
Ŕ periodica polytechnica

Electrical Engineering
54/1-2 (2010) 29–40

doi: 10.3311/pp.ee.2010-1-2.04
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2010

RESEARCH ARTICLE

Finding multiple maximally redundant
trees in linear time
Gábor Enyedi / Gábor Rétvári

Received 2010-05-25

Abstract
Redundant trees are directed spanning trees, which provide

disjoint paths towards their roots. Therefore, this concept is
widely applied in the literature both for providing protection and
load sharing. The fastest algorithm can find multiple redundant
trees, a pair of them rooted at each vertex, in linear time.

Unfortunately, edge- or vertex-redundant trees can only be
found in 2-edge- or 2-vertex-connected graphs respectively.
Therefore, the concept of maximally redundant trees was intro-
duced, which can overcome this problem, and provides maxi-
mally disjoint paths towards the common root. In this paper,
we propose the first linear time algorithm, which can compute a
pair of maximally redundant trees rooted at not only one, but at
each vertex.
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1 Introduction
Communication has changed our life in the last few decades.

Nowadays, people are reachable almost everywhere and it is
possible to find almost any information in no time. All these
new possibilities are provided by the communication networks,
which influence our life more and more significantly. More-
over, it seems that this trend will not change; developments like
Google Chrome OS or Microsoft Windows Azure will bring us
cloud computing in some years, making the whole economy
completely dependent on these networks.

Naturally, directly connecting all the resources in a commu-
nication network is impossible, therefore it is always needed
to find decent path from the source to the destination(s). Ob-
viously, it does matter, which paths are found. Finding link-
or node-disjoint paths is a common desire for multiple reasons.
Mostly, these disjoint paths are used for resilience, for providing
connectivity even after a failure (e.g. [17,18,32]), but some pro-
posals were taken, where disjoint paths are used for distributing
the load in the network(e.g. [7]).

An important and widely studied possibility for finding dis-
joint paths is the concept of redundant trees. A pair of edge- or
vertex-redundant trees rooted at a given root vertex of an undi-
rected connected graph is a pair of directed spanning trees, di-
rected in such a way that there is a path from each vertex to the
root on both trees and the two paths on these two trees are edge-
or vertex-disjoint respectively. A pair of vertex-redundant trees
rooted at d is depicted in Fig. 1.
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I. INTRODUCTION

Communication has changed our life in the last few decades.
Nowadays, people are reachable almost everywhere and it is
possible to find almost any information in no time. All these
new possibilities are provided by the communication networks,
which influence our life more and more significantly. More-
over, it seems that this trend will not change; developments
like Google Chrome OS or Microsoft Windows Azure will
bring us cloud computing in some years, making the whole
economy completely dependent on these networks.

Naturally, directly connecting all the resources in a commu-
nication network is impossible, therefore it is always needed
to find decent path from the source to the destination(s).
Obviously, it does matter, which paths are found. Finding
link- or node-disjoint paths is a common desire for multiple
reasons. Mostly, these disjoint paths are used for resilience,
for providing connectivity even after a failure (e.g. [1], [2],
[3]), but some proposals were taken, where disjoint paths are
used for distributing the load in the network(e.g. [4]).

An important and widely studied possibility for finding
disjoint paths is the concept of redundant trees. A pair of
edge- or vertex-redundant trees rooted at a given root vertex of
an undirected connected graph is a pair of directed spanning
trees, directed in such a way that there is a path from each
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Figure 1: A pair of vertex-redundant trees rooted at vertex d.

vertex to the root on both trees and the two paths on these
two trees are edge- or vertex-disjoint respectively. A pair of
vertex-redundant trees rooted at d is depicted in Figure 1.

Redundant trees (also known as colored trees, independent
trees and recovery trees) are well studied in the literature.
It was first proven by Edmonds [5] that it is possible to
find a pair of edge-disjoint directed spanning trees for a 2-
edge-connected digraph. Later, Itai and Rodeh gave a linear
time algorithm for finding both edge- and vertex-redundant
trees in [6] for avoiding failures in computers with multiple
CPUs. This concept was later improved by minimizing the
path lengths [7], [8] and by algorithms for finding three and
four trees in 3- and 4-vertex-connected graphs [9], [10], [11],
[12], [13].

Médard et. al. applied this concept first on the field of
communication [1]. Moreover, in their work they generalized
the the way of computation. Based on this generalization,
Xue et. al. endowed redundant trees with various QoS ca-
pabilities [14], [15], [16], [3], [17], [18]. Other approaches
gave the possibility of computing redundant trees based on
only local information [19], [20], [21], [22], [23], [24].

Even the first technique, proposed by Itai and Rodeh, com-
putes redundant trees in linear, O(|E(G)|) time, where |E(G)|
is the number of edges. In telecommunications, however, the
task is given somewhat differently: usually a pair of redundant
trees rooted at each node is needed. This is because a node
usually needs to communicate with all the other nodes in the
network. Therefore, computing all the trees is not linear, have
O(|V (G)||E(G)|) running time, where |V (G)| denotes the
number of vertices, the nodes in the network.

On the other hand, observe that several networks base on
hop-by-hop forwarding paradigm, thus knowing the whole
redundant trees is not needed for these networks. In this special
case, even a faster distributed algorithm is proposed in [25],

Fig. 1. A pair of vertex-redundant trees rooted at vertex d .

Redundant trees (also known as colored trees, independent
trees and recovery trees) are well studied in the literature. It was
first proven by Edmonds [8] that it is possible to find a pair of
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edge-disjoint directed spanning trees for a 2-edge-connected di-
graph. Later, Itai and Rodeh gave a linear time algorithm for
finding both edge- and vertex-redundant trees in [15] for avoid-
ing failures in computers with multiple CPUs. This concept was
later improved by minimizing the path lengths [2, 13] and by
algorithms for finding three and four trees in 3- and 4-vertex-
connected graphs [5, 6, 14, 20, 33].

Médard et. al. applied this concept first on the field of
communication [17]. Moreover, in their work they general-
ized the way of computation. Based on this generalization,
Xue et. al. endowed redundant trees with various QoS ca-
pabilities [29–32, 34, 35]. Other approaches gave the possibil-
ity of computing redundant trees based on only local informa-
tion [3, 16, 22–24, 27].

Even the first technique, proposed by Itai and Rodeh, com-
putes redundant trees in linear, O(|E(G)|) time, where |E(G)|

is the number of edges. In telecommunications, however, the
task is given somewhat differently: usually a pair of redun-
dant trees rooted at each node is needed. This is because a
node usually needs to communicate with all the other nodes in
the network. Therefore, computing all the trees is not linear,
have O(|V (G)||E(G)|) running time, where |V (G)| denotes the
number of vertices, the nodes in the network.

On the other hand, observe that several networks base on hop-
by-hop forwarding paradigm, thus knowing the whole redundant
trees is not needed for these networks. In this special case, even
a faster distributed algorithm is proposed in [10], which com-
putes only these next hops along the redundant trees, but for all
the trees rooted at each node.

Note that distributed manner in the field of redundant trees
typically means token coordinated distributed computation,
based on only local information. Hence, these algorithms make
communication an essential part of the computation itself. In
contrast, the technique presented in [10] supposes that the com-
plete topology of the network is already explored (there is a link
state routing protocol, like OSPF or IS-IS in the background),
and computations in different nodes are made asynchronously
without the coordination of potentially perishing tokens. This
algorithm is distributed in the way that the nodes know only
the edges going out from them, the next hops, but none of
them knows any of the trees completely; this information is dis-
tributed in the network.

Unfortunately, edge- or vertex-redundant trees have a seri-
ous drawback: since these trees provide two edge-disjoint or
vertex-disjoint paths respectively, the network must be 2-edge-
connected or 2-vertex-connected in order to find such trees with
an arbitrary root. Since networks are usually designed with a
redundant manner, fulfilling this requirement seems possible at
first, albeit redundancy can be easily lost when a failure occurs.
Moreover, several real networks do not have 2-vertex-connected
topology, even when they are intact (see e.g. Abeline, AT&T
in [1] or Italian backbone in [12]).

Therefore, the concept of maximally redundant trees was in-

troduced [9]. A pair of maximally redundant trees rooted at a
given root vertex of an undirected graph is a pair of directed
spanning trees directed in such a way that there is a directed
path from each vertex to the root on both trees and the two paths
on these trees have the minimum number of edges and vertices
in common. This means that only the unavoidable cut-edges
and cut-vertices are on both paths, therefore maximally redun-
dant trees provide maximum redundancy in arbitrary connected
graph. 2

Figure 2: A pair of maximally redundant trees rooted at vertex
d.

which computes only these next hops along the redundant
trees, but for all the trees rooted at each node.

Note that distributed manner in the field of redundant trees
typically means token coordinated distributed computation,
based on only local information. Hence, these algorithms make
communication an essential part of the computation itself.
In contrast, the technique presented in [25] supposes that
the complete topology of the network is already explored
(there is a link state routing protocol, like OSPF or IS-IS
in the background), and computations in different nodes are
made asynchronously without the coordination of potentially
perishing tokens. This algorithm is distributed in the way that
the nodes know only the edges going out from them, the next
hops, but none of them knows any of the trees completely;
this information is distributed in the network.

Unfortunately, edge- or vertex-redundant trees have a seri-
ous drawback: since these trees provide two edge-disjoint or
vertex-disjoint paths respectively, the network must be 2-edge-
connected or 2-vertex-connected in order to find such trees
with an arbitrary root. Since networks are usually designed
with a redundant manner, fulfilling this requirement seems
possible at first, albeit redundancy can be easily lost when a
failure occurs. Moreover, several real networks does not have
2-vertex-connected topology, even when they are intact (see
e.g. Abeline, AT&T in [26] or Italian backbone in [27]).

Therefore, the concept of maximally redundant trees was
introduced [28]. A pair of maximally redundant trees rooted at
a given root vertex of an undirected graph is a pair of directed
spanning trees directed in such a way that there is a directed
path from each vertex to the root on both trees and the two
paths on these trees has the minimum number of edges and
vertices in common. This means that only the unavoidable cut-
edges and cut-vertices are on both paths, therefore maximally
redundant trees provide maximum redundancy in arbitrary
connected graph.

A pair of maximally redundant trees rooted at d is depicted
in Figure 2. As it can be observed, vertices b and e together
with the edge between them is unavoidable, so both paths from
a or f contain them.

The main contribution of this paper is that we first present
a distributed linear time algorithm for finding a pair of
maximally redundant trees rooted at not only one, but each
vertex. This algorithm is an extension of the one presented
in [25]. We suppose that there are |V (G)| processors (these
are typically the nodes of the network, |V (G)| denotes the

number of vertices again), all the processors have exactly the
same graph as input (e.g. the topology of the network, with
vertices and edges given in the same order) and each processor
computes only the edges of the trees going out from its vertex.
If the input graph is not the same for all the processors, some
pre-computation may be needed, which is not in the scope of
this paper.

Moreover, we present some heuristics as well, which do
not improve the run-time of our algorithm, but significantly
decrease the lengths of paths along the maximally redundant
trees towards their roots. Furthermore, by improving IP fast
reroute technique Lightweight Not-via, we present a potential
applicability of distributed maximally redundant tree compu-
tation.

Since in this paper we describe a graph algorithm, we need
some notations, which we define here. We deal only with
simple graphs, where no multiple edges or loops exist. Thus,
a simple graph G is a pair (V,E), where V is the set of
vertices and E is the set of edges. If graph G is undirected,
then E ⊆ {{v1, v2} : v1, v2 ∈ V }, so elements are unordered
pairs, denoted by {v1, v2} (v1, v2 ∈ V ). Otherwise, if G is
directed, E ⊆ V × V (× denotes the Cartesian product), so
elements are ordered pairs, denoted by (v1, v2) (v1, v2 ∈ V ),
where v1 is the source and v2 is the target. Moreover, V (G)
and E(G) denotes the set of vertices and edges of graph G.
The number of elements of a given set S is denoted by |S|.

The rest of this paper is organized as follows. Since our
algorithm is divided into three phase, we deal with the first
phase, which is special DFS traversal, in the next section.
In Section III, using this DFS traversal, an intermediate
digraph is computed. Maximally redundant trees themselves
are computed in Section IV. In Section V, some heuristics are
presented for minimizing the lengths of paths on the maxi-
mally redundant trees found. The quality of this optimization is
discussed in Section VI. In Section VII, we present a possible
way of applying these trees for IP fast reroute. Finally, we
conclude our results.

II. PHASE I – DFS

As it was discussed above, our algorithm is divided into
three phases. The first phase is a special Depth First Search
(DFS) traversal for computing DFS and lowpoint numbers.
The DFS number of a given vertex v (denoted by Dv) is
the number of vertices visited by the DFS traversal before
v. Therefore, the starting vertex has 0 as a DFS number. The
lowpoint number of a given vertex v (denoted by Lv), which
is not the starting point of the traversal, is the minimum of
the lowpoint numbers of its children in the DFS tree and the
DFS numbers of its neighbors. The vertex, where the DFS was
started from, has no lowpoint number.

Algorithm 1 presents this modified DFS traversal, needed
for computing the maximally redundant trees. A sample graph
and a possible procession of Algorithm 1 is depicted in
Figure 3. Observe that vertex b got the lowpoint number from
its immediate parent, since the edge between e and b is a cut-
edge. Note that this algorithm can be implemented by slightly
modifying the standard DFS traversal algorithm, thus its run-

Fig. 2. A pair of maximally redundant trees rooted at vertex d .

A pair of maximally redundant trees rooted at d is depicted
in Fig. 2. As it can be observed, vertices b and e together with
the edge between them is unavoidable, so both paths from a or
f contain them.

The main contribution of this paper is that we first present
a distributed linear time algorithm for finding a pair of maxi-
mally redundant trees rooted at not only one, but each vertex.
This algorithm is an extension of the one presented in [25]. We
suppose that there are |V (G)| processors (these are typically the
nodes of the network, |V (G)| denotes the number of vertices
again), all the processors have exactly the same graph as input
(e.g. the topology of the network, with vertices and edges given
in the same order) and each processor computes only the edges
of the trees going out from its vertex. If the input graph is not
the same for all the processors, some pre-computation may be
needed, which is not in the scope of this paper.

Moreover, we present some heuristics as well, which do not
improve the run-time of our algorithm, but significantly decrease
the lengths of paths along the maximally redundant trees to-
wards their roots. Furthermore, by improving IP fast reroute
technique Lightweight Not-via, we present a potential applica-
bility of distributed maximally redundant tree computation.

Since in this paper we describe a graph algorithm, we need
some notations, which we define here. We deal only with sim-
ple graphs, where no multiple edges or loops exist. Thus, a
simple graph G is a pair (V, E), where V is the set of ver-
tices and E is the set of edges. If graph G is undirected, then
E ⊆ {{v1, v2} : v1, v2 ∈ V }, so elements are unordered pairs,
denoted by {v1, v2} (v1, v2 ∈ V ). Otherwise, if G is directed,
E ⊆ V × V (× denotes the Cartesian product), so elements
are ordered pairs, denoted by (v1, v2) (v1, v2 ∈ V ), where v1

is the source and v2 is the target. Moreover, V (G) and E(G)

denotes the set of vertices and edges of graph G. The number of
elements of a given set S is denoted by |S|.

The rest of this paper is organized as follows. Since our algo-
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Figure 3: A possible DFS, the DFS and the lowpoint numbers.

time is O(|V (G)| + |E(G)|) = O(|E(G)|) (in connected
graphs |V (G)| − 1 ≤ |E(G)|).

Algorithm 1 Revised DFS for graph G and root vertex r

1: Start a DFS traversal from root r on the graph. Set DFS
number Dv at each vertex v, so that Dv denotes the
number of vertices visited before v.

2: Recursively compute the lowpoint number for each vertex
v as min(L,D), where L is the smallest lowpoint number
of v’s children and D is smallest DFS number among v’s
neighbors.

3: For each vertex v, associate a directed edge (v, x), where
x is the vertex from v received its lowpoint number. If it
is possible, choose an arbitrary child as x

Now, we define a technical lemma, which will be necessary
in the sequel. Note that there is a similar lemma presented
in [29]. Observe that this lemma basically tells us that walking
down on the DFS tree by always selecting the child with the
maximum lowpoint number leads to a neighbor of an ancestor.

Lemma 1: Let x be a vertex of an undirected connected
graph. Do a DFS traversal and start it at r 6= x. Let the DFS
parent of x be p. Than, Lx ≤ Dp. If x is in a 2-vertex-
connected component, which contains an ancestor of p, then
Lx < Dp. Moreover, walking down as long as possible along
the DFS tree from x by always selecting a child c, such that
Lx = Lc, leads to a successor with such a neighbor y in G
that

• if Lx < Dp, y is a DFS ancestor of p or
• if Lx = Dp, y = p.
Remark: Note that it is possible that x has no child c with

Lx = Lc. In this case, we “walk down” zero hops along the
DFS tree and y is a neighbor of x.

Proof: Since p is a neighbor of x, x gets its lowpoint
number from p, if there is no better choice, so Lx ≤ Dp.
Now, suppose that x is in a 2-vertex-connected component,
which contains an ancestor of p. Consider only this 2-vertex-
connected component, a subgraph of G, let it be G′. G′ is
2-vertex-connected. Let an ancestor of p in G′ be a. There
are two node-disjoint paths from x to a, so one of them does
not contain p. Naturally, there must be a path from a to p,
not containing x (the path on the DFS tree). Combining these
two paths yields a walk from x to p not containing the edge
between x and p. Thus, p is in G′.

Let the DFS subtree in G′ rooted at x be T (so x and its

successors in G′ are in T ). The vertices of T makes up a subset
of the vertices of G′. Since there are at least 2 vertices outside
T (p and a) and G′ is 2-vertex-connected, there must be two
{m, y} edges, where m ∈ V (T ) and y ∈ V (G′) \ V (T ), and
the vertices in V (G′) \ V (T ) of these two edges are not the
same. Therefore, let {m, y} be an edge, where y 6= p. Since
DFS traversal has the property that the neighbor of a vertex is
either an ancestor or a successor, and y is not a successor of
x, y must be an ancestor of both m and x. Moreover, since
y 6= p, y is an ancestor of p too. Thus, Lx ≤ Lm ≤ Dy < Dp.

Walking down along the DFS tree, and always selecing a
child with lowpoint number Lx, leads to a successor s with a
neighbor n, such that Dn = Ls = Lx (the lowpoint number
Lx came from n). Since n must be an ancestor of s (DFS
traversal), n must be an ancestor of x too. If Lx < Dp, n 6= p,
so n must be an ancestor of p. Naturally, if Dp = Lx = Dn,
n = p.

III. PHASE II – GENERALIZED ADAG

In the second intermediate phase, a spanning digraph named
Generalized Almost Directed Acyclic Graph (GADAG) is
computed. This graph is a generalized version of the Almost
Directed Acyclic Graph (ADAG) [28], and can be found in not
only 2-vertex-connected, but arbitrary connected graphs. The
naming comes from the fact that there is always a single vertex
r in an ADAG, such that removing r transforms the graph
into a Directed Acyclic Graph. In this section, first we give a
formal definition of the Generalized ADAG, than we discuss
its aspects and finally we present a linear time algorithm
computing a spanning GADAG in a connected graph.

Definition 1: Let a digraph be weakly n-vertex-connected,
if replacing its directed edges with undirected edges produces
an n-vertex-connected undirected graph. Let a vertex v of a
digraph be a weak cut-vertex, if the digraph is not weakly
connected without v. Let an edge e of a digraph be a weak
cut-edge, if the digraph is not weakly connected without e.

Remark: Note that a weak cut-edge is a directed edge with
two weak cut-vertices as endpoints.

Definition 2: Let D be a strongly connected digraph with
vertex r. Let the first weak cut-vertex rx along the paths from
vertex x 6= rx, x 6= r to r be the local root of x. If there
is no cut-vertex between x and r (so x and r are neighbors
or are in the same weakly 2-vertex-connected component),
then rx = r. Vertex r has no local root. Let C be the set
of the maximum (here means inextensible) weakly 2-vertex-
connected components of D. For all vertices x ∈ V (D) \
{r}, add x and rx with the edges between them to C as a
component, if there is no A ∈ C, so that x, rx ∈ V (A). Let
rA ∈ V (D) be the local root of component A ∈ C, if rA = rx
for all x ∈ V (A) \ {rA}. (Note that for all paths from A to r,
rA is the last vertex in A.)

D is a Generalized ADAG (GADAG) with r as a root, if
for all x ∈ V (D) there is a directed cycle in D containing
both x and rx, and A ∈ C is a DAG without rA. The set of
components of GADAG D is set C.

Fig. 3. A possible DFS, the DFS and the lowpoint numbers.

rithm is divided into three phase, we deal with the first phase,
which is special DFS traversal, in the next section. In Sec-
tion 3, using this DFS traversal, an intermediate digraph is com-
puted. Maximally redundant trees themselves are computed in
Section 4. In Section 5, some heuristics are presented for min-
imizing the lengths of paths on the maximally redundant trees
found. The quality of this optimization is discussed in Section 6.
In Section 7, we present a possible way of applying these trees
for IP fast reroute. Finally, we conclude our results.

2 Phase I – DFS
As it was discussed above, our algorithm is divided into three

phases. The first phase is a special Depth First Search (DFS)
traversal for computing DFS and lowpoint numbers. The DFS
number of a given vertex v (denoted by Dv) is the number of
vertices visited by the DFS traversal before v. Therefore, the
starting vertex has 0 as a DFS number. The lowpoint number of
a given vertex v (denoted by Lv), which is not the starting point
of the traversal, is the minimum of the lowpoint numbers of its
children in the DFS tree and the DFS numbers of its neighbors.
The vertex, where the DFS was started from, has no lowpoint
number.

Algorithm 1 presents this modified DFS traversal, needed for
computing the maximally redundant trees. A sample graph and
a possible procession of Algorithm 1 is depicted in Fig. 3. Ob-
serve that vertex b got the lowpoint number from its imme-
diate parent, since the edge between e and b is a cut-edge.
Note that this algorithm can be implemented by slightly mod-
ifying the standard DFS traversal algorithm, thus its run-time
is O(|V (G)| + |E(G)|) = O(|E(G)|) (in connected graphs
|V (G)| − 1 ≤ |E(G)|).

Algorithm 1 Revised DFS for graph G and root vertex r
1: Start a DFS traversal from root r on the graph. Set DFS

number Dv at each vertex v, so that Dv denotes the number
of vertices visited before v.

2: Recursively compute the lowpoint number for each vertex
v as min(L , D), where L is the smallest lowpoint number
of v’s children and D is smallest DFS number among v’s
neighbors.

3: For each vertex v, associate a directed edge (v, x), where x
is the vertex from v received its lowpoint number. If it is
possible, choose an arbitrary child as x

Now, we define a technical lemma, which will be necessary in

the sequel. Note that there is a similar lemma presented in [11].
Observe that this lemma basically tells us that walking down on
the DFS tree by always selecting the child with the maximum
lowpoint number leads to a neighbor of an ancestor.

Lemma 1 Let x be a vertex of an undirected connected graph.
Do a DFS traversal and start it at r , x . Let the DFS parent
of x be p. Than, Lx ≤ Dp. If x is in a 2-vertex-connected
component, which contains an ancestor of p, then Lx < Dp.
Moreover, walking down as long as possible along the DFS tree
from x by always selecting a child c, such that Lx = Lc, leads
to a successor with such a neighbor y in G that

• if Lx < Dp, y is a DFS ancestor of p or

• if Lx = Dp, y = p.

Remark: Note that it is possible that x has no child c with
Lx = Lc. In this case, we “walk down” zero hops along the
DFS tree and y is a neighbor of x .

Proof: Since p is a neighbor of x , x gets its lowpoint number
from p, if there is no better choice, so Lx ≤ Dp. Now, suppose
that x is in a 2-vertex-connected component, which contains an
ancestor of p. Consider only this 2-vertex-connected compo-
nent, a subgraph of G, let it be G ′. G ′ is 2-vertex-connected.
Let an ancestor of p in G ′ be a. There are two node-disjoint
paths from x to a, so one of them does not contain p. Naturally,
there must be a path from a to p, not containing x (the path on
the DFS tree). Combining these two paths yields a walk from x
to p not containing the edge between x and p. Thus, p is in G ′.

Let the DFS subtree in G ′ rooted at x be T (so x and its suc-
cessors in G ′ are in T ). The vertices of T makes up a subset of
the vertices of G ′. Since there are at least 2 vertices outside T (p
and a) and G ′ is 2-vertex-connected, there must be two {m, y}
edges, where m ∈ V (T ) and y ∈ V (G ′)\V (T ), and the vertices
in V (G ′)\V (T ) of these two edges are not the same. Therefore,
let {m, y} be an edge, where y , p. Since DFS traversal has the
property that the neighbor of a vertex is either an ancestor or a
successor, and y is not a successor of x , y must be an ancestor
of both m and x . Moreover, since y , p, y is an ancestor of p
too. Thus, Lx ≤ Lm ≤ Dy < Dp.

Walking down along the DFS tree, and always selecing a child
with lowpoint number Lx , leads to a successor s with a neighbor
n, such that Dn = Ls = Lx (the lowpoint number Lx came from
n). Since n must be an ancestor of s (DFS traversal), n must be
an ancestor of x too. If Lx < Dp, n , p, so n must be an
ancestor of p. Naturally, if Dp = Lx = Dn , n = p.

3 Phase II – Generalized ADAG
In the second intermediate phase, a spanning digraph named

Generalized Almost Directed Acyclic Graph (GADAG) is com-
puted. This graph is a generalized version of the Almost Di-
rected Acyclic Graph (ADAG) [9], and can be found in not only
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2-vertex-connected, but arbitrary connected graphs. The nam-
ing comes from the fact that there is always a single vertex r
in an ADAG, such that removing r transforms the graph into a
Directed Acyclic Graph. In this section, first we give a formal
definition of the Generalized ADAG, than we discuss its aspects
and finally we present a linear time algorithm computing a span-
ning GADAG in a connected graph.

Definition 1 Let a digraph be weakly n-vertex-connected, if re-
placing its directed edges with undirected edges produces an n-
vertex-connected undirected graph. Let a vertex v of a digraph
be a weak cut-vertex, if the digraph is not weakly connected
without v. Let an edge e of a digraph be a weak cut-edge, if the
digraph is not weakly connected without e.

Remark: Note that a weak cut-edge is a directed edge with
two weak cut-vertices as endpoints.

Definition 2 Let D be a strongly connected digraph with vertex
r . Let the first weak cut-vertex rx along the paths from vertex
x , rx , x , r to r be the local root of x . If there is no cut-vertex
between x and r (so x and r are neighbors or are in the same
weakly 2-vertex-connected component), then rx = r . Vertex
r has no local root. Let C be the set of the maximum (here
means inextensible) weakly 2-vertex-connected components of
D. For all vertices x ∈ V (D) \ {r}, add x and rx with the edges
between them to C as a component, if there is no A ∈ C , so that
x, rx ∈ V (A). Let rA ∈ V (D) be the local root of component
A ∈ C , if rA = rx for all x ∈ V (A) \ {rA}. (Note that for all
paths from A to r , rA is the last vertex in A.)

D is a Generalized ADAG (GADAG) with r as a root, if for
all x ∈ V (D) there is a directed cycle in D containing both x
and rx , and A ∈ C is a DAG without rA. The set of components
of GADAG D is set C .

Although one may find this definition a bit complicated at the
first time, it is not so difficult to understand.1 As the first exam-
ple, consider the GADAG depicted in Fig. 4. Since this digraph
is weakly 2-vertex-connected, set C has only one element, the
complete GADAG itself. Since there is a directed cycle for each
vertex, and all these cycles contain d , this digraph is definitely a
GADAG.

Second, in Fig. 5 a bit more complicated situation is pre-
sented. This graph is not weakly 2-vertex-connected any more,
but it is made up by two weakly 2-vertex-connected compo-
nents, a, b, f (let it be component X ) and c, d, e (let it be com-
ponent Y ). Since there is no weakly 2-vertex-connected compo-
nent, which contains b and its local root e, so C also contains b
and e with the two edges between them as a component (let it be
component Z ). It is easy to see, that rc = re = d, ra = r f = b,
rb = e, rX = d, rY = b and rZ = e. Trivially, for each vertex
there is a directed cycle containing the vertex and its local root.

1Ones, who are familiar with the concept of ADAG, may think on a GADAG
as several ADAGs “glued” together at the weak cut-vertices which are the roots
of these components.
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Figure 4: A GADAG with one component rooted at vertex d

Figure 5: A GADAG with three components rooted at vertex
d

Although one may find this definition a bit complicated at
the first time, it is not so difficult to understand.1 As the first
example, consider the GADAG depicted in Figure 4. Since
this digraph is weakly 2-vertex-connected, set C has only
one element, the complete GADAG itself. Since there is a
directed cycle for each vertex, and all these cycles contain d,
this digraph is definitely a GADAG.

Second, in Figure 5 a bit more complicated situation is
presented. This graph is not weakly 2-vertex-connected any
more, but it is made up by two weakly 2-vertex-connected
components, a, b, f (let it be component X) and c, d, e (let it
be component Y ). Since there is no weakly 2-vertex-connected
component, which contains b and its local root e, so C also
contains b and e with the two edges between them as a
component (let it be component Z). It is easy to see, that
rc = re = d, ra = rf = b, rb = e, rX = d, rY = b and
rZ = e. Trivially, for each vertex there is a directed cycle
containing the vertex and its local root. Moreover, without the
local root, any of the three elements of C is a DAG, so the
graph depicted in Figure 5 is a GADAG with d as a root.2

Algorithm 2 computes the spanning GADAG of an arbitrary
connected undirected graph. Before turning to deal with the
specifics of this algorithm, let us discuss how it produces
spanning GADAG depicted in Figure 5 using DFS traversal
depicted in Figure 3. The algorithm starts from a given vertex,
which is now vertex d, the root of the generated spanning
GADAG. First, computes the DFS tree, the DFS numbers and
the lowpoint numbers using Algorithm 1. Next, since d has a
child which is not ready, the algorithm gets to branch at Line 7.

1Ones, who are familiar with the concept of ADAG, may think on a
GADAG as several ADAGs “glued” together at the weak cut-vertices which
are the roots of these components.

2Note that this is a very special case, since all the vertices of this graph
could be the root.

By walking down along the DFS tree (Line 9), the ear (see
Definition 3) containing e, c is found. Therefore, (d, e), (e, c)
and (c, d) are added to D. The vertices of this ear are pushed
on the top of the stack, so now it contains e, c. Moreover,
c.ready and e.ready are set to true, c.localRoot = d and
e.localRoot = d. Since d has no more neighbor, which is
not ready, the next vertex is removed from the top of stack
S, which is e. Vertex e has a child, which is not ready, so
the next ear found is b alone (b got its lowpoint number
from e) and edges (e, b) and (b, e) are added to D. Now,
b.ready = true, b.localRoot = e and S contains b, c. The
next element processed is b, ear f, a is found, f.ready and
a.ready are set to true, (b, f), (f, a) and (a, b) are added to
D. Although stack contains f, a, c, all the vertices are ready,
so the algorithm terminates.

Definition 3: Let an ear be a sequence of vertices we push
to the stack at the same time (Line 12 or Line 27).

Now, we prove that Algorithm 2 terminates, computes a
spanning GADAG, computes the local roots and its run-time
is linear. The algorithm terminates, when both branches at
Line 7 and 22 terminate.

Lemma 2: The branches at Line 7 and 22 always terminate.
Proof: First, we use mathematical induction to show all

DFS ancestors of an arbitrary ready vertex are always marked
ready. Initially, this is true, since only r is ready. Than, after
finding an ear either at line 7 or at Line 22, the claim remains
true, since all the ancestors of a vertex in the ear became
ready too.

At the end of the branch at Line 7, we always arrive to
current or to an ancestor of current, thanks to Lemma 1,
so the branch at Line 7 indeed terminates. On the other hand,
in the branch at Line 22 we always move upwards in the
DFS tree, heading towards r. Since r is ready, a ready
vertex is always reached finally, so the branch at Line 22 also
terminates.

Lemma 3: The output graph of Algorithm 2 is a spanning
GADAG of G rooted at r.

Proof: Let the output graph be D, and create C the
set of components of D as described in Definition 2 (it is
possible even if D is not a GADAG). First, we deal the most
complicated part of the proof, namely that for all A ∈ C,
without rA, A is a DAG. If A has only two vertices, it is
trivial. Now, suppose that |V (A)| > 2, which means that A is
weakly 2-vertex-connected.

Remove rA from A and let this new graph be A′. Observe
that in both cases when Algorithm 2 adds edges to A′, the
endpoints of the edges in the ear appear exactly in the same
order both in the edge and in the stack. Consider an ear the
algorithm finds either at Line 12 or Line 27. This ear starts
at current and terminates at another vertex, say, x. Since
rA 6∈ V (A′), claims about current, where current = rA
or claims about x, where x = rA are not important (and not
always true). Otherwise, the following claims hold for current
and x:

• current 6= x (at branch 7, this is true due to Lemma 1,
and at branch 22 because all the children have been made
ready by branch 7)

• current has already left the stack and

Fig. 4. A GADAG with one component rooted at vertex d
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Figure 5: A GADAG with three components rooted at vertex
d
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one element, the complete GADAG itself. Since there is a
directed cycle for each vertex, and all these cycles contain d,
this digraph is definitely a GADAG.

Second, in Figure 5 a bit more complicated situation is
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more, but it is made up by two weakly 2-vertex-connected
components, a, b, f (let it be component X) and c, d, e (let it
be component Y ). Since there is no weakly 2-vertex-connected
component, which contains b and its local root e, so C also
contains b and e with the two edges between them as a
component (let it be component Z). It is easy to see, that
rc = re = d, ra = rf = b, rb = e, rX = d, rY = b and
rZ = e. Trivially, for each vertex there is a directed cycle
containing the vertex and its local root. Moreover, without the
local root, any of the three elements of C is a DAG, so the
graph depicted in Figure 5 is a GADAG with d as a root.2

Algorithm 2 computes the spanning GADAG of an arbitrary
connected undirected graph. Before turning to deal with the
specifics of this algorithm, let us discuss how it produces
spanning GADAG depicted in Figure 5 using DFS traversal
depicted in Figure 3. The algorithm starts from a given vertex,
which is now vertex d, the root of the generated spanning
GADAG. First, computes the DFS tree, the DFS numbers and
the lowpoint numbers using Algorithm 1. Next, since d has a
child which is not ready, the algorithm gets to branch at Line 7.

1Ones, who are familiar with the concept of ADAG, may think on a
GADAG as several ADAGs “glued” together at the weak cut-vertices which
are the roots of these components.

2Note that this is a very special case, since all the vertices of this graph
could be the root.

By walking down along the DFS tree (Line 9), the ear (see
Definition 3) containing e, c is found. Therefore, (d, e), (e, c)
and (c, d) are added to D. The vertices of this ear are pushed
on the top of the stack, so now it contains e, c. Moreover,
c.ready and e.ready are set to true, c.localRoot = d and
e.localRoot = d. Since d has no more neighbor, which is
not ready, the next vertex is removed from the top of stack
S, which is e. Vertex e has a child, which is not ready, so
the next ear found is b alone (b got its lowpoint number
from e) and edges (e, b) and (b, e) are added to D. Now,
b.ready = true, b.localRoot = e and S contains b, c. The
next element processed is b, ear f, a is found, f.ready and
a.ready are set to true, (b, f), (f, a) and (a, b) are added to
D. Although stack contains f, a, c, all the vertices are ready,
so the algorithm terminates.

Definition 3: Let an ear be a sequence of vertices we push
to the stack at the same time (Line 12 or Line 27).

Now, we prove that Algorithm 2 terminates, computes a
spanning GADAG, computes the local roots and its run-time
is linear. The algorithm terminates, when both branches at
Line 7 and 22 terminate.

Lemma 2: The branches at Line 7 and 22 always terminate.
Proof: First, we use mathematical induction to show all

DFS ancestors of an arbitrary ready vertex are always marked
ready. Initially, this is true, since only r is ready. Than, after
finding an ear either at line 7 or at Line 22, the claim remains
true, since all the ancestors of a vertex in the ear became
ready too.

At the end of the branch at Line 7, we always arrive to
current or to an ancestor of current, thanks to Lemma 1,
so the branch at Line 7 indeed terminates. On the other hand,
in the branch at Line 22 we always move upwards in the
DFS tree, heading towards r. Since r is ready, a ready
vertex is always reached finally, so the branch at Line 22 also
terminates.

Lemma 3: The output graph of Algorithm 2 is a spanning
GADAG of G rooted at r.

Proof: Let the output graph be D, and create C the
set of components of D as described in Definition 2 (it is
possible even if D is not a GADAG). First, we deal the most
complicated part of the proof, namely that for all A ∈ C,
without rA, A is a DAG. If A has only two vertices, it is
trivial. Now, suppose that |V (A)| > 2, which means that A is
weakly 2-vertex-connected.

Remove rA from A and let this new graph be A′. Observe
that in both cases when Algorithm 2 adds edges to A′, the
endpoints of the edges in the ear appear exactly in the same
order both in the edge and in the stack. Consider an ear the
algorithm finds either at Line 12 or Line 27. This ear starts
at current and terminates at another vertex, say, x. Since
rA 6∈ V (A′), claims about current, where current = rA
or claims about x, where x = rA are not important (and not
always true). Otherwise, the following claims hold for current
and x:

• current 6= x (at branch 7, this is true due to Lemma 1,
and at branch 22 because all the children have been made
ready by branch 7)

• current has already left the stack and

Fig. 5. A GADAG with three components rooted at vertex d

Moreover, without the local root, any of the three elements of C
is a DAG, so the graph depicted in Fig. 5 is a GADAG with d as
a root.2

Algorithm 2 computes the spanning GADAG of an arbitrary
connected undirected graph. Before turning to deal with the
specifics of this algorithm, let us discuss how it produces span-
ning GADAG depicted in Fig. 5 using DFS traversal depicted
in Fig. 3. The algorithm starts from a given vertex, which is
now vertex d , the root of the generated spanning GADAG. First,
computes the DFS tree, the DFS numbers and the lowpoint num-
bers using Algorithm 1. Next, since d has a child which is not
ready, the algorithm gets to branch at Line 7. By walking down
along the DFS tree (Line 9), the ear (see Definition 3) contain-
ing e, c is found. Therefore, (d, e), (e, c) and (c, d) are added
to D. The vertices of this ear are pushed on the top of the stack,
so now it contains e, c. Moreover, c.ready and e.ready are set
to true, c.local Root = d and e.local Root = d. Since d has
no more neighbor, which is not ready, the next vertex is re-
moved from the top of stack S, which is e. Vertex e has a child,
which is not ready, so the next ear found is b alone (b got its
lowpoint number from e) and edges (e, b) and (b, e) are added
to D. Now, b.ready = true, b.local Root = e and S contains
b, c. The next element processed is b, ear f, a is found, f.ready
and a.ready are set to true, (b, f ), ( f, a) and (a, b) are added
to D. Although stack contains f, a, c, all the vertices are ready,
so the algorithm terminates.

Definition 3 Let an ear be a sequence of vertices we push to the
stack at the same time (Line 12 or Line 27).

Now, we prove that Algorithm 2 terminates, computes a span-
ning GADAG, computes the local roots and its run-time is linear.
The algorithm terminates, when both branches at Line 7 and 22
terminate.

2Note that this is a very special case, since all the vertices of this graph could
be the root.
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Algorithm 2 Finding a spanning GADAG for graph G and root
vertex r . The algorithm also computes the local root of each
vertex.

1: Compute a DFS tree using Algorithm 1. Initialize the
GADAG D with the vertices of G and an empty edge set.
Create an empty stack S. Set the ready bit at each vertex to
f alse.

2: Set local Root at each vertex to NU L L
3: push r to S and set ready bit at r
4: while S is not empty
5: current ← pop S
6: for each children n of current
7: if n is not ready then
8: while n is not ready
9: let e be the vertex, where n got its lowpoint

number from
10: n = e
11: end while
12: Let the found vertices be x0 → x1 → ...→ xk ,

where xk is ready, and x0 is the neighbor of
current . Set the ready bit at x0, x1, ..., xk−1

and push them to S in reverse order, so eventu-
ally the top of the stack will be x0, x1, ..., xk−1

13: Add edges in the path current → x0 → x1 →

...→ xk to D.
14: if current = xk then
15: Set local Root to current at

x0, x1, ..., xk−1
16: else
17: Set local Root to current.local Root at

x0, x1, ..., xk−1
18: end if
19: end if
20: end for
21: for each neighbor n of current which is not a child
22: if n is not ready then
23: while n is not ready
24: let e be the parent of n in the DFS tree
25: n = e
26: end while
27: Let the found vertices be x0 → x1 → ...→ xk ,

where xk is ready and x0 is the neighbor of
current . Set the ready bit at x0, x1, ..., xk−1

and push them to S in reverse order, so eventu-
ally the top of the stack will be x0, x1, ..., xk−1.

28: Add edges in the path current → x0 → x1 →

...→ xk to D
.

29: Set local Root to xk .local Root at
x0, x1, ..., xk−1.

30: end if
31: end for
32: end while

Lemma 2 The branches at Lines 7 and 22 always terminate.

Proof: First, we use mathematical induction to show all DFS an-
cestors of an arbitrary ready vertex are always marked ready.
Initially, this is true, since only r is ready. Then, after finding
an ear either at line 7 or at Line 22, the claim remains true, since
all the ancestors of a vertex in the ear became ready too.

At the end of the branch at Line 7, we always arrive to
current or to an ancestor of current , thanks to Lemma 1, so
the branch at Line 7 indeed terminates. On the other hand, in
the branch at Line 22 we always move upwards in the DFS tree,
heading towards r . Since r is ready, a ready vertex is always
reached finally, so the branch at Line 22 also terminates.

Lemma 3 The output graph of Algorithm 2 is a spanning
GADAG of G rooted at r .

Proof: Let the output graph be D, and create C the set of com-
ponents of D as described in Definition 2 (it is possible even if
D is not a GADAG). First, we deal the most complicated part
of the proof, namely that for all A ∈ C , without rA, A is a
DAG. If A has only two vertices, it is trivial. Now, suppose that
|V (A)| > 2, which means that A is weakly 2-vertex-connected.

Remove rA from A and let this new graph be A′. Observe that
in both cases when Algorithm 2 adds edges to A′, the endpoints
of the edges in the ear appear exactly in the same order both in
the edge and in the stack. Consider an ear the algorithm finds
either at Line 12 or Line 27. This ear starts at current and
terminates at another vertex, say, x . Since rA < V (A′), claims
about current , where current = rA or claims about x , where
x = rA are not important (and not always true). Otherwise, the
following claims hold for current and x :

• current , x (at branch 7, this is true due to Lemma 1, and at
branch 22 because all the children have been made ready by
branch 7)

• current has already left the stack and

• x is still on the stack (since it has a neighbor, the last vertex
of the ear, which is not ready, which is either a child or which
got the lowpoint number from x).

Now, let V = v1, v2, ..., vn be the sequence of vertices as they
leave the stack S. Observe that if there is an (vi , v j ) edge in A′,
then vi and v j were either in the same ear or (vi , v j ) was an end
of the ear (one of the vertices was current or x). According to
the argumentation above, when we add edge (vi , v j ) to A′ one
of the following two cases hold

• vi has already left the stack when we push v j or

• vi appears above v j in the stack.

Thus, vi will leave the stack before v j , which means i < j .
Therefore, we have that for each (vi , v j ) in A′, i < j holds, so
V is a topological ordering, hence A′ is a DAG.
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Next, we use mathematical induction in order to prove that D
is strongly connected, and for each A ∈ C , v ∈ V (A), there is
a directed cycle, which contains both rA and v. Initially, when
D contains only r , the claim is true. Suppose that after adding
some ears it is still true.

Now, we add a new ear from current to x . There must be a
path from r to current and one from x to r thanks to strong
connectivity, so strong connectivity is conserved. Moreover, the
path from v to rv and the path from rv to v must be vertex-
disjoint, since otherwise there would be a directed cycle in A
not containing rv = rA. Therefore, combining these two paths
makes up a cycle containing both v and rv .

Now, we have seen that D is a GADAG. In order to prove that
this is a spanning GADAG of G, it is needed to observe that all
the vertices of G becomes ready. Since a ready vertex leaves
the stack sooner or later, a DFS child of a ready vertex must
be also ready when Algorithm 2 terminates. Since the root of
the DFS tree is ready, and since the graph and the DFS tree is
connected, all the vertices must be ready, when the algorithm
terminates.

Lemma 4 Algorithm 2 computes the local roots for all vertices
correctly.

Proof: Observe that the first vertex of a component A leaving S
is rA. Moreover, each neighbor n ∈ V (A) of rA has lowpoint
number Ln = DrA , since either rA = r or all path to a DFS
ancestor of rA contains rA as a cut-vertex. Moreover, current
can not be the same as xk for ears, which are found at Line 22,
since those were already found at Line 7. Thus, the local Root
is set properly in the case of entering into a new component.

Inside a component, current and xk cannot be the same, since

• if the ear is found at Line 7, xk is an ancestor of current
thanks to Lemma 1 and

• if the ear is found at Line 22, all of the children of xk are
already ready.

Therefore, at most one of the endpoints can be rA. At Line 12
xk is an ancestor of current (Lemma 1), at Line 27 current is
an ancestor of xk (since we get to a successor and walk up), so
the local root is set properly both at Line 14 and at Line 29.

Naturally, there is no ear between two components, since
there is a cut-vertex between them.

Lemma 5 The run-time of Algorithm 2 is O(|E(G)|).

Proof: Each vertex is pushed to S and popped from S once,
so the most important part of the algorithm is at Line 7 and at
Line 22, where the ears are found. Either walking down along
the DFS tree, and always selecting the pre-computed vertex,
which the lowpoint number came from, or walking upwards se-
lecting the parent takes O(|V (G)|) time all together.

Since a DFS traversal is needed, and the graph is supposed to
be connected, the overall running time is O(|E(G)|).

4 Phase III – Computing maximally redundant trees
Previously, an intermediate graph representation called

GADAG was discussed. In this section we use this digraph in
order to compute the maximally redundant trees themselves.

As it was discussed previously, our algorithm is distributed in
such a way, that it does not compute all the maximally redundant
trees, but only the edges belonging to the trees going out from
a given vertex. Although interleaving these edges makes up all
the maximally redundant trees, it is not necessary for most of
the networks, since usually only the next hops are needed.

Our algorithm is on the traces of [10], where an algorithm
computing redundant trees for 2-vertex-connected graphs was
proposed. In contrast, this new algorithm can be considered as
an extension of the one in [10]; in the first phase we compute the
edges belonging to the trees rooted at vertices, which are in the
same 2-vertex-connected component (this is almost the same as
in [10]), then we find the cut-vertices, which the other vertices
can be reached through, and use the previously computed edges
for the remaining trees. This idea is presented in Algorithm 4.

Before turning to discuss the issues of this algorithm, let us
present a simple example. Consider the previous graph depicted
in Fig. 3. As we know, the GADAG rooted at d is depicted
in Fig. 5. Note that since G and the global root (which in this
special case is vertex d) are the same for each node (processor),
each node computes exactly the same GADAG. Next, consider
the processor of f and compute the edges going out from f . We
split r f , which is vertex b to b+ and b−, so that edges only enter
to b+ and only leave b−.

Then, in the first phase we do a Breadth First Search (BFS)
traversal started from f taking the edges in normal direction,
and visit all the vertices in the same component, these are a and
b+. These are the vertices greater than f (see Definition 4), so
a.V+ and b+.V+ are set to true. The BFS taking the edges
in reverse direction finds b−, which is the only vertex less than
f , so b−.V− = true. Finally, Phase 1 computes the edges
going out from f belonging to the trees rooted at a and b. Now,
h P

f (b) = ( f, a), hS
f (b) = ( f, b), h P

f (a) = ( f, a), hS
f (a) =

hS
f (b) = ( f, b).

Procedure 3 SetEdge(vertex x)
1: # Both, or neither is NU L L
2: if h P

u (x) = NU L L ∧ hS
u (x) = NU L L then

3: call SetEdge(rx )
4: h P

u (x) = h P
u (rx )

5: hS
u (x) = hS

u (rx )

6: end if

Phase 2 computes the edges for the remaining vertices. First,
h P

f (d) = h P
f (b) = ( f, a) and hS

f (d) = hS
f (b) = ( f, b) is set.

Then, suppose that next c is processed. Procedure 3 is called,
which sets h P

f (c) = h P
f (d) = ( f, a) and hS

f (c) = hS
f (d) =

( f, b). Finally, h P
f (e) = h P

f (d) = ( f, a) and hS
f (e) = hS

f (d) =

( f, b) are set. All the computed edges are presented in Table 1,
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Algorithm 4 Computing the primary and secondary edges for
all root d, (h P

u (d), hS
u (d)) going out from vertex u.

1: For all d ∈ V (G) set h P
u (d) = NU L L and hS

u (d) =

NU L L . Use Algorithm 2 for computing a spanning
GADAG D with a given r as root (G and r are exactly the
same for each node, so the found GADAG is the same). Cre-
ate digraph D′ by splitting the local root ru into two vertices,
so that edges only enter to vertex r+u and only leave r−u . For
each vertex x set x .V+ = f alse and x .V− = f alse. If
u = r (r has no local root), do not split any of the vertices.

2:

3: # Phase 1: vertices in the same component
4:

5: Do a BFS traversal on D′ from u taking the edges in normal
direction. Do not visit vertex x , if x , r+u ∧ x .local Root ,
u ∧ x .local Root , u.local Root . At visited vertex x set
x .V+ = true, and set h P

u (x) to the first edge along the path
to x computed by the BFS.

6: Do a BFS traversal on D′ from u taking the edges in reverse
direction. Do not visit vertex x , if x , r−u ∧ x .local Root ,
u ∧ x .local Root , u.local Root . At visited vertex x set
x .V− = true, and set hS

u (x) to the first edge along the path
to x computed by the BFS.

7: set h P
u (ru) = h P

u (r+u )

8: set hS
u (ru) = hS

u (r−u )

9: for all vertex x , u, x .local Root = u.local Root
10: if x .V+ = true then
11: set hS

u (x) = hS
u (ru)

12: else if x .V− = true then
13: set h P

u (x) = h P
u (ru)

14: else
15: set h P

u (x) = hS
u (ru)

16: set hS
u (x) = h P

u (ru)

17: end if
18: end for
19:

20: # Phase 2: other components
21:

22: set h P
u (r) = h P

u (ru)

23: set hS
u (r) = hS

u (ru)

24: for all vertex x , r ∧ x , u
25: call SetEdge(x) # calling Procedure 3
26: end for

but note that any given node computes only a single row of this
table.

Definition 4 Let D be a spanning GADAG of graph G with the
component set C , and let A ∈ C . Split the root vertex rA in
A into two vertices, r+A and r−A , in such a way that edges only
enter to r+A and only leave r−A . Let this new graph be A′. Define
a relation (≺) on V (A′) as follows: u ≺ v if and only if there is
a directed path from u to v in A′ (u, v ∈ V (A′)).

Generalize this relation; for given vertex x and y let x � y
be true, if x ≺ y or x ≡ y. Let V+u and V−u be the set of vertices
definitely greater and definitely less than u.

Remark: It is easy to see that (V (A′), (�)) makes up a
bounded partially ordered set (poset); since A′ is a DAG, (�)

is reflexive, transitive and antisymmetric. Additionally, since
edges only leave r−A , the minimum element is exactly r−A . Simi-
larly, r+A is the maximum element.

For proving the correctness and completeness of Algorithm 4,
one more simple lemma is needed.

Lemma 6 In a spanning GADAG with component set C found
by Algorithm 2, there is exactly one edge entering rA in each
component A ∈ C .

Proof: If |V (A)| = 2, the claim is trivial. If |V (A)| > 2, A
is weakly 2-vertex-connected, so all the vertices of A can be
reached in the original undirected graph without rA. Thus, when
the DFS enters to A through rA, it gets back to rA only when all
the vertices of A are visited, so rA has only one child. Moreover,
when current = rA, Algorithm 2 finds all the ears in A with rA

as endpoint. Since there is only one child, there is only one
among these ears, which has rA as both endpoints. Therefore,
there must be only one edge, which enters rA.

Theorem 1 Let an undirected connected graph G and vertex d
be given. For all u ∈ V (G), interleaving the edges h P

u (d) and
hS

u (d) computed by Algorithm 4 makes up a pair of maximally
redundant trees rooted at d .

Proof: Let D be the computed GADAG, and let its global root
be r . Let the set of components of D be C . In this proof we
will use the ordering in Definition 4. Since this proof is com-
plicated we divided it into three parts: the algorithm terminates,
the computed edges inside a component make up two vertex-
disjoint paths and the computed edges make up maximally re-
dundant paths to other vertices.

The algorithm terminates: First, we prove that Algorithm 4
always terminates and computes two edges, h P

u (d) and hS
u (d),

for any given vertex d. It is trivial that Phase 1 always termi-
nates. Suppose that there is vertex d, such that there is A ∈ C ,
d, u ∈ A and either h P

u (d) or hS
u (d) is still NU L L after Phase 1.

If u = rd , both traversals reach d , so h P
u (d) and hS

u (d) are
set. Otherwise, if d.local Root = u.local Root , both d.V+

and d.V− cannot be true, since in this case both BFS traver-
sals would reach d, which is impossible, since all the cycles in
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Tab. 1. The edges of maximally redundant trees computed using GADAG depicted in Fig. 5.

Vertex h P (a) hS(a) h P (b) hS(b) h P (c) hS(c) h P (d) hS(d) h P (e) hS(e) h P ( f ) hS( f )

a – – (a, b) (a, f ) (a, b) (a, f ) (a, b) (a, f ) (a, b) (a, f ) (a, b) (a, f )

b (b, f ) (b, a) – – (b, e) (b, e) (b, e) (b, e) (b, e) (b, e) (b, f ) (b, a)

c (c, d) (c, e) (c, d) (c, e) – – (c, d) (c, e) (c, d) (c, e) (c, d) (c, e)

d (d, e) (d, c) (d, e) (d, c) (d, e) (d, c) – – (d, e) (d, c) (d, e) (d, c)

e (e, b) (e, b) (e, b) (e, b) (e, c) (e, d) (e, c) (e, d) – – (e, b) (e, b)

f ( f, a) ( f, b) ( f, a) ( f, b) ( f, a) ( f, b) ( f, a) ( f, b) ( f, a) ( f, b) – –

A contain ru = rA. If only one of d.V+ and d.V− is true,
then one of the edges is computed by the BFS traversals, the
other one is set at Line 11 or Line 13. Since if none of them is
true, the edges are set at Line 15, the only possibility is d = ru .
However, r+u .V+ = true and r−u .V− = true, so both h P

u (ru)

and h P
u (ru) are set at Line 7.

Phase 2 terminates if Procedure 3 terminates. Since the recur-
sion gets always to the local root, sooner or later r is reached.
Since r is already computed, Phase 2 terminates. Trivially, both
h P

u (d) and hS
u (d) are computed.

Interleaving the edges makes up two vertex-disjoint paths in-
side a component: First suppose that there is A ∈ C , such that
u, d ∈ A. In this case interleaving the edges must make up a
pair of vertex-disjoint paths towards the root.

We show that for two vertices v, w : v ≺ w, what we obtain
by following the primary outgoing edges h P (w) is a loop-free
v→ w path. Let h P

v (w) = (v, x). Using this edge, we either get
to w, when x = w, or get to a vertex x where v ≺ x . Moreover,
x ≺ w, since (v, x) is the first edge along a path from v to w,
so there is a path from x to w too. Therefore, if x , w, we can
repeat the same reasoning till we eventually arrive to w. Along
the similar lines, following hS(w) yields a loop-free v → w

path for v, w : v � w.
If d = rA or u = rA, the two paths are trivially disjoint. Sup-

pose d , rA, u , rA and there is an ordering between u and
d, say u ≺ d. Now, following h P (d) yields an u → d path
pp (the path marked by solid arrow in Fig. 6a), and following
hS(d) yields first a u → r−A path p1

s and then an r+A → d path
p2

s (dashed arrow in Fig. 6a). Based on the observation above,
these subpaths are indeed paths and they are loop-free. The con-
catenation of p1

s and p2
s gives the secondary path ps . Finally, pp

and ps are vertex-disjoint: vertices along pp belong to the inter-
val [u, d], p1

s to [r−A , u] and p2
s to [d, r+A ], and these intervals

are disjunct except the endpoints.
If there is no ordering between u and d, the situation is

slightly more difficult: following h P (d) first yields an u → x
path p1

p and then a x → d path p2
p, where x is the first vertex,

which u � x and x ≺ d holds for (see the dashed arrows in
Fig. 6b). Similarly, hS(d) yields first a u → y path p1

s and then
an y → d path p2

s for the first y : u ≺ y and y � d (solid
arrows in Fig. 6b). Again, concatenation of the corresponding
subpaths yields two vertex-disjoint paths: first, p1

p and p1
s are

vertex-disjoint because p1
p ∈ V−u , p1

s ∈ V+u and V−u ∩ V+u = ∅;

second, p1
p and p2

s are also vertex-disjoint because the vertices
of p1

p are not ordered with respect to d but those of p2
s are; third,

pp and ps cannot both traverse r , because r+ � y (since only
one edge goes into r (Lemma 6), we have a vertex m for which
m � v : v ∈ V \ {r+, m}, so the secondary path turns back in m
at the very latest). Similar reasoning applies to see that the rest
of the subpaths are mutually vertex-disjoint too.

Interleaving edges makes up maximally redundant paths:
Suppose that u and d are not in the same component. Create
digraph T , and let V (T ) = C ∪ {r}. For all A ∈ C , r ∈ A add
edge (A, r) to T . Moreover, for all A, B ∈ C , rA , rB∧rB ∈ A
add edge (B, A) to T . Since a local root is always on the path
to r , r is reachable on a directed path from any vertex in T , so
T is weakly connected. Moreover, T is a directed tree, since
every component has only one local root, so there is only one
edge going out from each x ∈ V (T ) \ {r} and no edge leaves r ,
so |E(T )| = |V (T )| − 1.

Let the component closest to r in T containing u be U , and
similarly let the closest component containing d be D (here clos-
est means that the path from U or D to r has minimum number
of vertices). If U is on the path from D to r in T , Procedure 3
finds cut-vertex x in the component closest to D containing u,
and sets h P

u (d) = h P
u (x) and hS

u (d) = hS
u (x). Since any path

from u to d contains x , the walks leave each component at the
right vertex, so both walks are paths and reach d. If U is not
on the path from D to r , then Procedure 3 sets h P

u (d) = h P
u (r)

and hS
u (d) = hS

u (r). In this way, the walks go up towards r in T
until it reaches the first vertex X , which is on the path from D to
r , so there is no cycle again, and the walks are paths. Since the
paths inside a component are vertex-disjoint, the two paths are
maximally vertex-disjoint.
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Vertex hP (a) hS(a) hP (b) hS(b) hP (c) hS(c) hP (d) hS(d) hP (e) hS(e) hP (f) hS(f)

a – – (a, b) (a, f) (a, b) (a, f) (a, b) (a, f) (a, b) (a, f) (a, b) (a, f)
b (b, f) (b, a) – – (b, e) (b, e) (b, e) (b, e) (b, e) (b, e) (b, f) (b, a)
c (c, d) (c, e) (c, d) (c, e) – – (c, d) (c, e) (c, d) (c, e) (c, d) (c, e)
d (d, e) (d, c) (d, e) (d, c) (d, e) (d, c) – – (d, e) (d, c) (d, e) (d, c)
e (e, b) (e, b) (e, b) (e, b) (e, c) (e, d) (e, c) (e, d) – – (e, b) (e, b)
f (f, a) (f, b) (f, a) (f, b) (f, a) (f, b) (f, a) (f, b) (f, a) (f, b) – –

Table I: The edges of maximally redundant trees computed using GADAG depicted in Figure 5.

(a) ordered case (b) unordered case

Figure 6: Illustration for Theorem 1.

number of vertices). If U is on the path from D to r in T ,
Procedure 3 finds cut-vertex x in the component closest to D
containing u, and sets hP

u (d) = hP
u (x) and hS

u(d) = hS
u(x).

Since any path from u to d contains x, the walks leave each
component at the right vertex, so both walks are paths and
reach d. If U is not on the path from D to r, then Procedure 3
sets hP

u (d) = hP
u (r) and hS

u(d) = hS
u(r). In this way, the

walks go up towards r in T until it reaches the first vertex X ,
which is on the path from D to r, so there is no cycle again,
and the walks are paths. Since the paths inside a component are
vertex-disjoint, the two paths are maximally vertex-disjoint.

Finally, we only need to show that Algorithm 4 is linear in
the number of edges.

Theorem 2: The run-time of Algorithm 4 is O(|E(G)|) for
any connected graph.

Proof: Computing GADAG D and doing the BFS traver-
sals need O(|E(G)|) time. The main question is the run-time
of Procedure 3. Each time Procedure 3 is called recursively
(from the procedure), a vertex x is needed with hP

u (x) =
NULL and hS

u(x) = NULL, so it can be called recursively
at most O(|V (G)|) times altogether. Since it is called from
Algorithm 4 |V (G)| − 2 times, the overall run-time of the
algorithm is O(|V (G)|+ |E(G)|) = O(|E(G)|) (the graph is
connected).

V. OPTIMIZATION

Previously, an algorithm finding a pair of maximally redun-
dant trees rooted at each of the vertices was discussed. There,
the attributes of the trees found were not considered important.
Unfortunately, this is usually not true.

A very common requirement, paths in networks must
meet, is to minimize the length of paths with respect to
some edge length function. Probably, the most important
networks, where this this kind of optimization is needed are the
IP networks. Unfortunately, minimizing paths with arbitrary
length function can not be done in linear time but only in
O(|V (G)| log |V (G)|+ |E(G)|) with Dijkstra’s algorithm. In
contrast, if edges have uniform lengths, BFS traversal can also

find the shortest paths in linear, O(|E(G)|), time; these are the
paths containing the minimum number of vertices.

Observe that the situation is the same for maximally redun-
dant trees as well. When the spanning GADAG is computed,
Algorithm 4 computes the paths to greater and lesser vertices
at Line 5 and Line 6 using BFS. In this way, optimal always
increasing and always decreasing paths are found in the
GADAG for uniform edge length, but for arbitrary lengths
these paths are suboptimal.

Fortunately, the exact way of finding increasing and decreas-
ing paths is not important, therefore the BFS traversals can
be exchanged to two runs of Dijkstra’s algorithm. However,
this is a trade-off, since using Dijkstra’s algorithm would ruin
linearity. In this paper we choose conserving linear run-time
even with path minimization, thus we assume uniformly 1 edge
lengths in the sequel (we minimize the number of vertices
along the paths). Nevertheless, all the following techniques
can be applied with simply exchanging the BFS traversals
to Dijkstra’s algorithm, but in this case the overall run-time
becomes O(|V (G)| log |V (G)|+ |E(G)|).

Assuming uniform edge lengths, the most important as-
pect influencing the number of vertices along the paths of
maximally redundant trees is the spanning GADAG; using
a “better” GADAG, BFS traversals can find better paths.
Observe that when a GADAG is found, there can be some
edges in the original graph, which are not used in either
direction. Adding these edges in a direction, which keeps up
the GADAG property may reduce the length of paths.

Moreover, observe that for any vertex v, optimizing the
whole spanning GADAG is not necessary; it is enough to add
some edges to the components of the GADAG, which contain
v. Since paths towards vertices in different components are
just paths towards a decent cut-vertex, optimizing the paths in
the local components optimizes all the paths.

Unfortunately, note that simply keeping up the GADAG
property is not enough, since Algorithm 4 needs special
spanning GADAG, which fulfills Lemma 6 too. Therefore,
adding edge in the direction entering the local root must also
be avoided.

Considering these observations, it is possible to construct
some simple linear time heuristics for some vertex v:

• Compute GADAG D of graph G with set of components
C.

• For all A ∈ C, where v ∈ V (A), remove the single edge
entering into rA. Make a topological ordering where rA is
the minimum element. Edges of G, used in D in neither
direction, can be added in a direction such that the source
is the lower, the target is the higher vertex with respect
to the topological ordering.

Fig. 6. Illustration for Theorem 1

Finally, we only need to show that Algorithm 4 is linear in the
number of edges.
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Theorem 2 The run-time of Algorithm 4 is O(|E(G)|) for any
connected graph.

Proof: Computing GADAG D and doing the BFS traversals
need O(|E(G)|) time. The main question is the run-time of
Procedure 3. Each time Procedure 3 is called recursively (from
the procedure), a vertex x is needed with h P

u (x) = NU L L
and hS

u (x) = NU L L , so it can be called recursively at most
O(|V (G)|) times altogether. Since it is called from Algo-
rithm 4 |V (G)| − 2 times, the overall run-time of the algorithm
is O(|V (G)| + |E(G)|) = O(|E(G)|) (the graph is connected).

5 Optimization
Previously, an algorithm finding a pair of maximally redun-

dant trees rooted at each of the vertices was discussed. There,
the attributes of the trees found were not considered important.
Unfortunately, this is usually not true.

A very common requirement, paths in networks must meet,
is to minimize the length of paths with respect to some edge
length function. Probably, the most important networks, where
this kind of optimization is needed are the IP networks. Un-
fortunately, minimizing paths with arbitrary length function can
not be done in linear time but only in O(|V (G)| log |V (G)| +

|E(G)|) with Dijkstra’s algorithm. In contrast, if edges have
uniform lengths, BFS traversal can also find the shortest paths
in linear, O(|E(G)|), time; these are the paths containing the
minimum number of vertices.

Observe that the situation is the same for maximally redun-
dant trees as well. When the spanning GADAG is computed,
Algorithm 4 computes the paths to greater and lesser vertices at
Line 5 and Line 6 using BFS. In this way, optimal always in-
creasing and always decreasing paths are found in the GADAG
for uniform edge length, but for arbitrary lengths these paths are
suboptimal.

Fortunately, the exact way of finding increasing and decreas-
ing paths is not important, therefore the BFS traversals can
be exchanged to two runs of Dijkstra’s algorithm. However,
this is a trade-off, since using Dijkstra’s algorithm would ruin
linearity. In this paper we choose conserving linear run-time
even with path minimization, thus we assume uniformly 1 edge
lengths in the sequel (we minimize the number of vertices along
the paths). Nevertheless, all the following techniques can be
applied with simply exchanging the BFS traversals to Dijk-
stra’s algorithm, but in this case the overall run-time becomes
O(|V (G)| log |V (G)| + |E(G)|).

Assuming uniform edge lengths, the most important aspect
influencing the number of vertices along the paths of maxi-
mally redundant trees is the spanning GADAG; using a “bet-
ter” GADAG, BFS traversals can find better paths. Observe that
when a GADAG is found, there can be some edges in the orig-
inal graph, which are not used in either direction. Adding these
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Figure 7: A sample graph and a spanning GADAG.

Trivially, in this way the GADAG property is kept up, and
no new edge entering a local root is added. Moreover, since
topological ordering is linear, these heuristics do not increase
the run-time of the algorithm.

As a simple example, consider the graph depicted in Fig-
ure 7. Observe that edge {c, e} is used in neither direction,
so use the optimization. Since there is only one weakly 2-
vertex-connected component, the optimization is the same for
all the vertices. With removing the single edge entering to
root d, there can be one topological ordering with d as the
minimum element: d, e, f, a, b, c. Since e ≺ c with respect to
this ordering, edge (e, c) can be added to the GADAG.

Note that these heuristics can not only decrease but some-
times increase the length of paths. Trivially, when two vertices
in the same component are ordered, these heuristics definitely
cannot increase the path length. On the other hand, when
vertices are not ordered, the turning point, vertex x and y
in Figure 6b, may get closer to the local root and farther
from d. In the next section we prove by extensive simulations
that in average these heuristics decrease the lengths of paths
significantly.

VI. EVALUATION

In the previous section some linear time heuristics were
proposed for decreasing the path lengths in maximally re-
dundant trees (recall, that uniform link cost is supposed).
Unfortunatelly, in some special cases using these heursitics the
lengths of paths can increase. In this section we use extensive
simulations in order to prove that in average our heuristics
singnificantly shorten the paths.

Since redundant trees can be applied in communication net-
works, we used the topology of real and randomly generated
artificial networks. The selected real networks are the Abilene,
NSF, AT&T and 50 node German backbone network from
[26], and the Italian, German and European Cost266 backbone
network from [27]. For each of these networks, we computed
the maximally redundant trees with respect to each vertex as
root, and we averaged the length of the resultant paths.

Random network topologies were generated by Boston
university Representative Internet Topology gEnerator
(BRITE) [30], using Waxman’s algorithm, with random node
placement and parameters α = 0.15 and β = 0.2. The root
of the generated GADAG was selected randomly in each
case. The number of node varied between 20 and 50 and the
number of neighbors was 2 and 3. In each case we made

250 000 random experiments in order to well approximate
the expected value of the lengths of paths with the mean of
the results.

Since several real topologies are 2-vertex-connected when
no failure exists, for these topologies we computed two
optimal vertex disjoint paths using Suurballe’s algorithm.
Moreover, we also implemented the heuristics proposed by
Xue et. al. in [15], [3] for minimizing the path lengths
of redundant trees. The mean of the lengths of path pairs
computed by these two algorithms and the lengths of paths
computed by Algorithm 4 with and without heuristics are
presented in Table II and Table III.

One may observe that paths get significantly shorter when
the heuristics poposed in Section V are applied. Unfortunately,
these paths are significantly longer than the optimal ones are.
Thus, we can identify an interesting trade-off here: using
our maximally redundant tree algorithm instead of Suur-
balle’s algorithm or Xue’s heuristics is clearly advantageous in
performance-sensitive applications, because its running time
is much smaller (linear, O(|E|)) than that of Suurballe’s
algorithm (for all the vertex pairs O(|V (G)|3 log |V (G)|))
or that of Xue’s heuristics (a tree rooted at each vertex is
O(|V (G)|3(|E(G)|+|V (G)| log |V (G)|))). On the other hand,
our technique gives suboptimal protection paths, whose length
may be significantly larger than the optimal path length. Our
simulations reveal that the increase is at most two-fold, which
is not necessarily poses difficulties if these paths are only used
for protection in out-of-order situations, which, supposedly,
only last a couple of seconds, and the default paths can still
be optimal shortest paths. But perhaps most importantly, our
algorithm is much better suited to certain applications, namely
those based on the hop-by-hop forwarding paradigm like IP,
because in these applications we only need the next-hops along
the recovery trees instead of the entire protection paths as
returned by Suurballe’s or Xue’s algorithm. In the next section,
we present such an application.

VII. LIGHTWEIGHT NOT-VIA

Previously, the way of computing a pair of maximally
redundant trees rooted at each node was discussed. In this
section we present an application of this concept. Observe,
that maximally redundant trees can also be applied, where
redundant trees are used, so the concept proposed in this paper
is not limited to this example. Moreover, note that maximally
redundant trees can be especially useful for providing 1+1
protection or load sharing.

Lightweight Not-via [25] is an advanced variant of the
IP Fast ReRoute (IPFRR) [31] mechanism named Not-via
addresses [32]. Since IPFRR, Not-via and Lightweight Not-
via is not in the main scope of this paper, here we only briefly
discuss them.

Nowadays, significant efforts are taken in order to endow
traditional IP with protection capabilities. Since traditional
IP is based only restoration techniques like OSPF [33] or
IS-IS [34], its recovery capabilities prove themselves to be
insufficient more and more often with the spreading of real
time traffic, like IPTV, VoIP, stock exchange transactions or

Fig. 7. A sample graph and a spanning GADAG.

edges in a direction, which keeps up the GADAG property may
reduce the length of paths.

Moreover, observe that for any vertex v, optimizing the whole
spanning GADAG is not necessary; it is enough to add some
edges to the components of the GADAG, which contain v. Since
paths towards vertices in different components are just paths to-
wards a decent cut-vertex, optimizing the paths in the local com-
ponents optimizes all the paths.

Unfortunately, note that simply keeping up the GADAG prop-
erty is not enough, since Algorithm 4 needs special spanning
GADAG, which fulfils Lemma 6 too. Therefore, adding edge in
the direction entering the local root must also be avoided.

Considering these observations, it is possible to construct
some simple linear time heuristics for some vertex v:

• Compute GADAG D of graph G with set of components C .

• For all A ∈ C , where v ∈ V (A), remove the single edge
entering into rA. Make a topological ordering where rA is the
minimum element. Edges of G, used in D in neither direction,
can be added in a direction such that the source is the lower,
the target is the higher vertex with respect to the topological
ordering.

Trivially, in this way the GADAG property is kept up, and
no new edge entering a local root is added. Moreover, since
topological ordering is linear, these heuristics do not increase
the run-time of the algorithm.

As a simple example, consider the graph depicted in Fig. 7.
Observe that edge {c, e} is used in neither direction, so use the
optimization. Since there is only one weakly 2-vertex-connected
component, the optimization is the same for all the vertices.
With removing the single edge entering to root d , there can
be one topological ordering with d as the minimum element:
d, e, f, a, b, c. Since e ≺ c with respect to this ordering, edge
(e, c) can be added to the GADAG.

Note that these heuristics can not only decrease but sometimes
increase the length of paths. Trivially, when two vertices in the
same component are ordered, these heuristics definitely cannot
increase the path length. On the other hand, when vertices are
not ordered, the turning point, vertex x and y in Fig. 6b, may get
closer to the local root and farther from d. In the next section we
prove by extensive simulations that in average these heuristics
decrease the lengths of paths significantly.
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6 Evaluation
In the previous section some linear time heuristics were pro-

posed for decreasing the path lengths in maximally redundant
trees (recall, that uniform link cost is supposed). Unfortunatelly,
in some special cases using these heursitics the lengths of paths
can increase. In this section we use extensive simulations in or-
der to prove that in average our heuristics singnificantly shorten
the paths.

Since redundant trees can be applied in communication net-
works, we used the topology of real and randomly generated
artificial networks. The selected real networks are the Abilene,
NSF, AT&T and 50 node German backbone network from [1],
and the Italian, German and European Cost266 backbone net-
work from [12]. For each of these networks, we computed the
maximally redundant trees with respect to each vertex as root,
and we averaged the length of the resultant paths.

Random network topologies were generated by Boston
university Representative Internet Topology gEnerator
(BRITE) [19], using Waxman’s algorithm, with random
node placement and parameters α = 0.15 and β = 0.2. The
root of the generated GADAG was selected randomly in each
case. The number of node varied between 20 and 50 and the
number of neighbors was 2 and 3. In each case we made
250 000 random experiments in order to well approximate the
expected value of the lengths of paths with the mean of the
results.

Since several real topologies are 2-vertex-connected when no
failure exists, for these topologies we computed two optimal
vertex disjoint paths using Suurballe’s algorithm. Moreover,
we also implemented the heuristics proposed by Xue et. al.
in [30, 32] for minimizing the path lengths of redundant trees.
The mean of the lengths of path pairs computed by these two
algorithms and the lengths of paths computed by Algorithm 4
with and without heuristics are presented in Table 2 and Table 3.

One may observe that paths get significantly shorter when
the heuristics poposed in Section 5 are applied. Unfortu-
nately, these paths are significantly longer than the optimal
ones. Thus, we can identify an interesting trade-off here: us-
ing our maximally redundant tree algorithm instead of Suur-
balle’s algorithm or Xue’s heuristics is clearly advantageous in
performance-sensitive applications, because its running time is
much smaller (linear, O(|E |)) than that of Suurballe’s algorithm
(for all the vertex pairs O(|V (G)|3 log |V (G)|)) or that of Xue’s
heuristics (a tree rooted at each vertex is O(|V (G)|3(|E(G)| +

|V (G)| log |V (G)|))). On the other hand, our technique gives
suboptimal protection paths, whose length may be significantly
larger than the optimal path length. Our simulations reveal that
the increase is at most two-fold, which is not necessarily poses
difficulties if these paths are only used for protection in out-of-
order situations, which, supposedly, only last a couple of sec-
onds, and the default paths can still be optimal shortest paths.
But perhaps most importantly, our algorithm is much better

suited to certain applications, namely those based on the hop-by-
hop forwarding paradigm like IP, because in these applications
we only need the next-hops along the recovery trees instead of
the entire protection paths as returned by Suurballe’s or Xue’s
algorithm. In the next section, we present such an application.

7 Lightweight Not-via
Previously, the way of computing a pair of maximally redun-

dant trees rooted at each node was discussed. In this section we
present an application of this concept. Observe, that maximally
redundant trees can also be applied, where redundant trees are
used, so the concept proposed in this paper is not limited to this
example. Moreover, note that maximally redundant trees can be
especially useful for providing 1+1 protection or load sharing.

Lightweight Not-via [10] is an advanced variant of the IP Fast
ReRoute (IPFRR) [25] mechanism named Not-via addresses [4].
Since IPFRR, Not-via and Lightweight Not-via is not in the
main scope of this paper, here we only briefly discuss them.

Nowadays, significant efforts are taken in order to endow tra-
ditional IP with protection capabilities. Since traditional IP is
based only restoration techniques like OSPF [21] or IS-IS [26],
its recovery capabilities prove themselves to be insufficient more
and more often with the spreading of real time traffic, like IPTV,
VoIP, stock exchange transactions or on-line gaming. Therefore,
IPFRR techniques are expected to provide recovery fast enough
even for these applications; usually it is said that IPFRR must
provide recovery in 50 ms at most, like SDH/SONET [28] does.

In contrast to traditional IP recovery, IPFRR mechanisms are
always proactive and reroute packets locally. Proactive manner
means that the way of avoiding a given resource is computed
long before any failure shows up. Local rerouting describes the
manner that routers using IPFRR do not need to advertise the
fact of the failure (since it needs some time), and packets can be
rerouted, when only the neighbors of the failed resource know
the presence of the failure.

Not-via uses special IP addresses, called not-via addresses,
in order to provide local rerouting. When a failure occurs, the
neighbor of the failed resource puts the packets in an IP-in-IP
tunnel with a special destination address. This address describes
not only the endpoint of the tunnel, where packets are needed to
be decapsulated, but also the failed resource. Therefore, Not-via
needs significant number of protection addresses. Fortunately,
since these addresses are not used globally, local IP address do-
mains (like 10.x.x.x or 192.168.x.x) can be used. On the other
hand, this high number of IP addresses rises significant manage-
ment problems.

In order to mitigate these management problems, Lightweight
Not-via was proposed. Lightweight Not-via uses vertex-
redundant trees for recovery. If there is no failure in the net-
work, packets are forwarded along the shortest paths, like Not-
via does. Moreover, if a failure occurs, packets are encap-
sulated into an IP-in-IP tunnel with a special destination ad-
dress. In contrast to traditional Not-via, the recovery addresses
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Tab. 2. Average number of vertices on paths of maximally redundant trees in real word networks (100% is the path with minimum number of vertices).

Network Node number Suurballe Xue Prim. path Sec. path Prim. path Sec. path

without heur. without heur. with heur. with heur.

Abilene 12 – – 210% 212% 168% 171%

Germany 17 135% 136% 231% 230% 191% 190%

AT&T 22 – – 221% 224% 166% 167%

NSF 26 121% 124% 224% 222% 178% 174%

Italy 33 – – 248% 247% 175% 174%

Cost266 37 129% 154% 250% 253% 190% 194%

Germany50 50 118% 160% 304% 309% 212% 214%

Tab. 3. Average number of vertices on paths of maximally redundant trees in artificial networks (100% is the path with minimum number of vertices).

Node number Neighbors Suurballe Xue Prim. path Sec. path Prim. path Sec. path

without heur. without heur. with heur. with heur.

20 2 120% 147% 217% 224% 173% 174%

20 3 116% 155% 298% 313% 180% 181%

30 2 120% 147% 235% 243% 182% 182%

30 3 115% 152% 332% 352% 190% 190%

40 2 119% 148% 250% 259% 190% 189%

40 3 114% 151% 361% 385% 198% 197%

50 2 118% 148% 263% 273% 197% 195%

50 3 113% 150% 388% 415% 205% 203%

of Lightweight Not-via do not describe exactly the failed re-
source, instead it describes a vertex-redundant tree. Since in
the case of a single link or node failure, the root of a pair of
vertex-redundant trees can be reached on at least one of the trees,
Lightweight Not-via can protect all the single failures.

As an example, consider the graph depicted in Fig. 1 as a
network, and suppose that node a tries to send some packets
to d . Moreover, suppose that the shortest path from a to d is
a → b → c → d and node c is down. Node a does not
know anything about the failure, since we have local rerouting,
therefore it sends packets to b as usual. Node b is the neighbor
of the failed resource, so it reroutes the packets locally. Since it
knows that both the shortest path and the redundant tree depicted
by solid arrows are failed, it encapsulates the packets into an IP-
in-IP tunnel with a special IP address telling all the nodes to
forward the packet to d along the dashed redundant tree rooted
at d. Since the trees are vertex-redundant, packets reach d along
path a → b → e → d. If link {c, d} is the failed resource, c
is the one rerouting, and packets are forwarded along path a →
b → c → b → e → d . Note that not always the destination,
but the next-next hop is the endpoint of the tunnel, since this
behavior makes the failure as local as possible.

Naturally, this technique can be applied only in 2-vertex-
connected networks, since vertex-redundant trees are needed.
In contrast, if we simply change redundant trees to maximally
redundant trees this limitation is lifted. Although finding the
2-vertex-connected components and sending packets their exit
points could help for plain redundant trees, observe that this is
exactly what is done by the algorithm finding maximally redun-
dant trees. On the other hand, using the concept of maximally
redundant trees, gives not only a cleaner solution, which is easier

to debug, but makes it unnecessary to differentiate between nor-
mal and cut-vertices, which problem is known as “bridge prob-
lem”, and rises several special cases.

8 Conclusions
In this paper we improved the concept of redundant trees. In

contrast to redundant trees which can be found only in 2-edge-
or 2-vertex-connected graphs, maximally redundant trees can be
found in arbitrary connected graphs. Since maximally redundant
trees can provide maximum redundancy for all networks, they
can be applied in any connected network, even in ones, where
redundant trees can not be found. Moreover, since maximally
redundant trees are edge-redundant or vertex-redundant, when
such trees exist, these trees can be applied with no modification
in any network using traditional redundant trees. Moreover, we
presented a linear time algorithm for computing the maximally
redundant trees rooted at not only one, but all the vertices.

Using the results of this paper, we improved Lightweight Not-
via, an advanced version of IPFRR mechanism Not-via, which
has probably the most significant IETF and industrial backing
currently. Naturally, our results are not limited to IPFRR; since
redundant trees are applied in various environments such as sen-
sor networks or optical networks, maximally redundant trees can
be applied in the same fields too.
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