 −4.422 0.708



A5 =


−1.43750 0.24460 −0.03413 −0.00413 0.00081
−1.00000 0.00000 0.00000 0.00000 0.00000
−1.38050 0.39352 −0.19447 −0.02351 0.00463
3.69680 −4.85760 2.31210 0.40033 −0.07890

−23.76400 23.54400 −11.24500 −1.64660 0.12743



A4 =


−1.32920 0.13267 0.01929 0.00394
−1.00000 0.00000 0.00000 0.00000
−0.76393 −0.24415 0.10991 0.02245
−6.80400 6.00260 −2.87190 −0.38239



A3 =

 −1.38800 0.19348 −0.00973
−1.00000 0.00000 0.00000
−1.09890 0.10230 −0.05546


A2 =

(
−1.37070 0.17553
−1.00000 0.00000

)

A1 =

(
−1.00000

)
πk = e(1) = (1, 0, 0, . . .)

Unfortunately if n = 5 then the ME function is not an ME
distribution because limt→∞ f (t) = −∞ (there is a positive
eigenvalue) even though the moments formally fit. In the other
cases the ME functions are distributions.

If n = 6 then PH representation is impossible if we apply
theorem 3.5:

Rmin(λ) = 0λ6
+ 0λ5

+ 0.02175λ4
− 0.06599λ3

−

−0.09069λ2
− 0.02258λ − 0.00173

has a positive coefficient.
If n = 4, 5, 6 then PH representations are also impossible if

we apply theorem 3.6, since the RG
min polynomials have positive

coefficients.
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After running our algorithm if n = 1, 2, 3, we get PH repre-
sentations only in cases n = 1, 2:

π ′

2 = (0.98957, 0.01043),

A′

2 =

(
−1.22730 0.02085
0.02085 −0.14337

)
,

If n = 3 then resulted local extrema has the next
goodness functions: RA′

3
= −0.00144670998799, Rπ ′

3
=

0.00173310249387.
Using only E-steps and adjusting c and d manually, we found

the next PH representation:

π ′

3 = (0.0000154, 0.0109904, 0.9889941),

A′

3 =

 −0.051950 0.017028 0.017767
0.000230 −0.152746 0.079693
0.000001 0.021915 −1.238799

 .

To get this result, we increased c and d very slowly to avoid
the extreme error values and the numerical instabilities. The
result appeared at c ≈ 6000, d ≈ 8000.

6.2 DEC trace
DEC is an other traffic dataset (available here:[5]).

moments 8 7185535775501.0019531250000000
1 1.000000000000000000000000000 9 1799517979420836.500000000000
2 3.204810514595462400680000000 10 450666369931268544.0000000000
3 28.06266139707007667425000000 11 112863712680956608512.0000000
4 2048.980478830916581500790000 12 28265296203065805766656.00000
5 460828.2335480888723395764800 13 7078687710198204425306112.000
6 114632132.1903925687074661255 14 1772768252368246187797512192
7 28693310339.73722076416015625 15 44396749874194860592798367744

If n = 8, there is no such an ME function that has the
same moments as above according to Appie’s method. If n =

7, 6, 5, 4 then the ME functions are not ME distributions. In
other cases the method of Appie provides the next ME represen-
tations:

A3 =

 −1.06871 −0.13677 0.14791
−1.00000 0.00000 0.00000
0.72033 −1.77922 0.84266

 ,

A2 =

(
−1.06871 −0.13677
−1.00000 0.00000

)
,

A1 =

(
−1.00000

)
,

πk = e(1) = (1, 0, 0, . . .).

After running our algorithm if n = 1, 2, 3, we get PH repre-
sentations only in cases n = 1, 2:

π ′

2 = (0.97983, 0.020168), A′

2 =

(
−1.22337 0.03139
0.03139 −0.23424

)

If n = 3 then resulted local extrema has the next good-
ness functions: Rπ ′

3
= 0.0009580680434057619, RA′

3
=

−0.0009149475456419218. Using only E-steps and adjusting
c and d manually, we found the next PH representation:

π ′

3 = (0.290516, 0.000004, 0.709480),

A′

3 =

 −0.476016 0.000001 0.021968
0.006860 −0.020668 0.006675
0.053149 0.000026 −2.068253

 .

The method is the same as above but the parameters were a lot
higher when the PH representation appeared: c ≈ 26000, d ≈

33000.

7 Conclusions
We can say that our theorems are very efficient in proving the

absence of any PH representation. We do not know such an A
matrix that satisfies the conditions of our theorems but has no
similar valid representations at the moment. Unfortunately in
our case studies there were no PH distributions if n was high
(4, 5, 6, . . .), so we could not test our algorithm on bigger prob-
lem instances. We do not know whether this problem comes
from the particular datasets or from the fitting method. However,
this negative result could be achieved hard without our spectral
theorems.
We showed that cyclic matrices play an important role in the
world of PH representations. We do not know any counter-
example for the conjectures regarding to cyclic matrices till now.
The conjectures could be used for a necessary and sufficient con-
dition for the existence of similar valid representations of the
transient generator matrix.
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