
Ŕ periodica polytechnica

Electrical Engineering
54/1-2 (2010) 21–28

doi: 10.3311/pp.ee.2010-1-2.03
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2010

RESEARCH ARTICLE

Analytical and simulation comparison
of sinusoidal and resistive modulation
strategies for network-friendly
three-phase grid-connected inverters
Gergely György Balázs / István Schmidt / Miklós Horváth
Received 2010-05-25

Abstract
The growing numbers of consumers distort AC networks with

harmonics. Therefore suppression of the network pollution
should be considered. This problem can be solved by using
“network-friendly” converters.

In our study we examined two modulation strategies of three-
phase grid-connected inverters. If these methods are used, con-
verters behave like sinusoidal or resistive current loads of the
network, which enables “network-friendly” operation. The ex-
amined sinusoidal and the resistive modulation strategies are
known, but the differences between the two methods have not
been studied before [1,2]. This paper deals with the compar-
ison of these two strategies. First, the analytical examination
is presented. By comparing their consumed RMS currents we
defined a coefficient (k[%]), which depends only on the total
harmonic distortion of the network voltage (THDu). We demon-
strated that at high THDu resistive modulation method is more
favorable. Then simulation examination is discussed, by pre-
senting our model of the three-phase four quadrant converter.
Finally simulation results are represented in this article.
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1 Introduction
Nowadays high amount of electrical energy is converted by

power electronic devices. Equipments such as variable speed
motors, large uninterruptible power supplies (UPS), computers,
discharge lamps and bridge rectifiers used in power electronics,
are the primary cause of harmonic distortion. Most of these de-
vices contain simple diode rectifiers (Fig. 1a). These rectifiers
consume non-sinusoidal current and produce current harmon-
ics (Fig. 1b). Therefore the RMS (root mean square) current
load of the AC network substantially grows. Extra losses re-
duce the electric energy transmission capacity of the network.
The harmonic currents generated by the non-linear load, have to
flow in the circuit via the source impedance and all other parallel
paths. As a result, harmonic voltages appear across the supply
impedance and are present throughout the network. Eventually,
qualitative parameters of the energy supply are affected: poten-
tial difficulties include various kinds of economic and techno-
logical problems, breakdowns, switching surges, overheating,
and electromagnetic disturbances [2].

Because of the increasing number of consumers polluting the
network with harmonics, both the suppliers and the consumers
have to face dangerous phenomena. To solve this problem, elec-
tric consumers should be equipped with “network-friendly” con-
verters. The most common way of implementation is the use of
high frequency pulse width modulated (PWM) converters [2,3].

2 Network-friendly grid-connected inverter
Several types of grid-connected converters are capable of

“network-friendly” operation. Simple converters allow unidi-
rectional power flow. In our study, we used three-phase full-
bridge converter connected to the three-phase AC network and
containing PWM controlled semiconductor switching elements:
IGBTs (Fig. 2).

As this converter is capable of four-quadrant operation, the
power flow can be bidirectional between the load (connected to
P-N terminals) and the AC network (connected to AC11-AC12-
AC13 terminals). If the network supplies power, the converter
operates as a “network-friendly” rectifier, in the other case, it
operates as a regenerative inverter. In fact, this converter is a
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Figure 1.a.) Schematic circuit diagram of a three- phase full bridge rectifier  
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Let us study the case when several other consumers dis-
tort the network voltage waveform which feeds the network-
friendly converter. At every time instant, if the currents of each
phase [ia(t), ib(t), ic(t)] are controlled to be proportional to
the network voltages instantaneous value [ua(t), ub(t), uc(t)],

the u(t)/i(t) ratios will be constant. It means that the con-
verter behaves like a three-phase resistive load. For the ade-
quate operation, the modulation signals of the control circuit
should be proportional to ua(t), ub(t) and uc(t). This is the
resistive modulation method. The three-phase values can be
transformed to Park vectors, i represents the threephase cur-
rents [ia(t), ib(t), ic(t) ⇒ ī(t)] and u the three-phase voltages
[ua(t), ub(t), uc(t) ⇒ ū(t)]. Therefore at resistive modulation
the i current vector coincides with u voltage vector and the vec-
tor amplitudes ratio is constant [u/i=const].

There is an other modulation strategy, when the PWM mod-
ulation enforces sinusoidal network currents, which are propor-
tional to the fundamental of the distorted network voltage wave-
forms [ua1(t), ub1(t), uc1(t)]. In this case, the converter oper-
ates as a three-phase sinusoidal load. The modulation signals of
the control circuit should be proportional to ua1(t), ub1(t),and
uc1(t). It is called sinusoidal modulation method. If the three-
phase values are transformed to Park vectors then at sinusoidal
modulation the = 1 current vector coincides with u1 funda-
mental voltage vector and the vector amplitudes ratio is constant
[u1/ i1=const].

The question is which control method is more favorable? To
answer this question we compared the sinusoidal and the resis-
tive strategies by examining the root-mean square (RMS) value
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of the consumed AC network currents [IRM S] in both cases,
while keeping constant the DC-side power of the converter. (It
is an important requirement of modern “network-friendly” con-
verters to reduce the IRM S) [6, 7].

3 Analytical comparison of sinusoidal and resistive
modulation strategies
The distorted three-phase network voltage contains positive,

negative and zero sequence harmonics. The AC network volt-
age waveform (which can be observed at AC11-AC12-AC13
terminals of the grid-connected inverter) does not contain zero
sequence harmonics that caused by other non-linear loads, be-
cause the neutral point of the DC link capacitor is not connected
to the neutral wire. Therefore Park vector transformation can be
used for the three-phase time-dependent values.

The distorted AC network voltage waveform of the three-
phases and the fundamental components are as follows:

ua(t) =

∑
ν

Uν cos(νω1t + ϕν), (1.a)

ua1(t) = U1 cos(ω1t) (1.b)

ub(t) =

∑
ν

Uν cos(νω1t + ϕν ± 120◦), (2.a)

ub1(t) = U1 cos(ω1t − 120◦) (2.b)

uc(t) =

∑
ν

Uν cos(νω1t + ϕν ± 240◦), (3.a)

uc1(t) = U1 cos(ω1t − 240◦) (3.b)

(Generally [the three-phase voltage is symmetrical but contains
harmonics] ν=1+6k harmonic numbers [for positive sequence
harmonics: k=0,+1,+2. . . and the phase angle of each phase
is -120˚; for negative sequence harmonics: k=-1,-2. . . and the
phase angle of each phase is +120˚], Uν : harmonic voltage am-
plitudes, ϕν : phase angles of harmonics, ω1=2πf1, f1: funda-
mental frequency.)

The network voltage Park vector and the fundamental vector
can be defined from the three-phase voltage waveforms:

ū =

∑
ν

Ūνe jνω1t
=

∑
ν

Uνe jϕν · e jνω1t
=

∑
ν

Uνe j (νω1t+ϕν ),

(4.a)

ū1 = Ū1e jω1t
= U1 · e jω1t (4.b)

If ν >0 the harmonic vector rotates in the same direction as
the fundamental, otherwise the harmonic vector rotates in the
other direction (Fig. 4).

By using the sinusoidal modulation strategy, on the AC-side
the converter enforces current (i sin) which is proportional to the
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tj
eUkukii 1

1sin1sin1sin
ω

⋅⋅=⋅== .                                  (5) 
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By using the resistive modulation strategy, on the AC-side the converter enforces current ( ohmi
_

) which is 
proportional to the instantaneous value of the distorted network voltage (kohm [A/V]: coefficient). By applying 
the network voltage Park vector (4a), the current Park vector is: 

∑
ν

νϕ+νω

ν ⋅⋅=⋅=
)1( tj

ohmohmohm eUkuki .                               (7) 

If the instantaneous values are equal as in (7), then the previous equation is valid for the amplitudes of each 
harmonic vector also: 

ohmohmohmohm kIUUkI __ νννν =⇒⋅= .                               (8a,b) 

 
If the converter operates as a rectifier then ksin>0, kohm>0 otherwise in inverter state: ksin<0, kohm<0. 
 
We assumed that the consumed powers of the two strategies are equal (at same DC-side load) [Psin= Pohm]. It 
can be computed with the amplitudes: 

∑
ν

νν=== ohmohm IUPIUP _

!

sin_11sin 2

3

2

3
.                               (9) 

Substituting (6a) and (8a) into (9): 

∑
ν

ν=== 2
!

2
1sinsin 2

3

2

3
UkPUkP ohmohm .                                (10) 
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dtu
T

dtuu
T

U
TT

RMS ∫∫ =⋅= 2||
1

ˆ
1

                                (11) 

where û is the complex conjugate of ū. 
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instantaneous value of the network fundamental voltage (ksin

[A/V]: coefficient). By applying the Park vector of the network
fundamental voltage (4b), the current Park vector is:

īsin = ī1 = ksin · ū1 = ksin · U1 · e jω1t . (5)

If the instantaneous values are equal as in (5), then the previous
equation is valid for the amplitudes of the vectors also:

I1_ sin = ksin · U1 ⇒ U1 = I1−sin/ksin (6)

By using the resistive modulation strategy, on the AC-side the
converter enforces current (iohm) which is proportional to the in-
stantaneous value of the distorted network voltage (kohm [A/V]:
coefficient). By applying the network voltage Park vector (4a),
the current Park vector is:

īohm = kohm · ū = kohm ·

∑
ν

Uν · e j (νω1t+ϕν ). (7)

If the instantaneous values are equal as in (7), then the previ-
ous equation is valid for the amplitudes of each harmonic vector
also:

Iν_ohm = kohm · Uν ⇒ Uν = Iν_ohm/kohm (8)

If the converter operates as a rectifier then ksin >0,kohm >0
otherwise in inverter state: ksin < 0,kohm < 0.

We assumed that the consumed powers of the two strategies
are equal (at same DC-side load) [Psin = Pohm]. It can be com-
puted with the amplitudes:

Psin =
3
2

U1 I1_ sin
!
= Pohm =

3
2

∑
ν

Uν Iν_ohm . (9)

Substituting (6a) and (8a) into (9):

Psin =
3
2

ksinU 2
1

!
= Pohm =

3
2

kohm
∑
ν

U 2
ν . (10)

The definition of the Park vector RMS value is:

URM S =

√√√√ 1
T

∫
T

ū · û dt =

√√√√ 1
T

∫
T

|ū|2dt (11)
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where û is the complex conjugate of u.
By using (10) and based on (11), we got:

ksinU 2
1RM S = kohmU 2

RM S . (12)

Substituting (6b) and (8b) into (9):

Psin =
3
2

I 2
1_ sin

ksin

!
= Pohm =

3
2

1
kohm

∑
ν

I 2
ν_ohm . (13)

By using (13) and based on the definition of the RMS, we got:

kohm I 2
sin _RM S = ksin I 2

ohm_RM S . (14)

Based on (12) and (14):

ksin

kohm
=

I 2
sin _RM S

I 2
ohm_RM S

=
U 2

RM S

U 2
1_RM S

=
U 2

1_RM S + U 2
harm_RM S

U 2
1_RM S

.

(15)
By computing the square root of (15) and based on

the definition of the total harmonic distortion (THDu =

Uharm_RM S /U1_RM S), we defined a coefficient k[%]:

k[%] =
Isin _RM S − Iohm_RM S

Iohm_RM S
· 100 =( √

1 + T H D2
u − 1

)
· 100. (16)

Fig. 5 represents the relative deviation of the sinusoidal and re-
sistive loads. In the case of sinusoidal modulation the current
load of the grid is (k+1)-times higher than at resistive modula-
tion.
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4 Comparison of sinusoidal and resistive modulation
strategies by simulations
To compare the sinusoidal and the resistive modulation strate-

gies we built up a model of a network-friendly three-phase grid-
connected inverter in the environment of Matlab Simulink. Our
model consists of two main parts: the model of the power elec-
tronic circuit and the model of the control circuit. We built up
our model by using per-unit quantities.

4.1 Model of the power electronic circuit
We wrote the adequate equations of the power electronic cir-

cuit (Fig. 2):

• The equation of the input filter choke:

ū(t) = R · ī(t) + L
dī(t)

dt
+ ūi (t)

• The power equations that can be written for both sides of the
converter (lossless converter assumed):

pAC (t) = pDC (t) ⇒ ūi (t) • īi (t) =
2
3 u DC (t) · iDC (t) (where •

represents scalar product)

• The current of the DC-link:

iDC (t) = iC (t) + iDCl(t)

• The current of the buffer capacitor:

iC (t) = C
du DC (t)

dt

4.2 Model of the control circuit
To fulfil the requirements of network-friendly equipments, the

grid-connected inverter needs to have an adequate control cir-
cuit. In our study it was equipped with a cascade control (Fig. 6).
The primary control loop of the cascade is a DC-voltage-control
(u DC ) and the secondary loop is phase currents (ia, ib, ic) con-
trol. This structure guarantees a high power factor and an ade-
quate line current shape.

In Fig. 6 notations are as follows:

• UDC_re f , ia_re f , ib_re f , ic_re f : reference signals of UDC ,
ia, ib, ic

• Iampl : the output of the voltage controller that describes the
amplitudes of ia_re f , ib_re f , ic_re f

• isa, isb, isc synchronized signals

• The control circuit contains a three-phase pulse width
modulator. The control signals of the modulator:
ua_ctrl , ub_ctrl , uc_ctrl . the carrier wave is a triangle signal
(voltage: u1, frequency: f1).

The equations that describe the control circuit:

• The transfer function of the PI controller that is used for DC
voltage control and for current control:

YP I = P +
1

sTI
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• The operation of the synchronization signal generator that
synchronize the control circuit to the network voltage: (K
is the gain of the synchronization signal generator)

resistive:

isa = K · ua(t) sinusoidal :isa = K · ua1(t)

isb = K · ub(t) isb = K · ub1(t)

isc = K · uc(t) isc = K · uc1(t)

• The reference signal generator produces the reference signals
of each phase current:

ia_re f = Iampl · isa

ib_re f = Iampl · isb

ic_re f = Iampl · isc

• Three-phase PWM and inverter (at ideal case Const is the gain
of the inverter; in our simulations Const=1 because per unit
quantities are used). Ideal case means that the inverter enables
switching infinite voltage vectors. The inverter voltages are
defined from the virtual zero point.

ideal case: real case:

uia = Const ·ua_ctrl uia =

{
+u DC

/
2 i f ua_ctrl ≥ u1

−u DC
/

2 i f ua_ctrl < u1

uib = Const ·ub_ctrl uib =

{
+u DC

/
2 i f ub_ctrl ≥ u1

−u DC
/

2 i f ub_ctrl < u1

uic = Const ·uc_ctrl uic =

{
+u DC

/
2 i f uc_ctrl ≥ u1

−u DC
/

2 i f uc_ctrl < u1

4.3 Simulations and results
In our simulations we studied the case when a network-

friendly inverter was connected to the three-phase AC network
which waveform is distorted by other consumers, e.g. three-
phase diode rectifiers (Fig. 1). We assumed that the network
voltage waveform contained harmonics of order ν = 1, −5, 7.

We used the same distorted voltage waveforms during the
simulations that are represented in this chapter (from Fig. 7 to
Fig. 11). The waveforms of the three-phases are as follows:

ua(t) = U1 cos(ω1t) + U−5 cos(−5ω1t) + U7 cos(7ω1t),

ub(t) = U1 cos(ω1t − 120◦) + U−5 cos(−5ω1t+

120◦) + U7 cos(7ω1t − 120◦),

uc(t) = U1 cos(ω1t − 240◦) + U−5 cos(−5ω1t+

240◦) + U7 cos(7ω1t − 240◦).

(U1 = 1, U−5 = 0.1, U7 = −0.05)

If these three-phase voltage waveforms are transformed to a
Park vector, we get that hexagonal-shape vector which can be
seen on Fig. 5. (THDu=0.1118).

The Park vector of the three-phase voltage waveforms
(Fig. 7a):

ū =

∑
ν

_
U
ν

·e jνω1t
=

∑
ν

Uν · e jνω1t+ϕν =

= U1 · e jω1t
+ U−5 · e− j5ω1t

+ U7 · e j7ω1t

The voltage vector can be discussed in synchronous rotating ref-
erence frame (Fig. 7b)

ū∗
= ū · e− jω1t

= U1 +

∑
ν,1

Uν · e j (ν−1)ω1t+ϕν =

= U1 + U−5 · e− j6ω1t
+ U7 · e j6ω1t

We compared the sinusoidal and the resistive modulation
strategies in ideal and real case.

The simulation settings were as follows (per unit quantities
were used):

UDC_re f =2, R=0, L=0.05, C=9, Voltage controller: P=5
TI=3, Current controller: P=1 TI=0.001, the load was simu-
lated with a DC current source iDCl=0.4.

Ideal case:
Sinusoidal modulation (see Fig. 8)

4.4 Comparison of analytical and simulation results
We compared the analytical and the simulation results by

computing the k[%] coefficient in both cases. After running
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Resistive modulation: 
 

 
Figure 9. Ideal case, resistive modulation: network voltage and current vectors, ‘a’ phase time functions 
 

 

Real case: (f∆=2.5kHz) 
 

Sinusoidal modulation: 
 

 
Figure 10. Real case, sinusoidal modulation: network voltage and current vectors, ‘a’ phase time functions 
 

Fig. 9. Ideal case, resistive modulation: network voltage and current vectors, ‘a’ phase time functions

simulations of the resistive and sinusoidal modulation strategies,
Isin_RM S and Iohm_RM S were defined at steady state. Then we
calculated k[%], based on (16).

It turned out that our simulation gave the same results as the
analytical output. Fig. 12 shows the deviation of the analytical

(solid lines) and simulation (dashed lines) results at two different
points.

5 Conclusions
The main requirement of “network-friendly” converters is to

eliminate network current harmonics. Two appropriate modula-
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Figure 12. Comparison of analytical results (solid lines) and simulation results at ideal case (dashed lines) 

 

Fig. 11. Real case, resistive modulation: network voltage and current vectors, ‘a’ phase time functions

tion strategies were demonstrated. The sinusoidal and the resis-
tive modulation methods were compared by analytical and sim-
ulation results. Neither the sinusoidal, nor the resistive current
load produces additional harmonics to the network.

An increasing proportion of “network-friendly” converters
means less harmful network pollution and an improved THDu

value of the network voltage. The waveform approaches the
sine wave, the additional current load of the network decreases.

If the network voltage waveform is distorted, the resistive
modulation method is more favorable than the sinusoidal. Stark
differences can be observed at high THDu values (Fig. 5).

Actually the harmonic components generate real power for
the load if the resistive strategy is used. At sinusoidal strategy,
only the fundamental generates real power.

It is easier to build control electronics in the case of resistive
modulation, because we do not need to know the fundamental
frequency of the network voltage. It is enough to map the net-
work voltage waveform to obtain an adequate modulation sig-
nal.

On the other hand, reactive current control can be appropri-
ately realized by sinusoidal modulation.

The grid-connected inverter can be equipped with a LC filter
that tuned to the switching frequency of the IGBTs. This paper
is not dealing with it but in the future we would like to observe
the effect of this filter.
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